IDEAS home Printed from https://ideas.repec.org/e/c/psh10.html
   My authors  Follow this author

Neil Shephard

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Neil Shephard, 2010. "Deferred fees for universities," Economics Papers 2010-W03, Economics Group, Nuffield College, University of Oxford.

    Mentioned in:

    1. Rethinking college tuition and student loans
      by Economic Logician in Economic Logic on 2010-10-19 19:15:00

Wikipedia or ReplicationWiki mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.

    Mentioned in:

    1. Estimating quadratic variation using realized variance (Journal of Applied Econometrics 2002) in ReplicationWiki ()
  2. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.

    Mentioned in:

    1. Realising the future: forecasting with high-frequency-based volatility (HEAVY) models (Journal of Applied Econometrics 2010) in ReplicationWiki ()
  3. Author Profile
    1. Neil Shephard in Wikipedia (German)

Working papers

  1. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.

    Cited by:

    1. Fengler, Matthias & Polivka, Jeannine, 2022. "Structural Volatility Impulse Response Analysis," Economics Working Paper Series 2211, University of St. Gallen, School of Economics and Political Science, revised Nov 2022.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    4. Hiroyuki Kawakatsu, 2022. "Local projection variance impulse response," Empirical Economics, Springer, vol. 62(3), pages 1219-1244, March.

  2. Lorraine Deardon & Neil Shephard & Jack Britton & Anna Vignoles, 2016. "How English domiciled graduate earnings vary with gender, institution attended, subject and socio-economic background," Working Paper 397281, Harvard University OpenScholar.

    Cited by:

    1. Walker, Ian & Zhu, Yu, 2017. "University Selectivity and the Relative Returns to Higher Education: Evidence from the UK," GLO Discussion Paper Series 133, Global Labor Organization (GLO).
    2. Anna Adamecz-Volgyi & Morag Henderson & Nikki Shure, 2021. "Intergenerational educational mobility – the role of non-cognitive skills," DoQSS Working Papers 21-30, Quantitative Social Science - UCL Social Research Institute, University College London.
    3. Francesconi, Marco & Parey, Matthias, 2018. "Early Gender Gaps among University Graduates," IZA Discussion Papers 11361, Institute of Labor Economics (IZA).
    4. Adamecz, Anna & Henderson, Morag & Shure, Nikki, 2020. "The Labor Market Returns to 'First in Family' University Graduates," IZA Discussion Papers 13911, Institute of Labor Economics (IZA).
    5. Rita Hordósy & Tom Clark, 2018. "‘It’s Scary and It’s Big, and There’s No Job Security’: Undergraduate Experiences of Career Planning and Stratification in an English Red Brick University," Social Sciences, MDPI, vol. 7(10), pages 1-20, September.
    6. Chris Belfield & Jack Britton & Franz Buscha & Lorraine Dearden & Matt Dickson & Luke Sibieta & Laura van der Erve & Anna Vignoles & Ian Walker & Yu Zhu, 2021. "How much does degree choice matter?," IFS Working Papers W21/24, Institute for Fiscal Studies.
    7. Adamecz, Anna & Henderson, Morag & Shure, Nikki, 2019. "Is 'First in Family' a Good Indicator for Widening University Participation?," IZA Discussion Papers 12826, Institute of Labor Economics (IZA).
    8. Melanie Arntz & Cäcilia Lipowski & Guido Neidhöfer & Ulrich Zierahn-Weilage, 2022. "Computers as Stepping Stones? Technological Change and Equality of Labor Market Opportunities," Working Papers 617, ECINEQ, Society for the Study of Economic Inequality.
    9. Milla, Joniada, 2017. "The Context-Bound University Selectivity Premium," IZA Discussion Papers 11025, Institute of Labor Economics (IZA).
    10. Adriana Duta & Cristina Iannelli, 2018. "Social Class Inequalities in Graduates’ Labour Market Outcomes: The Role of Spatial Job Opportunities," Social Sciences, MDPI, vol. 7(10), pages 1-18, October.
    11. McKnight, Abigail Ann & Obolenskaya, Polina, 2023. "The Conservative governments’ record on higher education: policy, spending and outcomes, May 2015 to pre-COVID 2020," LSE Research Online Documents on Economics 121557, London School of Economics and Political Science, LSE Library.
    12. Silvia Kopecny & Steffen Hillmert, 2021. "Place of study, field of study and labour-market region: What matters for wage differences among higher-education graduates?," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 55(1), pages 1-21, December.
    13. Claire Callender & Kevin J. Dougherty, 2018. "Student Choice in Higher Education—Reducing or Reproducing Social Inequalities?," Social Sciences, MDPI, vol. 7(10), pages 1-28, October.
    14. Andrew Jenkins & Alison Wolf, "undated". "What's in a Name? The Effect of Brand on the Level of English Universities' Fees," DoQSS Working Papers 16-12, Quantitative Social Science - UCL Social Research Institute, University College London.
    15. Sam Sims & Asma Benhenda, 2022. "The effect of financial incentives on the retention of shortage-subject teachers: evidence from England," CEPEO Working Paper Series 22-04, UCL Centre for Education Policy and Equalising Opportunities, revised Apr 2022.
    16. Marginson, Simon, 2018. "Global trends in higher education financing: The United Kingdom," International Journal of Educational Development, Elsevier, vol. 58(C), pages 26-36.

  3. Bornn, Luke & Neil Shephard & Reza Solgi, 2016. "Moment conditions and Bayesian nonparametrics," Working Paper 360971, Harvard University OpenScholar.

    Cited by:

    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    2. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    4. Yusuke Narita & Kohei Yata, 2021. "Algorithm is Experiment: Machine Learning, Market Design, and Policy Eligibility Rules," Cowles Foundation Discussion Papers 2283, Cowles Foundation for Research in Economics, Yale University.
    5. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.

  4. Jack Britton & Neil Shephard & Anna Vignoles, 2015. "Comparing sample survey measures of English earnings of graduates with administrative data during the Great Recession," IFS Working Papers W15/28, Institute for Fiscal Studies.

    Cited by:

    1. Adamecz, Anna & Henderson, Morag & Shure, Nikki, 2020. "The Labor Market Returns to 'First in Family' University Graduates," IZA Discussion Papers 13911, Institute of Labor Economics (IZA).
    2. Hermannsson, Kristinn & Lecca, Patrizio & Swales, J. Kim, 2014. "How much does a single graduation cohort from further education colleges contribute to an open regional economy?," SIRE Discussion Papers 2014-004, Scottish Institute for Research in Economics (SIRE).
    3. Jack Britton & Lorraine Dearden & Neil Shephard & Anna Vignoles, 2016. "How English domiciled graduate earnings vary with gender, institution attended, subject and socio-economic background," IFS Working Papers W16/06, Institute for Fiscal Studies.
    4. Pascale Bourquin & Tom Waters, 2022. "Jobs and job quality between the eve of the Great Recession and the eve of COVID‐19," Fiscal Studies, John Wiley & Sons, vol. 43(1), pages 63-78, March.
    5. Buchmueller, Gerda & Walker, Ian, 2020. "The Graduate Wage and Earnings Premia and the Role of Non-Cognitive Skills," IZA Discussion Papers 13248, Institute of Labor Economics (IZA).
    6. Peter Ainsworth & Tom McKenzie & Al Stroyny, 2016. "Incentive Effects in Higher Education: an Improved Funding Model for Universities," Economic Affairs, Wiley Blackwell, vol. 36(3), pages 239-257, October.

  5. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    2. James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
    3. Hernández Juan R., 2020. "Covered Interest Parity: A Stochastic Volatility Approach to Estimate the Neutral Band," Working Papers 2020-02, Banco de México.
    4. Timothy Cogley & Thomas J. Sargent, 2014. "Measuring Price-Level Uncertainty and Instability in the U.S., 1850-2012," Working Papers 2014-33, Economic Research Institute, Bank of Korea.
    5. Frank Schorfheide & Dongho Song & Amir Yaron, 2014. "Identifying Long-Run Risks: A Bayesian Mixed-Frequency Approach," NBER Working Papers 20303, National Bureau of Economic Research, Inc.
    6. Elmar Mertens & James M. Nason, 2018. "Inflation and professional forecast dynamics: an evaluation of stickiness, persistence, and volatility," BIS Working Papers 713, Bank for International Settlements.
    7. Cogley, Timothy & Sargent, Thomas J. & Surico, Paolo, 2015. "Price-level uncertainty and instability in the United Kingdom," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 1-16.

  6. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Papers 2012-W04, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    2. Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Stefano Peluso & Fulvio Corsi & Antonietta Mira, 2015. "A Bayesian High-Frequency Estimator of the Multivariate Covariance of Noisy and Asynchronous Returns," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 665-697.
    4. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    5. Harry Vander Elst & David Veredas, 2017. "Smoothing it Out: Empirical and Simulation Results for Disentangled Realized Covariances," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 106-138.

  7. Arnaud Doucet & Neil Shephard, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Papers 2012-W05, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Specification tests based on MCMC output," Journal of Econometrics, Elsevier, vol. 207(1), pages 237-260.
    2. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    3. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    4. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    5. P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
    6. Andreas Hetland, 2018. "The Stochastic Stationary Root Model," Econometrics, MDPI, vol. 6(3), pages 1-33, August.

  8. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    2. Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," Discussion Papers 12-23, University of Copenhagen. Department of Economics.
    3. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    4. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    5. Sensoy, Ahmet & Ozturk, Kevser & Hacihasanoglu, Erk, 2014. "Constructing a financial fragility index for emerging countries," Finance Research Letters, Elsevier, vol. 11(4), pages 410-419.
    6. L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    7. Serge Darolles & Christian Francq & Sébastien Laurent, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-04590232, HAL.
    8. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    9. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
    10. Wang, Zihe & Li, Johnny Siu-Hang, 2016. "A DCC-GARCH multi-population mortality model and its applications to pricing catastrophic mortality bonds," Finance Research Letters, Elsevier, vol. 16(C), pages 103-111.
    11. Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, vol. 4(1), pages 1-27, January.
    12. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
    13. Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.
    14. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    15. Karim M Abadir, 2023. "Explicit minimal representation of variance matrices, and its implication for dynamic volatility models," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 88-104.
    16. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    17. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. David T. Frazierz & Eric Renault, 2016. "Efficient Two-Step Estimation via Targeting," CIRANO Working Papers 2016s-16, CIRANO.
    19. Manabu Asai & Chia-Lin Chang & Michael McAleer & Laurent Pauwels, 2021. "Asymptotic and Finite Sample Properties for Multivariate Rotated GARCH Models," Econometrics, MDPI, vol. 9(2), pages 1-21, May.
    20. Nguyen, Duc Khuong & Sensoy, Ahmet & Sousa, Ricardo M. & Salah Uddin, Gazi, 2020. "U.S. equity and commodity futures markets: Hedging or financialization?," Energy Economics, Elsevier, vol. 86(C).
    21. Brownlees, Christian T., 2019. "Hierarchical GARCH," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 17-27.
    22. Frazier, David T. & Renault, Eric, 2017. "Efficient two-step estimation via targeting," Journal of Econometrics, Elsevier, vol. 201(2), pages 212-227.
    23. Dimitrios P. Louzis, 2015. "The economic value of flexible dynamic correlation models," Economics Bulletin, AccessEcon, vol. 35(1), pages 774-782.
    24. Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
    25. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
    26. Hetland, Simon & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2023. "Dynamic conditional eigenvalue GARCH," Journal of Econometrics, Elsevier, vol. 237(2).
    27. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    28. Wang, Jianshen & Taylor, Nick, 2018. "A comparison of static and dynamic portfolio policies," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 111-127.
    29. Donald Lien & Hsiang‐Tai Lee & Her‐Jiun Sheu, 2018. "Hedging systematic risk in the commodity market with a regime‐switching multivariate rotated generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(12), pages 1514-1532, December.
    30. Hsiang‐Tai Lee, 2022. "A Markov regime‐switching Cholesky GARCH model for directly estimating the dynamic of optimal hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 389-412, March.

  9. Per A. Mykland & Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Papers 2012-W02, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    2. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
    3. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    4. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    5. Jacod, Jean & Klüppelberg, Claudia & Müller, Gernot, 2017. "Testing for non-correlation between price and volatility jumps," Journal of Econometrics, Elsevier, vol. 197(2), pages 284-297.
    6. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org, revised Sep 2020.
    7. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    8. Jacod, Jean & Mykland, Per A., 2015. "Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2910-2936.
    9. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    10. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

  10. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Pasquali, Sara, 2021. "A stage structured demographic model with “no-regression” growth: The case of constant development rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Feng Guanhao & Polson Nicholas & Xu Jianeng, 2016. "The market for English Premier League (EPL) odds," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(4), pages 167-178, December.
    3. Gajda, Janusz & Beghin, Luisa, 2021. "Prabhakar Lévy processes," Statistics & Probability Letters, Elsevier, vol. 178(C).
    4. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

  11. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    2. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
    3. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    4. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    5. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    7. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
    8. Andrea Bucci & Michele Palma & Chao Zhang, 2024. "Geometric Deep Learning for Realized Covariance Matrix Forecasting," Papers 2412.09517, arXiv.org.
    9. Karanasos, Menelaos & Xu, Yongdeng & Yfanti, Stavroula, 2017. "Constrained QML Estimation for Multivariate Asymmetric MEM with Spillovers: The Practicality of Matrix Inequalities," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.
    10. Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
    11. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    12. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    13. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
    14. Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
    15. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    16. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    17. Song, Shijia & Tian, Fei & Li, Handong, 2021. "An intraday-return-based Value-at-Risk model driven by dynamic conditional score with censored generalized Pareto distribution," Journal of Asian Economics, Elsevier, vol. 74(C).
    18. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    19. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
    20. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
    21. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
    22. Stanislav Anatolyev & Nikita Kobotaev, 2018. "Modeling and forecasting realized covariance matrices with accounting for leverage," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
    23. Opschoor, Anne & van Dijk, Dick & van der Wel, Michel, 2014. "Predicting volatility and correlations with Financial Conditions Indexes," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 435-447.
    24. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    25. Bauwens, Luc & Xu, Yongdeng, 2023. "The contribution of realized covariance models to the economic value of volatility timing," LIDAM Discussion Papers CORE 2023018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    26. Huang, Shih-Feng & Tu, Ya-Ting, 2014. "Asymptotic distribution of the EPMS estimator for financial derivatives pricing," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 129-145.
    27. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    28. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    29. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    30. Anne Opschoor & André Lucas, 2019. "Observation-driven Models for Realized Variances and Overnight Returns," Tinbergen Institute Discussion Papers 19-052/IV, Tinbergen Institute.
    31. Ilya Archakov & Peter Reinhard Hansen, 2020. "A New Parametrization of Correlation Matrices," Papers 2012.02395, arXiv.org.
    32. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    33. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    34. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    35. Bruno Feunou & Jean-Sébastien Fontaine & Anh Le & Christian Lundblad, 2022. "Tractable Term Structure Models," Management Science, INFORMS, vol. 68(11), pages 8411-8429, November.
    36. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    37. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    38. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    39. Ming-Tao Chou & Cherie Lu, 2016. "Correlations and Volatility Spillovers between the Carbon Trading Price and Bunker Index for the Maritime Industry," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 93-101, November.
    40. Xin Jin & Jia Liu & Qiao Yang, 2021. "Does the Choice of Realized Covariance Measures Empirically Matter? A Bayesian Density Prediction Approach," Econometrics, MDPI, vol. 9(4), pages 1-22, December.
    41. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    42. Th'eophile Griveau-Billion & Ben Calderhead, 2019. "A Dynamic Bayesian Model for Interpretable Decompositions of Market Behaviour," Papers 1904.08153, arXiv.org, revised Jan 2020.
    43. Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    44. Arumugam, Devika, 2023. "Algorithmic trading: Intraday profitability and trading behavior," Economic Modelling, Elsevier, vol. 128(C).
    45. Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
    46. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    47. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    48. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    49. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    50. Fabrizio Cipollini & Giampiero M. Gallo & Alessandro Palandri, 2020. "A dynamic conditional approach to portfolio weights forecasting," Papers 2004.12400, arXiv.org.
    51. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    52. Bryan Lim & Stefan Zohren & Stephen Roberts, 2020. "Detecting Changes in Asset Co-Movement Using the Autoencoder Reconstruction Ratio," Papers 2002.02008, arXiv.org, revised Sep 2020.
    53. Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Reprints CORE 2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    54. Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, vol. 4(1), pages 1-27, January.
    55. Song, Shijia & Li, Handong, 2023. "A method for predicting VaR by aggregating generalized distributions driven by the dynamic conditional score," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 203-214.
    56. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    57. Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
    58. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    59. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2014. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-932, CIRJE, Faculty of Economics, University of Tokyo.
    60. Yuta yamauchi & Yasuhiro Omori, 2019. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," CIRJE F-Series CIRJE-F-1117, CIRJE, Faculty of Economics, University of Tokyo.
    61. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
    62. Bilel Sanhaji & Julien Chevallier, 2023. "Tracking ‘Pure’ Systematic Risk with Realized Betas for Bitcoin and Ethereum," Post-Print hal-04218488, HAL.
    63. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & Franc{c}ois Chareyron, 2021. "Adaptive learning for financial markets mixing model-based and model-free RL for volatility targeting," Papers 2104.10483, arXiv.org, revised Apr 2021.
    64. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    65. Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.
    66. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.
    67. M. Karanasos & S. Yfanti & A. Christopoulos, 2021. "The long memory HEAVY process: modeling and forecasting financial volatility," Annals of Operations Research, Springer, vol. 306(1), pages 111-130, November.
    68. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
    69. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    70. Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," SFB 649 Discussion Papers 2011-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    71. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.
    72. Ilze Kalnina & Natalia Sizova, 2015. "Estimation of volatility measures using high frequency data (in Russian)," Quantile, Quantile, issue 13, pages 3-14, May.
    73. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    74. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    75. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    76. BRAIONE, Manuela, 2016. "A time-varying long run HEAVY model," LIDAM Discussion Papers CORE 2016002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    77. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    78. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
    79. Gianluca De Nard & Robert F. Engle & Olivier Ledoit & Michael Wolf, 2020. "Large dynamic covariance matrices: enhancements based on intraday data," ECON - Working Papers 356, Department of Economics - University of Zurich, revised Jan 2022.
    80. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    81. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    82. Bannouh, K. & Martens, M.P.E. & Oomen, R.C.A. & van Dijk, D.J.C., 2012. "Realized mixed-frequency factor models for vast dimensional covariance estimation," ERIM Report Series Research in Management ERS-2012-017-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    83. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
    84. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    85. Braione, Manuela & Scholtes, Nicolas K., 2014. "Construction of value-at-risk forecasts under different distributional assumptions within a BEKK framework," LIDAM Discussion Papers CORE 2014059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    86. Kuang, Wei, 2022. "The economic value of high-frequency data in equity-oil hedge," Energy, Elsevier, vol. 239(PA).
    87. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    88. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    89. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    90. Dragos Gorduza & Xiaowen Dong & Stefan Zohren, 2022. "Understanding stock market instability via graph auto-encoders," Papers 2212.04974, arXiv.org.
    91. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    92. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    93. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    94. Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
    95. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2013. "Predicting Covariance Matrices with Financial Conditions Indexes," Tinbergen Institute Discussion Papers 13-113/III, Tinbergen Institute.
    96. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    97. Yuta Yamauchi & Yasuhiro Omori, 2016. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations ," CIRJE F-Series CIRJE-F-1029, CIRJE, Faculty of Economics, University of Tokyo.
    98. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    99. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    100. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    101. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    102. BAUWENS, Luc & STORTI, Giuseppe, 2013. "Computationally efficient inference procedures for vast dimensional realized covariance models," LIDAM Reprints CORE 2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    103. Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
    104. Jeff Fleming & Chris Kirby, 2013. "Component-Driven Regime-Switching Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 263-301, March.
    105. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    106. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    107. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    108. Vasyl Golosnoy & Benno Hildebrandt & Steffen Köhler, 2019. "Modeling and Forecasting Realized Portfolio Diversification Benefits," JRFM, MDPI, vol. 12(3), pages 1-16, July.
    109. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    110. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2023. "Forecasting extreme financial risk: A score-driven approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 720-735.
    111. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    112. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    113. Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
    114. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    115. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    116. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).

  12. Neil Shephard & Thomas Flury, 2009. "Learning and filtering via simulation: smoothly jittered particle filters," Economics Series Working Papers 469, University of Oxford, Department of Economics.

    Cited by:

    1. Karol Gellert & Erik Schlögl, 2021. "Parameter Learning and Change Detection Using a Particle Filter with Accelerated Adaptation," Risks, MDPI, vol. 9(12), pages 1-18, December.
    2. Andras Fulop & Junye Li & Jun Yu, 2012. "Bayesian Learning of Impacts of Self-Exciting Jumps in Returns and Volatility," Working Papers 03-2012, Singapore Management University, School of Economics.
    3. Duc Pham-Hi, 2014. "Shadow banking dynamics and learning behaviour," EcoMod2014 6920, EcoMod.
    4. Andras Fulop & Junye Li & Jun Yu, 2012. "Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach," Global COE Hi-Stat Discussion Paper Series gd12-264, Institute of Economic Research, Hitotsubashi University.
    5. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    6. Andreasen, Martin & Meldrum, Andrew, 2013. "Likelihood inference in non-linear term structure models: the importance of the lower bound," Bank of England working papers 481, Bank of England.

  13. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Viktor Todorov & Yang Zhang, 2022. "Information gains from using short‐dated options for measuring and forecasting volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 368-391, March.
    2. Manabu Asai & Michael McAleer, 2011. "Dynamic Conditional Correlations for Asymmetric Processes," Documentos de Trabajo del ICAE 2011-30, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Matteo Barigozzi & Christian T. Brownlees & Giampiero M. Gallo & David Veredas, 2010. "Disentangling Systematic and Idiosyncratic Risk for Large Panels of Assets," Econometrics Working Papers Archive wp2010_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    4. Eduardo Rossi & Dean Fantazzini, 2012. "Long memory and Periodicity in Intraday Volatility," DEM Working Papers Series 015, University of Pavia, Department of Economics and Management.
    5. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    6. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    7. Großmaß Lidan, 2014. "Liquidity and the Value at Risk," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(5), pages 572-602, October.
    8. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    9. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    11. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    12. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    14. Guan, Bo & Mazouz, Khelifa & Xu, Yongdeng, 2024. "Asymmetric volatility spillover between crude oil and other asset markets," Energy Economics, Elsevier, vol. 130(C).
    15. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    16. Karanasos, Menelaos & Xu, Yongdeng & Yfanti, Stavroula, 2017. "Constrained QML Estimation for Multivariate Asymmetric MEM with Spillovers: The Practicality of Matrix Inequalities," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.
    17. Minchul Shin & Molin Zhong, 2015. "Does Realized Volatility Help Bond Yield Density Prediction?," Finance and Economics Discussion Series 2015-115, Board of Governors of the Federal Reserve System (U.S.).
    18. Heejoon Han & Dennis Kristensen, 2012. "Asymptotic Theory for the QMLE in GARCH-X Models with Stationary and Non-Stationary Covariates," CREATES Research Papers 2012-25, Department of Economics and Business Economics, Aarhus University.
    19. Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
    20. Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
    21. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
    22. Xu, Yongdeng & Guan, Bo & Lu, Wenna & Heravi, Saeed, 2024. "Macroeconomic shocks and volatility spillovers between stock, bond, gold and crude oil markets," Cardiff Economics Working Papers E2024/15, Cardiff University, Cardiff Business School, Economics Section.
    23. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    24. Peter Christoffersen & Bruno Feunou & Yoontae Jeon, 2014. "Option Valuation with Observable Volatility and Jump Dynamics," CREATES Research Papers 2015-07, Department of Economics and Business Economics, Aarhus University.
    25. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    26. Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
    27. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    28. Minseog Oh & Donggyu Kim, 2021. "Effect of the U.S.--China Trade War on Stock Markets: A Financial Contagion Perspective," Papers 2111.09655, arXiv.org.
    29. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    30. Song, Shijia & Tian, Fei & Li, Handong, 2021. "An intraday-return-based Value-at-Risk model driven by dynamic conditional score with censored generalized Pareto distribution," Journal of Asian Economics, Elsevier, vol. 74(C).
    31. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
    32. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    33. Hafner, Christian & Preminger, Arie, 2015. "The effect of additive outliers on a fractional unit root test," LIDAM Discussion Papers ISBA 2015027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    34. David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
    35. Wang, Yajing & Liang, Fang & Wang, Tianyi & Huang, Zhuo, 2020. "Does measurement error matter in volatility forecasting? Empirical evidence from the Chinese stock market," Economic Modelling, Elsevier, vol. 87(C), pages 148-157.
    36. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    37. Daniel Preve, "undated". "Linear programming-based estimators in nonnegative autoregression," GRU Working Paper Series GRU_2016_001, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    38. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
    39. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
    40. Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
    41. Bauwens, Luc & Xu, Yongdeng, 2023. "The contribution of realized covariance models to the economic value of volatility timing," LIDAM Discussion Papers CORE 2023018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    42. Yu‐Sheng Lai, 2018. "Estimation of the optimal futures hedge ratio for equity index portfolios using a realized beta generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1370-1390, November.
    43. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    44. Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
    45. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    46. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    47. Xu, Yongdeng & Taylor, Nick & Lu, Wenna, 2018. "Illiquidity and Volatility Spillover effects in Equity Markets during and after the Global Financial Crisis: an MEM approach," Cardiff Economics Working Papers E2018/6, Cardiff University, Cardiff Business School, Economics Section.
    48. Anne Opschoor & André Lucas, 2019. "Observation-driven Models for Realized Variances and Overnight Returns," Tinbergen Institute Discussion Papers 19-052/IV, Tinbergen Institute.
    49. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    50. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    51. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
    52. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    53. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    54. Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
    55. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    56. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    57. Bruno Feunou & Ernest Tafolong, 2015. "Fourier Inversion Formulas for Multiple-Asset Option Pricing," Staff Working Papers 15-11, Bank of Canada.
    58. Yan Sun & Guanghua Lian & Zudi Lu & Jennifer Loveland & Isaac Blackhurst, 2020. "Modeling the Variance of Return Intervals Toward Volatility Prediction," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 492-519, July.
    59. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    60. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    61. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    62. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    63. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    64. Naoki Awaya & Yasuhiro Omori, 2017. "Particle rolling MCMC with Double Block Sampling: Conditional SMC Update Approach," CIRJE F-Series CIRJE-F-1066, CIRJE, Faculty of Economics, University of Tokyo.
    65. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    66. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    67. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    68. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    69. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    70. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
    71. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
    72. Huiling Yuan & Yong Zhou & Zhiyuan Zhang & Xiangyu Cui, 2019. "Forecasting security's volatility using low-frequency historical data, high-frequency historical data and option-implied volatility," Papers 1907.02666, arXiv.org.
    73. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    74. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    75. Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
    76. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    77. Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
    78. Fabrizio Cipollini & Giampiero M. Gallo & Alessandro Palandri, 2020. "A dynamic conditional approach to portfolio weights forecasting," Papers 2004.12400, arXiv.org.
    79. Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
    80. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
    81. Gerlach, Richard & Naimoli, Antonio & Storti, Giuseppe, 2018. "Time Varying Heteroskedastic Realized GARCH models for tracking measurement error bias in volatility forecasting," MPRA Paper 83893, University Library of Munich, Germany.
    82. Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2019. "Prediction Regions for Interval-valued Time Series," Working Papers 201921, University of California at Riverside, Department of Economics.
    83. Dohyun Chun & Donggyu Kim, 2021. "State Heterogeneity Analysis of Financial Volatility Using High-Frequency Financial Data," Papers 2102.13404, arXiv.org.
    84. Jean-François Carpantier & Arnaud Dufays, 2014. "Specific Markov-switching behaviour for ARMA parameters," Working Papers hal-01821134, HAL.
    85. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    86. Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
    87. Gu, Tiantian & Venkateswaran, Anand & Erath, Marc, 2023. "Impact of fiscal stimulus on volatility: A cross-country analysis," Research in International Business and Finance, Elsevier, vol. 65(C).
    88. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    89. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    90. Thieu, Le Quyen, 2016. "Equation by equation estimation of the semi-diagonal BEKK model with covariates," MPRA Paper 75582, University Library of Munich, Germany.
    91. Cipollini, Fabrizio & Gallo, Giampiero M., 2025. "Multiplicative Error Models: 20 years on," Econometrics and Statistics, Elsevier, vol. 33(C), pages 209-229.
    92. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    93. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
    94. Bilel Sanhaji & Julien Chevallier, 2023. "Tracking ‘Pure’ Systematic Risk with Realized Betas for Bitcoin and Ethereum," Post-Print hal-04218488, HAL.
    95. Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Documentos de Trabajo del ICAE 2016-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    96. João Barata Ribeiro Blanco Barroso, 2018. "Realized Volatility as an Instrument to Official Intervention," Investigación Conjunta-Joint Research, in: Alberto Ortiz-Bolaños (ed.), Monetary Policy and Financial Stability in Latin America and the Caribbean, edition 1, volume 1, chapter 8, pages 259-281, Centro de Estudios Monetarios Latinoamericanos, CEMLA.
    97. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    98. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    99. Stephen Thiele, 2020. "Modeling the conditional distribution of financial returns with asymmetric tails," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 46-60, January.
    100. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    101. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    102. Stephan Schwill, 2018. "Entropy Analysis of Financial Time Series," Papers 1807.09423, arXiv.org.
    103. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    104. Matthew F. Dixon & Cuneyt Gurcan Akcora & Yulia R. Gel & Murat Kantarcioglu, 2019. "Blockchain analytics for intraday financial risk modeling," Digital Finance, Springer, vol. 1(1), pages 67-89, November.
    105. Chen Tong & Zhuo Huang, 2021. "Pricing VIX options with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1180-1200, August.
    106. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    107. Manabu Asai & Michael McAleer, 2018. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Tinbergen Institute Discussion Papers 18-005/III, Tinbergen Institute.
    108. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    109. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.
    110. Johanna F. Ziegel & Fabian Kruger & Alexander Jordan & Fernando Fasciati, 2017. "Murphy Diagrams: Forecast Evaluation of Expected Shortfall," Papers 1705.04537, arXiv.org.
    111. M. Karanasos & S. Yfanti & A. Christopoulos, 2021. "The long memory HEAVY process: modeling and forecasting financial volatility," Annals of Operations Research, Springer, vol. 306(1), pages 111-130, November.
    112. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    113. Naoki Awaya & Yasuhiro Omori, 2019. "Particle rolling MCMC," CIRJE F-Series CIRJE-F-1110, CIRJE, Faculty of Economics, University of Tokyo.
    114. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
    115. Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
    116. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    117. Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
    118. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    119. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    120. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
    121. Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
    122. David E. Allen & Michael McAleer, 2020. "Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE," Risks, MDPI, vol. 8(1), pages 1-20, February.
    123. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    124. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    125. Asai Manabu & So Mike K. P., 2023. "Realized BEKK-CAW Models," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 49-77, January.
    126. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    127. Marius Matei & Xari Rovira & Núria Agell, 2019. "Bivariate Volatility Modeling with High-Frequency Data," Econometrics, MDPI, vol. 7(3), pages 1-15, September.
    128. Dimitrios I. Vortelinos, 2015. "Out‐of‐sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini‐futures markets," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 58-67, November.
    129. Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
    130. Wang, Tianyi & Liang, Fang & Huang, Zhuo & Yan, Hong, 2022. "Do realized higher moments have information content? - VaR forecasting based on the realized GARCH-RSRK model," Economic Modelling, Elsevier, vol. 109(C).
    131. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    132. Lai, Yu-Sheng, 2022. "Improving hedging performance by using high–low range," Finance Research Letters, Elsevier, vol. 48(C).
    133. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš, 2019. "Central bank announcements and realized volatility of stock markets in G7 countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 58(C), pages 117-135.
    134. Cem Cakmakli & Verda Ozturk, 2021. "Economic Value of Modeling the Joint Distribution of Returns and Volatility: Leverage Timing," Koç University-TUSIAD Economic Research Forum Working Papers 2110, Koc University-TUSIAD Economic Research Forum.
    135. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    136. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    137. David Edmund Allen, 2020. "Stochastic Volatility and GARCH: Do Squared End-of-Day Returns Provide Similar Information?," JRFM, MDPI, vol. 13(9), pages 1-25, September.
    138. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
    139. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    140. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    141. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    142. Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
    143. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    144. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    145. Yves Dominicy & Harry-Paul Vander Elst, 2015. "Macro-Driven VaR Forecasts: From Very High to Very Low Frequency Data," Working Papers ECARES ECARES 2015-41, ULB -- Universite Libre de Bruxelles.
    146. Donggyu Kim & Minseog Oh & Yazhen Wang, 2022. "Conditional quantile analysis for realized GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 640-665, July.
    147. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    148. Allen, David E. & McAleer, Michael & Scharth, Marcel, 2011. "Monte Carlo option pricing with asymmetric realized volatility dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1247-1256.
    149. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    150. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    151. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
    152. Chen Xilong & Ghysels Eric & Wang Fangfang, 2011. "HYBRID GARCH Models and Intra-Daily Return Periodicity," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-28, February.
    153. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    154. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    155. Ziegel, Johanna F. & Krueger, Fabian & Jordan, Alexander & Fasciati, Fernando, 2017. "Murphy Diagrams: Forecast Evaluation of Expected Shortfall," Working Papers 0632, University of Heidelberg, Department of Economics.
    156. Jia Liu, 2021. "A Bayesian Semiparametric Realized Stochastic Volatility Model," JRFM, MDPI, vol. 14(12), pages 1-22, December.
    157. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    158. Brownlees, Christian T., 2019. "Hierarchical GARCH," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 17-27.
    159. Tian, Shuairu & Hamori, Shigeyuki, 2015. "Modeling interest rate volatility: A Realized GARCH approach," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 158-171.
    160. Manabu Asai, 2023. "Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter," Econometrics, MDPI, vol. 11(3), pages 1-14, July.
    161. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    162. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    163. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    164. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    165. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    166. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    167. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    168. Giampiero M. Gallo & Edoardo Otranto, 2012. "Realized Volatility and Change of Regimes," Econometrics Working Papers Archive 2012_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.
    169. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    170. Donggyu Kim, 2016. "Statistical Inference for Unified Garch–Itô Models with High-Frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 513-532, July.
    171. Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
    172. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
    173. Degiannakis, Stavros, 2018. "Multiple Days Ahead Realized Volatility Forecasting: Single, Combined and Average Forecasts," MPRA Paper 96272, University Library of Munich, Germany.
    174. Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
    175. Lyócsa, Štefan & Molnár, Peter, 2017. "The effect of non-trading days on volatility forecasts in equity markets," Finance Research Letters, Elsevier, vol. 23(C), pages 39-49.
    176. Xiangyu Cui & Xuan Zhang, 2021. "Index tracking strategy based on mixed-frequency financial data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-15, April.
    177. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
    178. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    179. Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
    180. Li, Yan & Huynh, Luu Duc Toan & Xu, Yongan & Liang, Hao, 2023. "The forecast ability of a belief-based momentum indicator in full-day, daytime, and nighttime volatilities of Chinese oil futures," Energy Economics, Elsevier, vol. 127(PB).
    181. Heejoon Han, 2016. "Quantile Dependence between Stock Markets and its Application in Volatility Forecasting," Papers 1608.07193, arXiv.org.
    182. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    183. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
    184. Xie, Haibin & Yu, Chengtan, 2020. "Realized GARCH models: Simpler is better," Finance Research Letters, Elsevier, vol. 33(C).
    185. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    186. Han, Hyojin & Khrapov, Stanislav & Renault, Eric, 2020. "The leverage effect puzzle revisited: Identification in discrete time," Journal of Econometrics, Elsevier, vol. 217(2), pages 230-258.
    187. Bahram Adrangi & Arjun Chatrath & Kambiz Raffiee, 2023. "S&P 500 volatility, volatility regimes, and economic uncertainty," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1362-1387, October.
    188. Han, Heejoon & Park, Joon Y., 2014. "GARCH with omitted persistent covariate," Economics Letters, Elsevier, vol. 124(2), pages 248-254.
    189. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    190. Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
    191. Wu, Xinyu & Zhao, An & Liu, Li, 2023. "Forecasting VIX using two-component realized EGARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    192. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    193. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    194. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    195. Nicholas Taylor, 2015. "Realized volatility forecasting in an international context," Applied Economics Letters, Taylor & Francis Journals, vol. 22(6), pages 503-509, April.
    196. Asger Lunde & Kasper V. Olesen, 2014. "Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange," CREATES Research Papers 2013-19, Department of Economics and Business Economics, Aarhus University.
    197. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    198. Donggyu Kim, 2021. "Exponential GARCH-Ito Volatility Models," Papers 2111.04267, arXiv.org.
    199. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
    200. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    201. Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
    202. Gao, Jun & Gao, Xiang & Gu, Chen, 2023. "Forecasting European stock volatility: The role of the UK," International Review of Financial Analysis, Elsevier, vol. 89(C).
    203. Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
    204. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    205. Peter Molnár, 2016. "High-low range in GARCH models of stock return volatility," Applied Economics, Taylor & Francis Journals, vol. 48(51), pages 4977-4991, November.
    206. Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.
    207. Yang, Minxian, 2019. "The risk return relationship: Evidence from index returns and realised variances," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.

  14. Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Series Working Papers 458, University of Oxford, Department of Economics.

    Cited by:

    1. Canova, Fabio & Matthes, Christian, 2018. "A composite likelihood approach for dynamic structural models," CEPR Discussion Papers 13245, C.E.P.R. Discussion Papers.
    2. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    3. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
    4. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    5. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    6. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    7. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    8. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    9. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
    10. Ciccarelli, Nicola, 2016. "Semiparametric Efficient Adaptive Estimation of the PTTGARCH model," MPRA Paper 72021, University Library of Munich, Germany.

  15. Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.

    Cited by:

    1. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.
    2. Márcio Gomes Pinto Garcia & Marcelo Cunha Medeiros & Francisco Eduardo de Luna e Almeida Santos, 2014. "Economic gains of realized volatility in the Brazilian stock market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(3), pages 319-349.
    3. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    4. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    5. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Working Papers in Economics 13/21, University of Canterbury, Department of Economics and Finance.
    6. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    7. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    8. Lucien Boulet, 2021. "Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs," Papers 2109.01044, arXiv.org.
    9. Raddant, Matthias & Wagner, Friedrich, 2016. "Multivariate GARCH for a large number of stocks," Kiel Working Papers 2049, Kiel Institute for the World Economy (IfW Kiel).
    10. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    11. Massimiliano Caporin & Michael McAleer, 2010. "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models," KIER Working Papers 738, Kyoto University, Institute of Economic Research.
    12. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
    13. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    14. Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
    15. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    16. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    17. Canova, Fabio & Matthes, Christian, 2018. "A composite likelihood approach for dynamic structural models," CEPR Discussion Papers 13245, C.E.P.R. Discussion Papers.
    18. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
    19. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    20. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
    21. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," Documentos de Trabajo del ICAE 2013-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    22. Guilherme Valle Moura & João Frois Caldeira & André Santos, 2014. "Seleção De Carteiras Utilizando O Modelofama-French-Carhart," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 117, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    23. Mustafa Hakan Eratalay & Ariana Paola Cortés à ngel, 2022. "The Impact Of Esg Ratings On The Systemic Risk Of European Blue-Chip Firms," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 139, Faculty of Economics and Business Administration, University of Tartu (Estonia).
    24. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    25. Lillie Lam & Laurence Fung & Ip-wing Yu, 2009. "Forecasting a Large Dimensional Covariance Matrix of a Portfolio of Different Asset Classes," Working Papers 0901, Hong Kong Monetary Authority.
    26. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2013. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers w0167, New Economic School (NES).
    27. Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2018-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    28. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
    29. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
    30. José Gonzalo Rangel & Robert F. Engle, 2011. "The Factor--Spline--GARCH Model for High and Low Frequency Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 109-124, May.
    31. Xisong Jin, 2018. "How much does book value data tell us about systemic risk and its interactions with the macroeconomy? A Luxembourg empirical evaluation," BCL working papers 118, Central Bank of Luxembourg.
    32. Opschoor, Anne & van Dijk, Dick & van der Wel, Michel, 2014. "Predicting volatility and correlations with Financial Conditions Indexes," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 435-447.
    33. Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468, arXiv.org, revised Nov 2017.
    34. Härdle Wolfgang Karl & Silyakova Elena, 2016. "Implied basket correlation dynamics," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 1-20, September.
    35. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    36. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    37. Kabundi, Alain & De Simone, Francisco Nadal, 2020. "Monetary policy and systemic risk-taking in the euro area banking sector," Economic Modelling, Elsevier, vol. 91(C), pages 736-758.
    38. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    39. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    40. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    41. Xisong Jin & Francisco Nadal De Simone, 2013. "Banking Systemic Vulnerabilities: A Tail-risk Dynamic CIMDO Approach," BCL working papers 82, Central Bank of Luxembourg.
    42. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    43. Caporin, M. & McAleer, M.J., 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Econometric Institute Research Papers EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    44. Hafner, Christian & Wang, Linqi, 2020. "Dynamic portfolio selection with sector-specific regularization," LIDAM Discussion Papers ISBA 2020032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    45. M. Hakan Eratalay & Evgenii Vladimirov, 2017. "Mapping the Stocks in MICEX: Who Is Central in Moscow Stock Exchange?," EUSP Department of Economics Working Paper Series 2017/01, European University at St. Petersburg, Department of Economics.
    46. M. Angeles Carnero Fernández & M. Hakan Eratalay, 2012. "Estimating VAR-MGARCH models in multiple steps," Working Papers. Serie AD 2012-10, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    47. Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    48. Francq, Christian & Zakoian, Jean-Michel, 2014. "Estimating multivariate GARCH and stochastic correlation models equation by equation," MPRA Paper 54250, University Library of Munich, Germany.
    49. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2018. "A factor-based approach of bond portfolio value-at-risk: The informational roles of macroeconomic and financial stress factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 243-268.
    50. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    51. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    52. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    53. Raddant, Matthias & Kenett, Dror, 2016. "Interconnectedness in the global financial market," VfS Annual Conference 2016 (Augsburg): Demographic Change 145560, Verein für Socialpolitik / German Economic Association.
    54. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    55. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    56. Engle Robert F. & Rangel José Gonzalo, 2009. "High and Low Frequency Correlations in Global Equity Markets," Working Papers 2009-17, Banco de México.
    57. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
    58. Barigozzi, Matteo & Hallin, Mark, 2015. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," LSE Research Online Documents on Economics 60980, London School of Economics and Political Science, LSE Library.
    59. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    60. Wu, Billy & Yao, Qiwei & Zhu, Shiwu, 2013. "Estimation in the presence of many nuisance parameters: composite likelihood and plug-in likelihood," LSE Research Online Documents on Economics 50043, London School of Economics and Political Science, LSE Library.
    61. Peter Christoffersen & Kris Jacobs & Xisong Jin & Hugues Langlois, 2013. "Dynamic Diversification in Corporate Credit," CREATES Research Papers 2013-46, Department of Economics and Business Economics, Aarhus University.
    62. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    63. Sofiane Aboura & Julien Chevallier, 2013. "An equicorrelation measure for equity, bond, foreign exchange and commodity returns," Applied Economics Letters, Taylor & Francis Journals, vol. 20(18), pages 1618-1624, December.
    64. Anatolyev, Stanislav & Khabibullin, Renat & Prokhorov, Artem, 2014. "An algorithm for constructing high dimensional distributions from distributions of lower dimension," Economics Letters, Elsevier, vol. 123(3), pages 257-261.
    65. Chen, Sihong & Wu, Ximing, 2016. "Comovements and Volatility Spillover in Commodity Markets," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235686, Agricultural and Applied Economics Association.
    66. Julien Chevallier & Sofiane Aboura, 2014. "Cross-market index with Factor-DCC," Post-Print hal-01531234, HAL.
    67. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    68. Kei Nakagawa & Mitsuyoshi Imamura & Kenichi Yoshida, 2018. "Risk-Based Portfolios with Large Dynamic Covariance Matrices," IJFS, MDPI, vol. 6(2), pages 1-14, May.
    69. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    70. Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
    71. Claudio Morana, 2017. "Semiparametric Estimation of Multivariate GARCH Models," Working Paper series 17-02, Rimini Centre for Economic Analysis.
    72. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    73. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    74. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    75. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    76. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    77. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CIRJE F-Series CIRJE-F-638, CIRJE, Faculty of Economics, University of Tokyo.
    78. Yfanti, Stavroula & Karanasos, Menelaos & Zopounidis, Constantin & Christopoulos, Apostolos, 2023. "Corporate credit risk counter-cyclical interdependence: A systematic analysis of cross-border and cross-sector correlation dynamics," European Journal of Operational Research, Elsevier, vol. 304(2), pages 813-831.
    79. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    80. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    81. Gilles Zumbach, 2013. "The statistical properties of the innovations in multivariate ARCH processes in high dimensions," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 29-44, January.
    82. Matthias Raddant & Friedrich Wagner, 2016. "Multivariate Garch with dynamic beta," Papers 1609.07051, arXiv.org, revised Nov 2019.
    83. Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," SFB 649 Discussion Papers 2011-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    84. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    85. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    86. Sihong Chen & Qi Li & Qiaoyu Wang & Yu Yvette Zhang, 2023. "Multivariate models of commodity futures markets: a dynamic copula approach," Empirical Economics, Springer, vol. 64(6), pages 3037-3057, June.
    87. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversi?cation Disappearing? A Dynamic Copula Approach," CREATES Research Papers 2012-48, Department of Economics and Business Economics, Aarhus University.
    88. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    89. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    90. Dong Hwan Oh & Andrew J. Patton, 2015. "Modelling Dependence in High Dimensions with Factor Copulas," Finance and Economics Discussion Series 2015-51, Board of Governors of the Federal Reserve System (U.S.).
    91. Jianqing Fan & Jingjin Zhang & Ke Yu, 2008. "Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios," Papers 0812.2604, arXiv.org.
    92. Gianluca De Nard & Robert F. Engle & Olivier Ledoit & Michael Wolf, 2020. "Large dynamic covariance matrices: enhancements based on intraday data," ECON - Working Papers 356, Department of Economics - University of Zurich, revised Jan 2022.
    93. Sofiane Aboura & Julien Chevallier, 2015. "Cross-market volatility index with Factor-DCC," Post-Print halshs-01348723, HAL.
    94. Peter Christoffersen & Vihang R. Errunza & Kris Jacobs & Xisong Jin, 2013. "Correlation Dynamics and International Diversification Benefits," CREATES Research Papers 2013-49, Department of Economics and Business Economics, Aarhus University.
    95. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2013. "On the Benefits of Equicorrelation for Portfolio Allocation," NCER Working Paper Series 99, National Centre for Econometric Research.
    96. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    97. Robert Engle & Bryan Kelly, 2011. "Dynamic Equicorrelation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 212-228, July.
    98. Trucíos Maza, Carlos César & Hotta, Luiz Koodi & Pereira, Pedro L. Valls, 2018. "On the robustness of the principal volatility components," Textos para discussão 474, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    99. Xisong Jin, 2024. "Decomposing systemic risk measures by bank business model in Luxembourg," BCL working papers 182, Central Bank of Luxembourg.
    100. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2013. "Predicting Covariance Matrices with Financial Conditions Indexes," Tinbergen Institute Discussion Papers 13-113/III, Tinbergen Institute.
    101. Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
    102. Jin Xisong & Lehnert Thorsten, 2018. "Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 19-46, February.
    103. Bauwens, Luc & Ben Omrane, Walid & Rengifo, Erick, 2010. "Intradaily dynamic portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2400-2418, November.
    104. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2016. "What derives the bond portfolio value-at-risk: Information roles of macroeconomic and financial stress factors," SFB 649 Discussion Papers 2016-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    105. BAUWENS, Luc & STORTI, Giuseppe, 2013. "Computationally efficient inference procedures for vast dimensional realized covariance models," LIDAM Reprints CORE 2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    106. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2019. "Volatility-dependent correlations: further evidence of when, where and how," Empirical Economics, Springer, vol. 57(2), pages 505-540, August.
    107. Vasyl Golosnoy & Helmut Herwartz, 2012. "Dynamic Modeling Of High-Dimensional Correlation Matrices In Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-22.
    108. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    109. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    110. Matteo Bonato, 2012. "Modeling fat tails in stock returns: a multivariate stable-GARCH approach," Computational Statistics, Springer, vol. 27(3), pages 499-521, September.
    111. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2016. "Volatility Dependent Dynamic Equicorrelation," NCER Working Paper Series 111, National Centre for Econometric Research.
    112. Fernando Moraes & Rodrigo De-Losso, 2020. "Risk Factor Centrality and the Cross-Section of Expected Returns," Working Papers, Department of Economics 2020_17, University of São Paulo (FEA-USP).
    113. Martin Burda & John Maheu, 2011. "Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models," Working Papers tecipa-438, University of Toronto, Department of Economics.
    114. Wolfgang Karl Hardle & Elena Silyakova, 2020. "Implied Basket Correlation Dynamics," Papers 2009.09770, arXiv.org.
    115. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    116. Pan, Qunxing & Mei, Xiaowen & Gao, Tianqing, 2022. "Modeling dynamic conditional correlations with leverage effects and volatility spillover effects: Evidence from the Chinese and US stock markets affected by the recent trade friction," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    117. Peter Christoffersen & Kris Jacobs & Xisong Jin & Hugues Langlois, 2018. "Dynamic Dependence and Diversification in Corporate Credit [Asymmetric correlations of equity portfolios]," Review of Finance, European Finance Association, vol. 22(2), pages 521-560.
    118. Bali, Turan G. & Engle, Robert F., 2010. "The intertemporal capital asset pricing model with dynamic conditional correlations," Journal of Monetary Economics, Elsevier, vol. 57(4), pages 377-390, May.
    119. Erica Perego & Wessel N. Vermeulen, 2013. "Macroeconomic determinants of European stock and government bond relations: a tale of two regions," DEM Discussion Paper Series 13-08, Department of Economics at the University of Luxembourg.
    120. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.

  16. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.

    Cited by:

    1. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Juan F. Rubio-Ramírez, 2014. "Estimating Dynamic Equilibrium Models with Stochastic Volatility," Working Papers 2014-11, FEDEA.
    2. Haakon Kavli & Kevin Kotzé, 2014. "Spillovers in Exchange Rates and the Effects of Global Shocks on Emerging Market Currencies," South African Journal of Economics, Economic Society of South Africa, vol. 82(2), pages 209-238, June.
    3. Schmidt, Torsten, 2018. "Inflation Expectation Uncertainty, Inflation and the Outputgap," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181575, Verein für Socialpolitik / German Economic Association.
    4. Rossi, E. & Spazzini, F., 2010. "Model and distribution uncertainty in multivariate GARCH estimation: A Monte Carlo analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2786-2800, November.
    5. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    6. McAdam, Peter & Muck, Jakub & Growiec, Jakub, 2015. "Will the true labor share stand up?," Working Paper Series 1806, European Central Bank.
    7. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    8. Sergey S. Stepanov, 2009. "Resilience of Volatility," Papers 0911.5048, arXiv.org.
    9. Jakub Mućk & Peter McAdam & Jakub Growiec, 2018. "Will The “True” Labor Share Stand Up? An Applied Survey On Labor Share Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(4), pages 961-984, September.

  17. Neil Shephard & Ole E. Barndorff-Nielsen & Peter Reinhard Hansen, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Series Working Papers 397, University of Oxford, Department of Economics.

    Cited by:

    1. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    2. Yoann Potiron & Per Mykland, 2015. "Estimation of integrated quadratic covariation with endogenous sampling times," Papers 1507.01033, arXiv.org, revised Nov 2016.
    3. Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
    4. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    5. Asai Manabu & So Mike K.P., 2015. "Long Memory and Asymmetry for Matrix-Exponential Dynamic Correlation Processes," Journal of Time Series Econometrics, De Gruyter, vol. 7(1), pages 69-94, January.
    6. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
    7. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    8. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    10. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
    11. Gustavo Fruet Dias & Marcelo Fernandes & Cristina Mabel Scherrer, 2019. "Price discovery in a continuous-time setting," University of East Anglia School of Economics Working Paper Series 2019-02, School of Economics, University of East Anglia, Norwich, UK..
    12. Leonidas Tsiaras, 2010. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," CREATES Research Papers 2010-34, Department of Economics and Business Economics, Aarhus University.
    13. Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2013. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 59-84.
    14. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    15. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Working Papers 201925, University of Pretoria, Department of Economics.
    16. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    17. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
    18. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    19. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    20. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    21. Chaker, Selma, 2019. "The signal and the noise volatilities," Research in International Business and Finance, Elsevier, vol. 50(C), pages 79-105.
    22. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    23. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
    24. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.
    25. Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
    26. Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting realized covariances using HAR-type models," Papers 2412.10791, arXiv.org.
    27. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    28. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    29. Jianqing Fan & Yingying Li & Ke Yu, 2012. "Vast Volatility Matrix Estimation Using High-Frequency Data for Portfolio Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 412-428, March.
    30. Altmeyer, Randolf & Bibinger, Markus, 2014. "Functional stable limit theorems for efficient spectral covolatility estimators," SFB 649 Discussion Papers 2014-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    31. Peter Reinhard Hansen & Chen Tong, 2024. "Convolution-t Distributions," Papers 2404.00864, arXiv.org.
    32. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    33. Bonato, Mateo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Risk Spillovers in International Equity Portfolios," Working Papers on Finance 1214, University of St. Gallen, School of Finance.
    34. Jozef Baruník & Evžen Kocenda & Lukáš Vácha, 2015. "Asymmetric Connectedness on the U.S. Stock Market: Bad and Good Volatility Spillover," CESifo Working Paper Series 5305, CESifo.
    35. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    36. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    37. Usman Arief & Zaäfri Ananto Husodo, 2021. "Private Information from Extreme Price Movements (Empirical Evidences from Southeast Asia Countries)," International Symposia in Economic Theory and Econometrics, in: Recent Developments in Asian Economics International Symposia in Economic Theory and Econometrics, volume 28, pages 221-242, Emerald Group Publishing Limited.
    38. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    39. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    40. Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
    41. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    42. Kim Christensen & Charlotte Christiansen & Anders M. Posselt, 2019. "The Economic Value of VIX ETPs," CREATES Research Papers 2019-14, Department of Economics and Business Economics, Aarhus University.
    43. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Econometrics Working Papers Archive 2016_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    44. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    45. Bollerslev, Tim & Medeiros, Marcelo C. & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "From zero to hero: Realized partial (co)variances," Journal of Econometrics, Elsevier, vol. 231(2), pages 348-360.
    46. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    47. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    48. Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
    49. Li, Dan & Drovandi, Christopher & Clements, Adam, 2024. "Outlier-robust methods for forecasting realized covariance matrices," International Journal of Forecasting, Elsevier, vol. 40(1), pages 392-408.
    50. Maria Elvira Mancino & Simona Sanfelici, 2011. "Estimation of Quarticity with High Frequency Data," Working Papers - Mathematical Economics 2011-06, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa, revised Jan 2012.
    51. Andrew Ang & Dennis Kristensen, 2011. "Testing Conditional Factor Models," NBER Working Papers 17561, National Bureau of Economic Research, Inc.
    52. Štefan Lyócsa & Peter Molnár, 2016. "Volatility forecasting of strategically linked commodity ETFs: gold-silver," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1809-1822, December.
    53. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
    54. Stanislav Anatolyev & Nikita Kobotaev, 2018. "Modeling and forecasting realized covariance matrices with accounting for leverage," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
    55. Lam, Clifford & Feng, Phoenix & Hu, Charlie, 2017. "Nonlinear shrinkage estimation of large integrated covariance matrices," LSE Research Online Documents on Economics 69812, London School of Economics and Political Science, LSE Library.
    56. Bauwens, Luc & Xu, Yongdeng, 2023. "The contribution of realized covariance models to the economic value of volatility timing," LIDAM Discussion Papers CORE 2023018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    57. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    58. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    59. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    60. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    61. Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
    62. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
    63. Wang, Kent & Liu, Junwei & Liu, Zhi, 2013. "Disentangling the effect of jumps on systematic risk using a new estimator of integrated co-volatility," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1777-1786.
    64. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
    65. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    66. Kirill Dragun & Kris Boudt & Orimar Sauri & Steven Vanduffel, 2021. "Beta-Adjusted Covariance Estimation," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1010, Ghent University, Faculty of Economics and Business Administration.
    67. Diebold, Francis X. & Strasser, Georg H., 2008. "On the correlation structure of microstructure noise in theory and practice," CFS Working Paper Series 2008/32, Center for Financial Studies (CFS).
    68. LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    69. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
    70. Masato Ubukata & Toshiaki Watanabe, 2014. "Market variance risk premiums in Japan for asset predictability," Empirical Economics, Springer, vol. 47(1), pages 169-198, August.
    71. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    72. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    73. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    74. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    75. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    76. Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting Realized Covariances Using HAR-Type Models," Graz Economics Papers 2024-20, University of Graz, Department of Economics.
    77. Bibinger, Markus & Winkelmann, Lars, 2013. "Econometrics of co-jumps in high-frequency data with noise," SFB 649 Discussion Papers 2013-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    78. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
    79. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
    80. Giorgio Mirone, 2018. "Cross-sectional noise reduction and more efficient estimation of Integrated Variance," CREATES Research Papers 2018-18, Department of Economics and Business Economics, Aarhus University.
    81. Vortelinos, Dimitrios I., 2013. "Portfolio analysis of intraday covariance matrix in the Greek equity market," Research in International Business and Finance, Elsevier, vol. 27(1), pages 66-79.
    82. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, Department of Economics and Business Economics, Aarhus University.
    83. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    84. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    85. Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
    86. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    87. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    88. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    89. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    90. Caporin, M. & McAleer, M.J., 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Econometric Institute Research Papers EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    91. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    92. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    93. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
    94. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    95. Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2013. "Estimating the quadratic covariation matrix from noisy observations: Local method of moments and efficiency," SFB 649 Discussion Papers 2013-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    96. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
    97. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    98. Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2021. "Recalcitrant betas: Intraday variation in the cross‐sectional dispersion of systematic risk," Quantitative Economics, Econometric Society, vol. 12(2), pages 647-682, May.
    99. BenSaïda, Ahmed, 2019. "Good and bad volatility spillovers: An asymmetric connectedness," Journal of Financial Markets, Elsevier, vol. 43(C), pages 78-95.
    100. Robert F. Engle & Martin Klint Hansen & Asger Lunde, 2012. "And Now, The Rest of the News: Volatility and Firm Specific News Arrival," CREATES Research Papers 2012-56, Department of Economics and Business Economics, Aarhus University.
    101. Liu, Cheng & Wang, Moming & Xia, Ningning, 2022. "Design-free estimation of integrated covariance matrices for high-frequency data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    102. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.
    103. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    104. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    105. Xin-Bing Kong, 2013. "A direct approach to risk approximation for vast portfolios under gross-exposure constraint using high-frequency data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 647-669, November.
    106. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    107. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    108. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    109. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
    110. Shen, Keren & Yao, Jianfeng & Li, Wai Keung, 2019. "On a spiked model for large volatility matrix estimation from noisy high-frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 207-221.
    111. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
    112. Michela Verardo & Andrew Patton, 2009. "Does Beta Move with News? Systematic Risk and Firm-Specific Information Flows," FMG Discussion Papers dp630, Financial Markets Group.
    113. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    114. Ubukata, Masato, 2018. "Dynamic hedging performance and downside risk: Evidence from Nikkei index futures," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 270-281.
    115. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    116. Fabrizio Cipollini & Giampiero M. Gallo & Alessandro Palandri, 2020. "A dynamic conditional approach to portfolio weights forecasting," Papers 2004.12400, arXiv.org.
    117. Gustavo Fruet Dias & Fotis Papailias & Cristina Scherrer, 2024. "An Econometric Analysis of Volatility Discovery," University of East Anglia School of Economics Working Paper Series 2024-01, School of Economics, University of East Anglia, Norwich, UK..
    118. Yacine Aït-Sahalia & Dacheng Xiu, 2015. "Principal Component Analysis of High Frequency Data," NBER Working Papers 21584, National Bureau of Economic Research, Inc.
    119. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    120. Luca Taschini & Matteo Bonato, 2016. "Comovement and the Financialization of Commodities," Working Papers 64, Economic Research Southern Africa.
    121. Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
    122. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    123. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    124. Gu, Tiantian & Venkateswaran, Anand & Erath, Marc, 2023. "Impact of fiscal stimulus on volatility: A cross-country analysis," Research in International Business and Finance, Elsevier, vol. 65(C).
    125. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    126. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    127. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
    128. Michael C. Münnix & Rudi Schäfer & Thomas Guhr, 2011. "Statistical Causes For The Epps Effect In Microstructure Noise," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1231-1246.
    129. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, Department of Economics and Business Economics, Aarhus University.
    130. Nabil Bouamara & Kris Boudt & S'ebastien Laurent & Christopher J. Neely, 2023. "Sluggish news reactions: A combinatorial approach for synchronizing stock jumps," Papers 2309.15705, arXiv.org.
    131. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
    132. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
    133. Clifford Lam & Phoenix Feng & Charlie Hu, 2017. "Nonlinear shrinkage estimation of large integrated covariance matrices," Biometrika, Biometrika Trust, vol. 104(2), pages 481-488.
    134. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
    135. Flavia Barsotti & Simona Sanfelici, 2012. "Microstructure effect on firm’s volatility risk," Working Papers - Mathematical Economics 2012-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    136. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Round-off Errors, Micro-market Price Adjustments and Random Sampling," CIRJE F-Series CIRJE-F-965, CIRJE, Faculty of Economics, University of Tokyo.
    137. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    138. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
    139. Bibinger, Markus & Reiß, Markus, 2011. "Spectral estimation of covolatility from noisy observations using local weights," SFB 649 Discussion Papers 2011-086, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    140. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    141. Markus Bibinger & Markus Reiß, 2014. "Spectral Estimation of Covolatility from Noisy Observations Using Local Weights," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 23-50, March.
    142. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    143. Ogihara, Teppei & Yoshida, Nakahiro, 2014. "Quasi-likelihood analysis for nonsynchronously observed diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2954-3008.
    144. Dimitrios I. Vortelinos, 2015. "The Effect of Macro News on Volatility and Jumps," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 425-447, November.
    145. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    146. Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.
    147. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    148. Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
    149. Chang, Jinyuan & Hu, Qiao & Liu, Cheng & Tang, Cheng Yong, 2024. "Optimal covariance matrix estimation for high-dimensional noise in high-frequency data," Journal of Econometrics, Elsevier, vol. 239(2).
    150. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    151. Enrique Sentana, 2018. "Volatility, Diversification and Contagion," Working Papers wp2018_1803, CEMFI.
    152. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    153. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    154. Jalshayin Bhachech & Arnab Chakrabarti & Taisei Kaizoji & Anindya S. Chakrabarti, 2022. "Instability of networks: effects of sampling frequency and extreme fluctuations in financial data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-14, April.
    155. Cosmin Octavian Cepoi & Filip Mihai Toma, 2016. "Estimating Probability of Informed Trading on the Bucharest Stock Exchange," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(2), pages 140-160, April.
    156. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    157. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
    158. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    159. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    160. Selma Chaker & Nour Meddahi, 2013. "Volatility Forecasting when the Noise Variance Is Time-Varying," Staff Working Papers 13-48, Bank of Canada.
    161. Boffelli, Simona & Urga, Giovanni, 2015. "Macroannouncements, bond auctions and rating actions in the European government bond spreads," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 148-173.
    162. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.
    163. Ilze Kalnina & Natalia Sizova, 2015. "Estimation of volatility measures using high frequency data (in Russian)," Quantile, Quantile, issue 13, pages 3-14, May.
    164. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient Under Round-off Errors, Micro-market Price Adjustments and Random Sampling," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 333-368, September.
    165. Jacod, Jean & Li, Yingying & Zheng, Xinghua, 2019. "Estimating the integrated volatility with tick observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 80-100.
    166. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," Working Papers hal-04141868, HAL.
    167. Lidan Grossmass, 2014. "Obtaining and Predicting the Bounds of Realized Correlations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 191-226, September.
    168. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    169. Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
    170. Yeh, Jin-Huei & Wang, Jying-Nan, 2010. "Correcting microstructure comovement biases for integrated covariance," Finance Research Letters, Elsevier, vol. 7(3), pages 184-191, September.
    171. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    172. Maria Elvira Mancino & Simona Sanfelici, 2011. "Covariance Estimation and Dynamic Asset-Allocation under Microstructure Effects via Fourier Methodology," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures, chapter 1, pages 3-32, Palgrave Macmillan.
    173. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    174. Marius Matei & Xari Rovira & Núria Agell, 2019. "Bivariate Volatility Modeling with High-Frequency Data," Econometrics, MDPI, vol. 7(3), pages 1-15, September.
    175. Adrian Baldwin & Iffat Gheyas & Christos Ioannidis & David Pym & Julian Williams, 2017. "Contagion in cyber security attacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 780-791, July.
    176. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
    177. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017. "Copula–Based vMEM Specifications versus Alternatives: The Case of Trading Activity," Econometrics, MDPI, vol. 5(2), pages 1-24, April.
    178. Fabrizio Cipollini & Giampiero M Gallo & Alessandro Palandri, 2020. "Realized Variance Modeling: Decoupling Forecasting from Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 532-555.
    179. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    180. Brito Rui Pedro & Sebastião Helder & Godinho Pedro, 2018. "On the Gains of Using High Frequency Data in Portfolio Selection," Scientific Annals of Economics and Business, Sciendo, vol. 65(4), pages 365-383, December.
    181. Gregory Connor & Anita Suurlaht, 2012. "Dynamic Stock Market Covariances in the Eurozone," Economics Department Working Paper Series n222-12.pdf, Department of Economics, National University of Ireland - Maynooth.
    182. Gustavo Fruet Dias & Cristina M. Scherrer & Fotis Papailias, 2016. "Volatility Discovery," CREATES Research Papers 2016-07, Department of Economics and Business Economics, Aarhus University.
    183. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    184. Stefan Lyocsa & Peter Molnar & Igor Fedorko, 2016. "Forecasting Exchange Rate Volatility: The Case of the Czech Republic, Hungary and Poland," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 453-475, October.
    185. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
    186. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    187. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    188. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
    189. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.
    190. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    191. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," EconomiX Working Papers 2019-19, University of Paris Nanterre, EconomiX.
    192. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
    193. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    194. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
    195. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    196. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    197. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    198. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," LSE Research Online Documents on Economics 88375, London School of Economics and Political Science, LSE Library.
    199. Sanfelici Simona & Uboldi Adamo, 2014. "Assessing the quality of volatility estimators via option pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(2), pages 103-124, April.
    200. Masato Ubukata, 2022. "A time-varying jump tail risk measure using high-frequency options data," Empirical Economics, Springer, vol. 63(5), pages 2633-2653, November.
    201. Pelger, Markus, 2019. "Large-dimensional factor modeling based on high-frequency observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 23-42.
    202. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," Journal of Econometrics, Elsevier, vol. 206(1), pages 226-257.
    203. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    204. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    205. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    206. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    207. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2013. "Conditional alphas and realized betas," Textos para discussão 341, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    208. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    209. Ogihara, Teppei, 2021. "Misspecified diffusion models with high-frequency observations and an application to neural networks," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 245-292.
    210. Münnix, Michael C. & Schäfer, Rudi & Guhr, Thomas, 2010. "Compensating asynchrony effects in the calculation of financial correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 767-779.
    211. Xinyu Song, 2019. "Large Volatility Matrix Prediction with High-Frequency Data," Papers 1907.01196, arXiv.org, revised Sep 2019.
    212. Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
    213. Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
    214. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    215. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
    216. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
    217. Bibinger, Markus & Vetter, Mathias, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers 2013-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    218. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    219. Arnab Chakrabarti & Rituparna Sen, 2023. "Copula Estimation for Nonsynchronous Financial Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 116-149, May.
    220. Cui, Wenhao & Hu, Jie & Wang, Jiandong, 2024. "Nonparametric estimation for high-frequency data incorporating trading information," Journal of Econometrics, Elsevier, vol. 240(1).
    221. Bibinger, Markus, 2011. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," SFB 649 Discussion Papers 2011-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    222. Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
    223. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    224. Münnix, Michael C. & Schäfer, Rudi & Guhr, Thomas, 2010. "Impact of the tick-size on financial returns and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4828-4843.
    225. Serge Darolles & Christian Gouriéroux & Emmanuelle Jay, 2012. "Robust Portfolio Allocation with Systematic Risk Contribution Restrictions," Working Papers 2012-35, Center for Research in Economics and Statistics.
    226. Flavia Barsotti & Simona Sanfelici, 2016. "Market Microstructure Effects on Firm Default Risk Evaluation," Econometrics, MDPI, vol. 4(3), pages 1-31, July.
    227. Michael Ho & Jack Xin, 2016. "Sparse Kalman Filtering Approaches to Covariance Estimation from High Frequency Data in the Presence of Jumps," Papers 1602.02185, arXiv.org, revised Apr 2016.
    228. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    229. Kim, Donggyu & Wang, Yazhen, 2016. "Sparse PCA-based on high-dimensional Itô processes with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 172-189.
    230. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    231. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
    232. Shen, Yiwen & Shi, Meiqi, 2024. "Intraday variation in cross-sectional stock comovement and impact of index-based strategies," Journal of Financial Markets, Elsevier, vol. 68(C).
    233. Asger Lunde & Kasper V. Olesen, 2014. "Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange," CREATES Research Papers 2013-19, Department of Economics and Business Economics, Aarhus University.
    234. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    235. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    236. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    237. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    238. Giacomo Toscano & Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2021. "Volatility of volatility estimation: central limit theorems for the Fourier transform estimator and empirical study of the daily time series stylized facts," Papers 2112.14529, arXiv.org, revised Sep 2022.
    239. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    240. Ingmar Nolte & Valeri Voev, 2011. "Least Squares Inference on Integrated Volatility and the Relationship Between Efficient Prices and Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 94-108, April.
    241. Neil Shephard, 2020. "An estimator for predictive regression: reliable inference for financial economics," Papers 2008.06130, arXiv.org.
    242. Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
    243. Donggyu Kim & Minseog Oh, 2024. "Dynamic Realized Minimum Variance Portfolio Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
    244. Bandi, Federico M. & Pirino, Davide & Renò, Roberto, 2024. "Systematic staleness," Journal of Econometrics, Elsevier, vol. 238(1).
    245. Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
    246. Mike Buckle & Jing Chen & Julian Williams, 2014. "How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 542-557, November.
    247. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.
    248. Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
    249. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    250. Ole Martin & Mathias Vetter, 2019. "Laws of large numbers for Hayashi–Yoshida-type functionals," Finance and Stochastics, Springer, vol. 23(3), pages 451-500, July.
    251. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).

  18. Frédérique Bec & Anders Rahbek & Neil Shephard, 2008. "The ACR model: a multivariate dynamic mixture autoregression," THEMA Working Papers 2008-11, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    Cited by:

    1. Leena Kalliovirta & Mika Meitz & Pentti Saikkonen, 2015. "A Gaussian Mixture Autoregressive Model for Univariate Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 247-266, March.
    2. Zacharias Psaradakis & Martin Sola & Nicola Spagnolo & Patricio Yunis, 2024. "Predictive Accuracy of Impulse Responses Estimated Using Local Projections and Vector Autoregressions," Department of Economics Working Papers 2024_02, Universidad Torcuato Di Tella.
    3. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    4. Jan Pablo Burgard & Matthias Neuenkirch & Matthias Nöckel, 2018. "State-Dependent Transmission of Monetary Policy in the Euro Area," CESifo Working Paper Series 7074, CESifo.
    5. Frédérique Bec & Alain Guay, 2020. "A simple unit root test consistent against any stationary alternative," Working Papers halshs-03010256, HAL.
    6. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "Bayesian Vector Autoregressions with Non-Gaussian Shocks," CReMFi Discussion Papers 5, CReMFi, School of Economics and Finance, QMUL.
    7. Søren Johansen & Theis Lange, 2011. "Some econometric results for the Blanchard-Watson bubble model," CREATES Research Papers 2011-17, Department of Economics and Business Economics, Aarhus University.
    8. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    9. Bec, F. & Bouabdallah, O. & Ferrara, L., 2011. "The possible shapes of recoveries in Markov-switching models," Working papers 321, Banque de France.
    10. Line Elvstrøm Ekner & Emil Nejstgaard, 2013. "Parameter Identification in the Logistic STAR Model," Discussion Papers 13-07, University of Copenhagen. Department of Economics.
    11. Meitz, Mika & Saikkonen, Pentti, 2022. "Subgeometrically Ergodic Autoregressions," Econometric Theory, Cambridge University Press, vol. 38(5), pages 959-985, October.
    12. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    13. Meitz, Mika & Saikkonen, Pentti, 2021. "Testing for observation-dependent regime switching in mixture autoregressive models," Journal of Econometrics, Elsevier, vol. 222(1), pages 601-624.
    14. Luca Di Persio & Samuele Vettori, 2014. "Markov Switching Model Analysis of Implied Volatility for Market Indexes with Applications to S&P 500 and DAX," Journal of Mathematics, Hindawi, vol. 2014, pages 1-17, December.
    15. Jiti Gao & Dag Tjøstheim & Jiying Yin, 2011. "Estimation in threshold autoregressive models with a stationary and a unit root regime," Monash Econometrics and Business Statistics Working Papers 21/11, Monash University, Department of Econometrics and Business Statistics.
    16. Kalliovirta, Leena & Meitz, Mika & Saikkonen, Pentti, 2016. "Gaussian mixture vector autoregression," Journal of Econometrics, Elsevier, vol. 192(2), pages 485-498.
    17. Kung-Sik Chan & Simone Giannerini & Greta Goracci & Howell Tong, 2020. "Testing for threshold regulation in presence of measurement error with an application to the PPP hypothesis," Papers 2002.09968, arXiv.org, revised Nov 2021.
    18. Gary Koop & Simon Potter, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Post-Print hal-00732535, HAL.
    19. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    20. Deborah Gefang, 2012. "Money‐output Causality Revisited – A Bayesian Logistic Smooth Transition VECM Perspective," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(1), pages 131-151, February.
    21. Michael J. Dueker & Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2007. "Multivariate contemporaneous threshold autoregressive models," Working Papers 2007-019, Federal Reserve Bank of St. Louis.
    22. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    23. Daiki Maki, 2013. "Detecting cointegration relationships under nonlinear models: Monte Carlo analysis and some applications," Empirical Economics, Springer, vol. 45(1), pages 605-625, August.
    24. Frederique Bec & Alain Guay, 2020. "A Simple Unit Root Test Consistent Against Any Stationary Alternative," Working Papers 20-20, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    25. Andreas Hetland, 2018. "The Stochastic Stationary Root Model," Econometrics, MDPI, vol. 6(3), pages 1-33, August.

  19. Thomas Flury & Neil Shephard, 2008. "Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models," OFRC Working Papers Series 2008fe32, Oxford Financial Research Centre.

    Cited by:

    1. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    2. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    3. Martin T. Bohl & Nicole Branger & Mark Trede, 2022. "Measurement errors in index trader positions data: Is the price pressure hypothesis still invalid?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(3), pages 1534-1553, September.
    4. Koundouri, Phoebe & Englezos, Nikos & Kartala, Xanthi & Tsionas, Mike, 2019. "A Decision-Analytic Framework to explore the water-energy-food nexus in complex and transboundary water resources systems, with Climate Change Uncertainty," MPRA Paper 122240, University Library of Munich, Germany.
    5. Luc Bauwens & Arnaud Dufays & Jeroen V.K. Rombouts, 2011. "Marginal Likelihood for Markov-Switching and Change-Point GARCH Models," Cahiers de recherche 1138, CIRPEE.
    6. Papp, Tamás K. & Reiter, Michael, 2020. "Estimating linearized heterogeneous agent models using panel data," Journal of Economic Dynamics and Control, Elsevier, vol. 115(C).
    7. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    8. Joshua C.C. Chan & Rodney Strachan, 2014. "The Zero Lower Bound: Implications for Modelling the Interest Rate," Working Paper series 42_14, Rimini Centre for Economic Analysis.
    9. Matias Quiroz & Mattias Villani & Robert Kohn & Minh-Ngoc Tran & Khue-Dung Dang, 2018. "Subsampling MCMC - an Introduction for the Survey Statistician," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 33-69, December.
    10. Tsionas, Mike G. & Malikov, Emir & Kumbhakar, Subal C., 2019. "Endogenous Dynamic Efficiency in the Intertemporal Optimization Models of Firm Behavior," MPRA Paper 97780, University Library of Munich, Germany.
    11. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Juan F. Rubio-Ramírez, 2014. "Estimating Dynamic Equilibrium Models with Stochastic Volatility," Working Papers 2014-11, FEDEA.
    12. Rhys M. Bidder & Matthew E. Smith, 2013. "Doubts and Variability: A Robust Perspective on Exotic Consumption Series," Working Paper Series 2013-28, Federal Reserve Bank of San Francisco.
    13. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    14. Andrew Binning & Junior Maih, 2015. "Sigma Point Filters For Dynamic Nonlinear Regime Switching Models," Working Papers No 4/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    15. Emmanuel C. Mamatzakis & Mike G. Tsionas, 2021. "A Bayesian panel stochastic volatility measure of financial stability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5363-5384, October.
    16. Ron Gallant & Raffaella Giacomini & Giuseppe Ragusa, 2013. "Generalized method of moments with latent variables," CeMMAP working papers CWP50/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Matthew Smith, 2012. "Estimating Nonlinear Economic Models Using Surrogate Transitions," 2012 Meeting Papers 494, Society for Economic Dynamics.
    18. Rubio-Ramírez, Juan Francisco & Schorfheide, Frank & Fernández-Villaverde, Jesús, 2015. "Solution and Estimation Methods for DSGE Models," CEPR Discussion Papers 11032, C.E.P.R. Discussion Papers.
    19. Pablo A. Cuba-Borda & Luca Guerrieri & Matteo Iacoviello & Molin Zhong, 2019. "Likelihood Evaluation of Models with Occasionally Binding Constraints," Finance and Economics Discussion Series 2019-028, Board of Governors of the Federal Reserve System (U.S.).
    20. Joshua Chan & Rodney Strachan, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," CAMA Working Papers 2012-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    21. Elmar Mertens & James M. Nason, 2018. "Inflation and professional forecast dynamics: an evaluation of stickiness, persistence, and volatility," BIS Working Papers 713, Bank for International Settlements.
    22. Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
    23. Laura Liu & Mikkel Plagborg-M?ller, 2021. "Full-Information Estimation of Heterogeneous Agent Models Using Macro and Micro Data," CAEPR Working Papers 2021-001 Classification- , Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    24. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    25. Yumiao Tian & Maorong Ge & Frank Neitzel, 2020. "Variance Reduction of Sequential Monte Carlo Approach for GNSS Phase Bias Estimation," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
    26. A. Ronald Gallant & Han Hong & Ahmed Khwaja, 2012. "Bayesian Estimation of a Dynamic Game with Endogenous, Partially Observed, Serially Correlated State," Working Papers 12-01, Duke University, Department of Economics.
    27. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
    28. Arnaud Doucet & Neil Shephard, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Papers 2012-W05, Economics Group, Nuffield College, University of Oxford.
    29. Angelo Marsiglia Fasolo, 2012. "A Note on Particle Filters Applied to DSGE Models," Working Papers Series 281, Central Bank of Brazil, Research Department.
    30. Cameron Fen, 2022. "Fast Simulation-Based Bayesian Estimation of Heterogeneous and Representative Agent Models using Normalizing Flow Neural Networks," Papers 2203.06537, arXiv.org.
    31. Nonejad, Nima, 2014. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," MPRA Paper 55662, University Library of Munich, Germany.
    32. Tsionas, Mike & Patel, Pankaj C. & Guedes, Maria João, 2022. "Endogenous efficiency of the dynamic profit maximization in the intertemporal production models of venture behavior," International Journal of Production Economics, Elsevier, vol. 246(C).
    33. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    34. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    35. Nima Nonejad, 2013. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," CREATES Research Papers 2013-27, Department of Economics and Business Economics, Aarhus University.
    36. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    37. Luisa Corrado & Stefano Grassi & Aldo Paolillo, 2021. "Modelling and Estimating Large Macroeconomic Shocks During the Pandemic," National Institute of Economic and Social Research (NIESR) Discussion Papers 530, National Institute of Economic and Social Research.
    38. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    39. Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.
    40. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    41. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    42. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," LSE Research Online Documents on Economics 80749, London School of Economics and Political Science, LSE Library.
    43. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    44. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    45. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    46. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    47. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    48. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    49. Wolf, Elias, 2023. "Estimating Growth at Risk with Skewed Stochastic Volatility Models," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277696, Verein für Socialpolitik / German Economic Association.
    50. Nikolaos Englezos & Xanthi Kartala & Phoebe Koundouri & Mike Tsionas & Angelos Alamanos, 2021. "A Novel Hydro - Economic - Econometric Approach for Integrated Transboundary Water Management under Uncertainty," DEOS Working Papers 2101, Athens University of Economics and Business.
    51. Hall, Jamie & Pitt, Michael K. & Kohn, Robert, 2014. "Bayesian inference for nonlinear structural time series models," Journal of Econometrics, Elsevier, vol. 179(2), pages 99-111.
    52. Emmanuel Mamatzakis & Mike Tsionas, 2018. "A Bayesian dynamic model to test persistence in funds' performance," Working Paper series 18-23, Rimini Centre for Economic Analysis.
    53. Gallant, A. Ronald & Giacomini, Raffaella & Ragusa, Giuseppe, 2017. "Bayesian estimation of state space models using moment conditions," Journal of Econometrics, Elsevier, vol. 201(2), pages 198-211.
    54. Celik, Nurcin & Son, Young-Jun, 2011. "State estimation of a shop floor using improved resampling rules for particle filtering," International Journal of Production Economics, Elsevier, vol. 134(1), pages 224-237, November.
    55. Martin T. Bohl & Nicole Branger & Mark Trede, 2019. "Measurement Errors in Index Trader Positions Data: Is the Price Pressure Hypothesis Still Invalid?," CQE Working Papers 8019, Center for Quantitative Economics (CQE), University of Muenster.
    56. Patrick Leung & Catherine S. Forbes & Gael M. Martin & Brendan McCabe, 2016. "Data-driven particle Filters for particle Markov Chain Monte Carlo," Monash Econometrics and Business Statistics Working Papers 17/16, Monash University, Department of Econometrics and Business Statistics.
    57. Andreasen, Martin & Meldrum, Andrew, 2013. "Likelihood inference in non-linear term structure models: the importance of the lower bound," Bank of England working papers 481, Bank of England.
    58. Laura Liu & Mikkel Plagborg‐Møller, 2023. "Full‐information estimation of heterogeneous agent models using macro and micro data," Quantitative Economics, Econometric Society, vol. 14(1), pages 1-35, January.
    59. Yang, Yuan & Wang, Lu, 2015. "An Improved Auxiliary Particle Filter for Nonlinear Dynamic Equilibrium Models," Dynare Working Papers 47, CEPREMAP.
    60. A. Ronald Gallant & Han Hong & Ahmed Khwaja, 2018. "The Dynamic Spillovers of Entry: An Application to the Generic Drug Industry," Management Science, INFORMS, vol. 64(3), pages 1189-1211, March.
    61. Martin M. Andreasen, 2010. "Non-linear DSGE Models and The Optimized Particle Filter," CREATES Research Papers 2010-05, Department of Economics and Business Economics, Aarhus University.
    62. Nonejad Nima, 2016. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," Journal of Time Series Econometrics, De Gruyter, vol. 8(1), pages 55-90, January.
    63. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    64. Luisa Corrado & Stefano Grassi & Aldo Paolillo, 2021. "Identifying Economic Shocks in a Rare Disaster Environment," CEIS Research Paper 517, Tor Vergata University, CEIS, revised 18 Jul 2024.
    65. Leland E. Farmer, 2021. "The discretization filter: A simple way to estimate nonlinear state space models," Quantitative Economics, Econometric Society, vol. 12(1), pages 41-76, January.
    66. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    67. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    68. Kjartan Kloster Osmundsen & Tore Selland Kleppe & Roman Liesenfeld & Atle Oglend, 2021. "Estimating the Competitive Storage Model with Stochastic Trends in Commodity Prices," Econometrics, MDPI, vol. 9(4), pages 1-24, November.

  20. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    2. Zhang, Hongwei & Jin, Chen & Bouri, Elie & Gao, Wang & Xu, Yahua, 2023. "Realized higher-order moments spillovers between commodity and stock markets: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 30(C).
    3. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    4. Luo, Xin & Tao, Yunqing & Zou, Kai, 2022. "A new measure of realized volatility: Inertial and reverse realized semivariance," Finance Research Letters, Elsevier, vol. 47(PA).
    5. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
    6. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    7. Kislay Kumar Jha & Dirk G. Baur, 2020. "Regime-Dependent Good and Bad Volatility of Bitcoin," JRFM, MDPI, vol. 13(12), pages 1-16, December.
    8. Roh, Tai-Yong & Byun, Suk Joon & Xu, Yahua, 2020. "Downside uncertainty shocks in the oil and gold markets," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 291-307.
    9. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    10. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    11. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Wang Gao & Jiajia Wei & Shixiong Yang, 2023. "The Asymmetric Effects of Extreme Climate Risk Perception on Coal Futures Return Dynamics: Evidence from Nonparametric Causality-In-Quantiles Tests," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    13. Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2022. "Volatility forecasting with machine learning and intraday commonality," Papers 2202.08962, arXiv.org, revised Feb 2023.
    14. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    15. Srivastava, Pranjal & Jacob, Joshy, 2022. "Arbitrage constraints and behaviour of volatility components: Evidence from a natural experiment," IIMA Working Papers WP 2022-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
    17. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    18. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    19. Cao, Yan & Cheng, Sheng & Li, Xinran, 2023. "How economic policy uncertainty affects asymmetric spillovers in food and oil prices: Evidence from wavelet analysis," Resources Policy, Elsevier, vol. 86(PB).
    20. Si Mohammed, Kamel & Tedeschi, Marco & Mallek, Sabrine & Tarczyńska-Łuniewska, Małgorzata & Zhang, Anqi, 2023. "Realized semi variance quantile connectedness between oil prices and stock market: Spillover from Russian-Ukraine clash," Resources Policy, Elsevier, vol. 85(PA).
    21. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
    22. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    23. Glenn Kit Foong Ho & Sirimon Treepongkaruna & Marvin Wee & Chaiyuth Padungsaksawasdi, 2022. "The effect of short selling on volatility and jumps," Australian Journal of Management, Australian School of Business, vol. 47(1), pages 34-52, February.
    24. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    25. Bo Yu & Zhijia Chang, 2024. "Connectedness of Carbon Price and Energy Price under Shocks: A Study Based on Positive and Negative Price Volatility," Sustainability, MDPI, vol. 16(12), pages 1-26, June.
    26. Jozef Baruník & Matěj Nevrla, 2023. "Quantile Spectral Beta: A Tale of Tail Risks, Investment Horizons, and Asset Prices," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1590-1646.
    27. Brini, Alessio & Lenz, Jimmie, 2024. "Pricing cryptocurrency options with machine learning regression for handling market volatility," Economic Modelling, Elsevier, vol. 136(C).
    28. Apergis, Nicholas, 2023. "Realized higher-order moments spillovers across cryptocurrencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    29. Wang, Ziwei & Li, Youwei & He, Feng, 2020. "Asymmetric volatility spillovers between economic policy uncertainty and stock markets: Evidence from China," Research in International Business and Finance, Elsevier, vol. 53(C).
    30. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    31. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    32. Da Fonseca, José & Xu, Yahua, 2017. "Higher moment risk premiums for the crude oil market: A downside and upside conditional decomposition," Energy Economics, Elsevier, vol. 67(C), pages 410-422.
    33. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    34. Todorova, Neda & Clements, Adam E., 2018. "The volatility-volume relationship in the LME futures market for industrial metals," Resources Policy, Elsevier, vol. 58(C), pages 111-124.
    35. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
    36. Chen, Yufeng & Li, Wenqi & Qu, Fang, 2019. "Dynamic asymmetric spillovers and volatility interdependence on China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 825-838.
    37. Julien Chevallier & Benoît Sévi, 2011. "On the volatility-volume relationship in energy futures markets using intraday data," Working Papers hal-04140997, HAL.
    38. Lai T. Hoang & Dirk G. Baur, 2021. "Spillovers and Asset Allocation," JRFM, MDPI, vol. 14(8), pages 1-31, July.
    39. G.M. Gallo & O. Okhrin & G. Storti, 2024. "Dynamic tail risk forecasting: what do realized skewness and kurtosis add?," Working Paper CRENoS 202416, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    40. Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
    41. Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
    42. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
    43. Peter, Eckley, 2015. "Measuring economic uncertainty using news-media textual data," MPRA Paper 64874, University Library of Munich, Germany, revised 01 May 2015.
    44. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    45. Lu, Botao & Ma, Feng & Wang, Jiqian & Ding, Hui & Wahab, M.I.M., 2021. "Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 672-689.
    46. He, Feng & Ma, Feng & Wang, Ziwei & Yang, Bohan, 2021. "Asymmetric volatility spillover between oil-importing and oil-exporting countries' economic policy uncertainty and China's energy sector," International Review of Financial Analysis, Elsevier, vol. 75(C).
    47. Qianli Zhao & Chao Wang & Richard Gerlach & Giuseppe Storti & Lingxiang Zhang, 2024. "Autoencoder Enhanced Realised GARCH on Volatility Forecasting," Papers 2411.17136, arXiv.org.
    48. Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).

  21. Ole E. Barndorff-Nielsen & Peter R. Hansen & Asger Lunde & Neil Shephard, 2006. "Subsampling realised kernels," OFRC Working Papers Series 2006fe06, Oxford Financial Research Centre.

    Cited by:

    1. Mihaela Craioveanu & Eric Hillebrand, 2012. "Why It Is Ok To Use The Har-Rv(1,5,21) Model," Working Papers 1201, University of Central Missouri, Department of Economics & Finance, revised Aug 2012.
    2. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    3. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    4. Eleftheria Kafousaki & Stavros Degiannakis, 2023. "Forecasting VIX: the illusion of forecast evaluation criteria," Economics and Business Letters, Oviedo University Press, vol. 12(3), pages 231-240.
    5. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    6. Gustavo Fruet Dias & Karsten Schweiker, 2024. "Integrated Variance Estimation for Assets Traded in Multiple Venues," University of East Anglia School of Economics Working Paper Series 2024-04, School of Economics, University of East Anglia, Norwich, UK..
    7. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    8. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
    9. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Value-at-Risk Using High Frequency Information," Working Papers 201409, University of California at Riverside, Department of Economics.
    10. Diebold, Francis X. & Strasser, Georg H., 2008. "On the correlation structure of microstructure noise in theory and practice," CFS Working Paper Series 2008/32, Center for Financial Studies (CFS).
    11. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Realized Volatility Using Subsample Averaging," Working Papers 201410, University of California at Riverside, Department of Economics.
    12. Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
    13. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    14. Jianfen Feng & Xiaowei Huang & Juyue Hou & Chunxia Wang & Yan Zeng, 2018. "Carbon Bond Pricing And Model Selection," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 465-481, March.
    15. Paolo Gorgi & Siem Jan Koopman, 2020. "Beta observation-driven models with exogenous regressors: a joint analysis of realized correlation and leverage effects," Tinbergen Institute Discussion Papers 20-004/III, Tinbergen Institute.
    16. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    17. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    18. Nikolaus Hautsch & Dieter Hess & David Veredas, 2010. "The impact of macroeconomic news on quote adjustments, noise and informational volatility," Working Papers ECARES 2010-004, ULB -- Universite Libre de Bruxelles.
    19. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    20. Flavia Barsotti & Simona Sanfelici, 2012. "Microstructure effect on firm’s volatility risk," Working Papers - Mathematical Economics 2012-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    21. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    22. Chaker, Selma, 2017. "On high frequency estimation of the frictionless price: The use of observed liquidity variables," Journal of Econometrics, Elsevier, vol. 201(1), pages 127-143.
    23. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    24. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    25. Linlan Xiao & Vigdis Boasson & Sergey Shishlenin & Victoria Makushina, 2018. "Volatility forecasting: combinations of realized volatility measures and forecasting models," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1428-1441, March.
    26. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
    27. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    28. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    29. Dimitrios I. Vortelinos, 2015. "Out‐of‐sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini‐futures markets," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 58-67, November.
    30. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
    31. Prateek Sharma & Swati Sharma, 2015. "Forecasting gains of robust realized variance estimators: evidence from European stock markets," Economics Bulletin, AccessEcon, vol. 35(1), pages 61-69.
    32. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2005. "Edgeworth Expansions for Realized Volatility and Related Estimators," NBER Technical Working Papers 0319, National Bureau of Economic Research, Inc.
    33. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    34. Rui Da & Dacheng Xiu, 2021. "When Moving‐Average Models Meet High‐Frequency Data: Uniform Inference on Volatility," Econometrica, Econometric Society, vol. 89(6), pages 2787-2825, November.
    35. Demetrescu, Matei & Golosnoy, Vasyl & Titova, Anna, 2020. "Bias corrections for exponentially transformed forecasts: Are they worth the effort?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 761-780.
    36. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    37. Emilio Barucci & Davide Magno & Maria Elvira Mancino, 2012. "Fourier volatility forecasting with high-frequency data and microstructure noise," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 281-293, September.
    38. Vortelinos, Dimitrios I. & Lakshmi, Geeta, 2015. "Market risk of BRIC Eurobonds in the financial crisis period," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 295-310.
    39. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    40. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    41. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    42. Wang, Jiazhen & Jiang, Yuexiang & Zhu, Yanjian & Yu, Jing, 2020. "Prediction of volatility based on realized-GARCH-kernel-type models: Evidence from China and the U.S," Economic Modelling, Elsevier, vol. 91(C), pages 428-444.
    43. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.

  22. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    2. Kunitomo, Naoto & Sato, Seisho, 2013. "Separating Information Maximum Likelihood estimation of the integrated volatility and covariance with micro-market noise," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 282-309.
    3. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.
    4. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    5. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    6. Matteo Barigozzi & Christian T. Brownlees & Giampiero M. Gallo & David Veredas, 2010. "Disentangling Systematic and Idiosyncratic Risk for Large Panels of Assets," Econometrics Working Papers Archive wp2010_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    7. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    8. Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
    9. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    10. Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
    11. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    12. Chen, Richard Y. & Mykland, Per A., 2017. "Model-free approaches to discern non-stationary microstructure noise and time-varying liquidity in high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 79-103.
    13. Großmaß Lidan, 2014. "Liquidity and the Value at Risk," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(5), pages 572-602, October.
    14. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    15. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
    16. Peter Reinhard Hansen & Chen Tong, 2024. "Fractional Moments by the Moment-Generating Function," Papers 2410.23587, arXiv.org.
    17. Nagapetyan, Artur, 2019. "Precondition stock and stock indices volatility modeling based on market diversification potential: Evidence from Russian market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 56, pages 45-61.
    18. Gustavo Fruet Dias & Marcelo Fernandes & Cristina Mabel Scherrer, 2019. "Price discovery in a continuous-time setting," University of East Anglia School of Economics Working Paper Series 2019-02, School of Economics, University of East Anglia, Norwich, UK..
    19. Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2013. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 59-84.
    20. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2010. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," Working Papers 10-06, Duke University, Department of Economics.
    21. Ole E. Barndorff-Nielsen & David G. Pollard & Neil Shephard, 2010. "Integer-valued Lévy processes and low latency financial econometrics," CREATES Research Papers 2010-66, Department of Economics and Business Economics, Aarhus University.
    22. Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
    23. Bianchi, Francesco & Gómez-Cram, Roberto & Kind, Thilo & Kung, Howard, 2023. "Threats to central bank independence: High-frequency identification with twitter," Journal of Monetary Economics, Elsevier, vol. 135(C), pages 37-54.
    24. Roberto Pascual & David Veredas, 2009. "Does the open limit order book matter in explaining informational volatility?," ULB Institutional Repository 2013/183777, ULB -- Universite Libre de Bruxelles.
    25. Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    26. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
    27. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    28. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    29. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
    30. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    31. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    32. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    33. Bibinger, Markus & Jirak, Moritz & Reiss, Markus, 2014. "Improved volatility estimation based on limit order books," SFB 649 Discussion Papers 2014-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    34. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    35. Matteo Luciani & David Veredas, 2012. "A model for vast panels of volatilities," Working Papers 1230, Banco de España.
    36. Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
    37. Knüppel, Malte & Krüger, Fabian & Pohle, Marc-Oliver, 2022. "Score-based calibration testing for multivariate forecast distributions," Discussion Papers 50/2022, Deutsche Bundesbank.
    38. Chaker, Selma, 2019. "The signal and the noise volatilities," Research in International Business and Finance, Elsevier, vol. 50(C), pages 79-105.
    39. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    40. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    41. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.
    42. Donggyu Kim & Xinyu Song & Yazhen Wang, 2020. "Unified Discrete-Time Factor Stochastic Volatility and Continuous-Time Ito Models for Combining Inference Based on Low-Frequency and High-Frequency," Papers 2006.12039, arXiv.org.
    43. Damien Challet & Vincent Ragel, 2023. "Recurrent Neural Networks with more flexible memory: better predictions than rough volatility," Papers 2308.08550, arXiv.org.
    44. Duan, Yinying & Chen, Wang & Zeng, Qing & Liu, Zhicao, 2018. "Leverage effect, economic policy uncertainty and realized volatility with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 148-154.
    45. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    46. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    47. Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting realized covariances using HAR-type models," Papers 2412.10791, arXiv.org.
    48. Tim Bollerslev & Hao Zhou, 2006. "Expected stock returns and variance risk premia," Finance and Economics Discussion Series 2007-11, Board of Governors of the Federal Reserve System (U.S.).
    49. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
    50. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    51. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2021. "Forecasting the volatility of asset returns: The informational gains from option prices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 862-880.
    52. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    53. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    54. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    55. M. Podolskij & D. Ziggel, 2010. "New tests for jumps in semimartingale models," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 15-41, April.
    56. Kalnina, Ilze & Linton, Oliver, 2007. "Inference about realized volatility using infill subsampling," LSE Research Online Documents on Economics 4411, London School of Economics and Political Science, LSE Library.
    57. Massimiliano Caporin & Gabriel G. Velo, 2011. "Modeling and forecasting realized range volatility," "Marco Fanno" Working Papers 0128, Dipartimento di Scienze Economiche "Marco Fanno".
    58. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    59. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
    60. Altmeyer, Randolf & Bibinger, Markus, 2014. "Functional stable limit theorems for efficient spectral covolatility estimators," SFB 649 Discussion Papers 2014-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    61. Podolskij, Mark & Vetter, Mathias, 2008. "Bipower-type estimation in a noisy diffusion setting," Technical Reports 2008,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    62. Eleftheria Kafousaki & Stavros Degiannakis, 2023. "Forecasting VIX: the illusion of forecast evaluation criteria," Economics and Business Letters, Oviedo University Press, vol. 12(3), pages 231-240.
    63. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    64. Peter Reinhard Hansen & Chen Tong, 2024. "Convolution-t Distributions," Papers 2404.00864, arXiv.org.
    65. Bonato, Mateo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Risk Spillovers in International Equity Portfolios," Working Papers on Finance 1214, University of St. Gallen, School of Finance.
    66. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    67. Virgil DAMIAN & Cosmin – Octavian CEPOI, 2016. "Volatility Estimators With High-Frequency Data From Bucharest Stock Exchange," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 247-264.
    68. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    69. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
    70. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    71. Minseog Oh & Donggyu Kim, 2021. "Effect of the U.S.--China Trade War on Stock Markets: A Financial Contagion Perspective," Papers 2111.09655, arXiv.org.
    72. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    73. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    74. Shuichi Nagata, 2012. "Consistent Estimation of Integrated Volatility Using Intraday Absolute Returns for SV Jump Diffusion Processes," Economics Bulletin, AccessEcon, vol. 32(1), pages 306-314.
    75. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    76. Dmitry Levando & Maxim Sakharov, 2018. "Natural Instability of Equilibrium Prices," Working Papers 2018:01, Department of Economics, University of Venice "Ca' Foscari".
    77. Richard Y. Chen & Per A. Mykland, 2015. "Model-Free Approaches to Discern Non-Stationary Microstructure Noise and Time-Varying Liquidity in High-Frequency Data," Papers 1512.06159, arXiv.org, revised Oct 2018.
    78. Christensen, Kim & Oomen, Roel & Renò, Roberto, 2022. "The drift burst hypothesis," Journal of Econometrics, Elsevier, vol. 227(2), pages 461-497.
    79. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    80. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    81. Antonio Naimoli & Giuseppe Storti, 2021. "Forecasting Volatility and Tail Risk in Electricity Markets," JRFM, MDPI, vol. 14(7), pages 1-17, June.
    82. Peter C. B. Phillips & Jun Yu, 2009. "Information Loss in Volatility Measurement with Flat Price Trading," Global COE Hi-Stat Discussion Paper Series gd08-039, Institute of Economic Research, Hitotsubashi University.
    83. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    84. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
    85. Gustavo Fruet Dias & Karsten Schweiker, 2024. "Integrated Variance Estimation for Assets Traded in Multiple Venues," University of East Anglia School of Economics Working Paper Series 2024-04, School of Economics, University of East Anglia, Norwich, UK..
    86. Park, Sujin & Linton, Oliver, 2012. "Estimating the quadratic covariation matrix for an asynchronously observed continuous time signal masked by additive noise," LSE Research Online Documents on Economics 119050, London School of Economics and Political Science, LSE Library.
    87. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    88. Cecilia Mancini & Vanessa Mattiussi & Roberto Reno', 2012. "Spot Volatility Estimation Using Delta Sequences," Working Papers - Mathematical Economics 2012-10, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    89. Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
    90. Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
    91. David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
    92. Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
    93. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
    94. Maria Elvira Mancino & Simona Sanfelici, 2011. "Estimation of Quarticity with High Frequency Data," Working Papers - Mathematical Economics 2011-06, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa, revised Jan 2012.
    95. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    96. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    97. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
    98. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    99. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    100. Daniel Preve, "undated". "Linear programming-based estimators in nonnegative autoregression," GRU Working Paper Series GRU_2016_001, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    101. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
    102. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    103. Z. Merrick Li & Oliver Linton, 2022. "A ReMeDI for Microstructure Noise," Econometrica, Econometric Society, vol. 90(1), pages 367-389, January.
    104. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    105. Li, Yingying & Zhang, Zhiyuan & Li, Yichu, 2018. "A unified approach to volatility estimation in the presence of both rounding and random market microstructure noise," Journal of Econometrics, Elsevier, vol. 203(2), pages 187-222.
    106. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
    107. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    108. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    109. Pérez-Rodríguez, Jorge V. & Andrada-Félix, Julián & Rachinger, Heiko, 2021. "Testing the forward volatility unbiasedness hypothesis in exchange rates under long-range dependence," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    110. Chow, Ying-Foon & Lam, James T.K. & Yeung, Hinson S., 2009. "Realized volatility of index constituent stocks in Hong Kong," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2809-2818.
    111. Ding, Hui & Huang, Yisu & Wang, Jiqian, 2023. "Have the predictability of oil changed during the COVID-19 pandemic: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 87(C).
    112. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    113. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    114. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    115. Renault, Eric & Werker, Bas J.M., 2011. "Causality effects in return volatility measures with random times," Journal of Econometrics, Elsevier, vol. 160(1), pages 272-279, January.
    116. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    117. Marcel Aloy & Gilles de Truchis, 2015. "Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems and the Co-persistence Analysis of Stock Market Realized Volatilities," Post-Print hal-01410660, HAL.
    118. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    119. Matteo Bonato & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2016. "Gold Futures Returns and Realized Moments: A Forecasting Experiment Using a Quantile-Boosting Approach," Working Papers 201645, University of Pretoria, Department of Economics.
    120. Fangfang Wang, 2016. "An Unbiased Measure of Integrated Volatility in the Frequency Domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 147-164, March.
    121. Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
    122. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
    123. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    124. Jeremy Large, 2007. "Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment," Economics Series Working Papers 340, University of Oxford, Department of Economics.
    125. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    126. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
    127. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    128. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Value-at-Risk Using High Frequency Information," Working Papers 201409, University of California at Riverside, Department of Economics.
    129. Härdle, Wolfgang Karl & Chen, Shi & Liang, Chong & Schienle, Melanie, 2018. "Time-varying Limit Order Book Networks," IRTG 1792 Discussion Papers 2018-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    130. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
    131. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2013. "Macroeconomic determinants of stock volatility and volatility premiums," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 203-220.
    132. Sutton, Maxwell & Vasnev, Andrey L. & Gerlach, Richard, 2019. "Mixed interval realized variance: A robust estimator of stock price volatility," Econometrics and Statistics, Elsevier, vol. 11(C), pages 43-62.
    133. Diebold, Francis X. & Strasser, Georg H., 2008. "On the correlation structure of microstructure noise in theory and practice," CFS Working Paper Series 2008/32, Center for Financial Studies (CFS).
    134. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Realized Volatility Using Subsample Averaging," Working Papers 201410, University of California at Riverside, Department of Economics.
    135. LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    136. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    137. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    138. Masato Ubukata & Toshiaki Watanabe, 2014. "Market variance risk premiums in Japan for asset predictability," Empirical Economics, Springer, vol. 47(1), pages 169-198, August.
    139. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    140. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    141. Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
    142. He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
    143. Ahoniemi, Katja & Lanne, Markku, 2010. "Realized volatility and overnight returns," Bank of Finland Research Discussion Papers 19/2010, Bank of Finland.
    144. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    145. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    146. Tong, Yuan & Wan, Ning & Dai, Xingyu & Bi, Xiaoyi & Wang, Qunwei, 2022. "China's energy stock market jumps: To what extent does the COVID-19 pandemic play a part?," Energy Economics, Elsevier, vol. 109(C).
    147. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    148. Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting Realized Covariances Using HAR-Type Models," Graz Economics Papers 2024-20, University of Graz, Department of Economics.
    149. Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CIRJE F-Series CIRJE-F-686, CIRJE, Faculty of Economics, University of Tokyo.
    150. Bekierman Jeremias & Gribisch Bastian, 2016. "Estimating stochastic volatility models using realized measures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 279-300, June.
    151. Bibinger, Markus & Winkelmann, Lars, 2013. "Econometrics of co-jumps in high-frequency data with noise," SFB 649 Discussion Papers 2013-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    152. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    153. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
    154. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    155. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
    156. Giampiero M. Gallo & Edoardo Otranto, 2018. "Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
    157. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    158. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    159. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    160. Giorgio Mirone, 2018. "Cross-sectional noise reduction and more efficient estimation of Integrated Variance," CREATES Research Papers 2018-18, Department of Economics and Business Economics, Aarhus University.
    161. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    162. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, Department of Economics and Business Economics, Aarhus University.
    163. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
    164. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    165. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    166. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    167. Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    168. Xinghua Zheng & Yingying Li, 2010. "On the estimation of integrated covariance matrices of high dimensional diffusion processes," Papers 1005.1862, arXiv.org, revised Mar 2012.
    169. Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
    170. Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
    171. Qi Wang & Jos'e E. Figueroa-L'opez & Todd Kuffner, 2019. "Bayesian Inference on Volatility in the Presence of Infinite Jump Activity and Microstructure Noise," Papers 1909.04853, arXiv.org.
    172. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    173. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    174. Mehmet Balcilar & Matteo Bonato & Riza Demirer & Rangan Gupta, 2016. "The Effect of Investor Sentiment on Gold Market Dynamics," Working Papers 201638, University of Pretoria, Department of Economics.
    175. Nikolaus Hautsch & Mark Podolskij, 2010. "Pre-Averaging Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," CREATES Research Papers 2010-29, Department of Economics and Business Economics, Aarhus University.
    176. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    177. Chao YU & Xujie ZHAO, 2021. "Measuring the Jump Risk Contribution under Market Microstructure Noise – Evidence from Chinese Stock Market," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 32-47, December.
    178. Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
    179. Yu‐Sheng Lai, 2022. "High‐frequency data and stock–bond investing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1623-1638, December.
    180. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    181. Richard Y. Chen, 2018. "Inference for Volatility Functionals of Multivariate It\^o Semimartingales Observed with Jump and Noise," Papers 1810.04725, arXiv.org, revised Nov 2019.
    182. Álvaro Cartea & Dimitrios Karyampas, 2009. "The Relationship Between the Volatility of Returns and the Number of Jumps in Financial Markets," Birkbeck Working Papers in Economics and Finance 0914, Birkbeck, Department of Economics, Mathematics & Statistics.
    183. Habib Hasnaoui, 2014. "Alternative Beta Risk Estimators in Emerging Markets: The Case of Tunisia," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 2(2), pages 96-105.
    184. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    185. Misaki, Hiroumi & Kunitomo, Naoto, 2015. "On robust properties of the SIML estimation of volatility under micro-market noise and random sampling," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 265-281.
    186. Damien Challet & Vincent Ragel, 2024. "Multi-Timescale Recurrent Neural Networks Beat Rough Volatility for Intraday Volatility Prediction," Risks, MDPI, vol. 12(6), pages 1-10, May.
    187. Xie, Haibin & Qi, Nan & Wang, Shouyang, 2019. "A new variant of RealGARCH for volatility modeling," Finance Research Letters, Elsevier, vol. 28(C), pages 438-443.
    188. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    189. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
    190. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    191. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    192. Gael M. Martin & Andrew Reidy & Jill Wright, 2006. "Assessing the Impact of Market Microstructure Noise and Random Jumps on the Relative Forecasting Performance of Option-Implied and Returns-Based Volatility," Monash Econometrics and Business Statistics Working Papers 10/06, Monash University, Department of Econometrics and Business Statistics.
    193. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    194. Tim Bollerslev & Jia Li & Yuan Xue, 2016. "Volume, Volatility and Public News Announcements," CREATES Research Papers 2016-19, Department of Economics and Business Economics, Aarhus University.
    195. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
    196. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    197. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    198. Xu, Yanyan & Liu, Jing & Ma, Feng & Chu, Jielei, 2024. "Liquidity and realized volatility prediction in Chinese stock market: A time-varying transitional dynamic perspective," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 543-560.
    199. Wu, Fan & Wang, Guan-jun & Kong, Xin-bing, 2022. "Inference on common intraday periodicity at high frequencies," Statistics & Probability Letters, Elsevier, vol. 191(C).
    200. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2011. "A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation," NBER Working Papers 17152, National Bureau of Economic Research, Inc.
    201. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    202. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    203. Wang Gao & Jiajia Wei & Shixiong Yang, 2023. "The Asymmetric Effects of Extreme Climate Risk Perception on Coal Futures Return Dynamics: Evidence from Nonparametric Causality-In-Quantiles Tests," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    204. Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
    205. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    206. Giampiero M. Gallo & Edoardo Otranto, 2016. "Combining Markov Switching and Smooth Transition in Modeling Volatility: A Fuzzy Regime MEM," Econometrics Working Papers Archive 2016_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    207. Liu, Cheng & Wang, Moming & Xia, Ningning, 2022. "Design-free estimation of integrated covariance matrices for high-frequency data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    208. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    209. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
    210. Nolte, Ingmar & Voev, Valeri, 2007. "Estimating high-frequency based (co-) variances: A unified approach," CoFE Discussion Papers 07/07, University of Konstanz, Center of Finance and Econometrics (CoFE).
    211. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    212. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    213. Chen, Ying & Härdle, Wolfgang Karl & Pigorsch, Uta, 2010. "Localized Realized Volatility Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1376-1393.
    214. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    215. Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
    216. Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
    217. Ilze Kalnina & Oliver Linton, 2006. "Estimating Quadratic VariationConsistently in thePresence of Correlated MeasurementError," STICERD - Econometrics Paper Series 509, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    218. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    219. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    220. Rachidi Kotchoni, 2012. "Applications of the Characteristic Function Based Continuum GMM in Finance," Post-Print hal-00867795, HAL.
    221. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
    222. Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    223. Bibinger, Markus & Winkelmann, Lars, 2014. "Common price and volatility jumps in noisy high-frequency data," SFB 649 Discussion Papers 2014-037, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    224. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    225. Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
    226. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    227. Shen, Keren & Yao, Jianfeng & Li, Wai Keung, 2019. "On a spiked model for large volatility matrix estimation from noisy high-frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 207-221.
    228. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    229. Su, Fei & Wang, Xinyi & Yuan, Yulin, 2022. "The intraday dynamics and intraday price discovery of bitcoin," Research in International Business and Finance, Elsevier, vol. 60(C).
    230. Cathy Ning & Dinghai Xu & Tony Wirjanto, 2014. "Is Volatility Clustering of Asset Returns Asymmetric?," Working Papers 050, Toronto Metropolitan University, Department of Economics.
    231. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    232. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
    233. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    234. Bent Jesper Christensen & Mads Markvart Kjær & Bezirgen Veliyev, 2021. "The incremental information in the yield curve about future interest rate risk," CREATES Research Papers 2021-11, Department of Economics and Business Economics, Aarhus University.
    235. Yu, Honghai & Fang, Libing & Sun, Wencong, 2018. "Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 931-940.
    236. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    237. Mykland, Per A. & Zhang, Lan & Chen, Dachuan, 2019. "The algebra of two scales estimation, and the S-TSRV: High frequency estimation that is robust to sampling times," Journal of Econometrics, Elsevier, vol. 208(1), pages 101-119.
    238. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    239. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    240. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
    241. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
    242. Julien Chevallier, 2021. "Covid-19 Outbreak and CO2 Emissions: Macro-Financial Linkages," Working Papers 2021-004, Department of Research, Ipag Business School.
    243. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    244. Gustavo Fruet Dias & Fotis Papailias & Cristina Scherrer, 2024. "An Econometric Analysis of Volatility Discovery," University of East Anglia School of Economics Working Paper Series 2024-01, School of Economics, University of East Anglia, Norwich, UK..
    245. Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
    246. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
    247. Peter Reinhard Hansen & Zhuo Huang & Chen Tong & Tianyi Wang, 2024. "Realized GARCH, CBOE VIX, and the Volatility Risk Premium," Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 187-223.
    248. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2020. "Economic indicators and stock market volatility in an emerging economy," Economic Systems, Elsevier, vol. 44(2).
    249. Neil Shephard & David G. Pollard & Ole E. Barndorff-Nielsen, 2010. "Discrete-valued Levy processes and low latency financial econometrics," Economics Series Working Papers 490, University of Oxford, Department of Economics.
    250. Simon Clinet & Yoann Potiron, 2017. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Papers 1701.01185, arXiv.org, revised Jun 2018.
    251. Todorova, Neda & Worthington, Andrew & Souček, Michael, 2014. "Realized volatility spillovers in the non-ferrous metal futures market," Resources Policy, Elsevier, vol. 39(C), pages 21-31.
    252. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    253. Oya, Kosuke, 2011. "Bias-corrected realized variance under dependent microstructure noise," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1290-1298.
    254. Christophe Boucher & Gilles de Truchis & Elena Ivona Dumitrescu & Sessi Tokpavi, 2017. "Testing for Extreme Volatility Transmission with Realized Volatility Measures," Working Papers hal-04141651, HAL.
    255. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    256. Gerlach, Richard & Naimoli, Antonio & Storti, Giuseppe, 2018. "Time Varying Heteroskedastic Realized GARCH models for tracking measurement error bias in volatility forecasting," MPRA Paper 83893, University Library of Munich, Germany.
    257. Milan Ficura & Jiri Witzany, 2016. "Estimating Stochastic Volatility and Jumps Using High-Frequency Data and Bayesian Methods," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 278-301, August.
    258. Marine Carrasco & Rachidi Kotchoni, 2015. "Adaptive Realized Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 757-797.
    259. Li, Shaoyu & Zheng, Tingguo, 2017. "Modeling spot rate using a realized stochastic volatility model with level effect and dynamic drift☆," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 200-221.
    260. Dohyun Chun & Donggyu Kim, 2021. "State Heterogeneity Analysis of Financial Volatility Using High-Frequency Financial Data," Papers 2102.13404, arXiv.org.
    261. Taesuk Lee & Mico Loretan & Werner Ploberger, 2013. "Rate-optimal tests for jumps in diffusion processes," Statistical Papers, Springer, vol. 54(4), pages 1009-1041, November.
    262. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    263. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    264. Celso Brunetti, Bahattin Buyuksahin, and Jeffrey H. Harris, 2013. "Herding and Speculation in the Crude Oil Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    265. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    266. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2014. "Efficient iterative maximum likelihood estimation of high-parameterized time series models," SFB 649 Discussion Papers 2014-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    267. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    268. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    269. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    270. Tong, Chen & Huang, Zhuo & Wang, Tianyi & Zhang, Cong, 2023. "The effects of economic uncertainty on financial volatility: A comprehensive investigation," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 369-389.
    271. Alexander Aue & Lajos Horváth & Clifford M. Hurvich & Philippe Soulier, 2014. "Limit Laws in Transaction-Level Asset Price Models," Post-Print hal-00583372, HAL.
    272. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
    273. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org, revised Sep 2020.
    274. Luke De Clerk & Sergey Savel'ev, 2021. "Non-stationary GARCH modelling for fitting higher order moments of financial series within moving time windows," Papers 2102.11627, arXiv.org, revised Mar 2021.
    275. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
    276. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    277. Masato Ubukata & Toshiaki Watanabe, 2011. "Market Variance Risk Premiums in Japan as Predictor Variables and Indicators of Risk Aversion," Global COE Hi-Stat Discussion Paper Series gd11-214, Institute of Economic Research, Hitotsubashi University.
    278. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
    279. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    280. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, Department of Economics and Business Economics, Aarhus University.
    281. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    282. Cathy W. S. Chen & Edward M. H. Lin & Tara F. J. Huang, 2022. "Bayesian quantile forecasting via the realized hysteretic GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1317-1337, November.
    283. Chao Liang & Yongan Xu & Zhonglu Chen & Xiafei Li, 2023. "Forecasting China's stock market volatility with shrinkage method: Can Adaptive Lasso select stronger predictors from numerous predictors?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3689-3699, October.
    284. Chai, Edwina F.L. & Lee, Adrian D. & Wang, Jianxin, 2015. "Global information distribution in the gold OTC markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 206-217.
    285. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
    286. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
    287. PASCUAL, Roberto & VEREDAS, David, 2006. "Does the open limit order book matter in explaining long run volatility ?," LIDAM Discussion Papers CORE 2006110, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    288. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
    289. Li, M. Z. & Linton, O., 2021. "Robust Estimation of Integrated and Spot Volatility," Cambridge Working Papers in Economics 2115, Faculty of Economics, University of Cambridge.
    290. Flavia Barsotti & Simona Sanfelici, 2012. "Microstructure effect on firm’s volatility risk," Working Papers - Mathematical Economics 2012-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    291. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
    292. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
    293. Alessandra Amendola & Vincenzo Candila & Fabrizio Cipollini & Giampiero M. Gallo, 2020. "Doubly Multiplicative Error Models with Long- and Short-run Components," Papers 2006.03458, arXiv.org.
    294. Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," JRFM, MDPI, vol. 8(3), pages 1-26, August.
    295. Manh Cuong Dong & Cathy W. S. Chen & Manabu Asai, 2023. "Bayesian non‐linear quantile effects on modelling realized kernels," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 981-995, January.
    296. Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
    297. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    298. Shcherba, Alexandr, 2014. "Comparing «Realized volatility» models in the VaR calculation for the Russian equity market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 34(2), pages 120-136.
    299. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Round-off Errors, Micro-market Price Adjustments and Random Sampling," CIRJE F-Series CIRJE-F-965, CIRJE, Faculty of Economics, University of Tokyo.
    300. Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Documentos de Trabajo del ICAE 2016-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    301. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    302. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
    303. Bibinger, Markus & Reiß, Markus, 2011. "Spectral estimation of covolatility from noisy observations using local weights," SFB 649 Discussion Papers 2011-086, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    304. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    305. L. Scaffidi Domianello & G.M. Gallo & E. Otranto, 2022. "Smooth and Abrupt Dynamics in Financial Volatility: the MS-MEM-MIDAS," Working Paper CRENoS 202205, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    306. Wu, Xinyu & Xie, Haibin, 2021. "A realized EGARCH-MIDAS model with higher moments," Finance Research Letters, Elsevier, vol. 38(C).
    307. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    308. Markus Bibinger & Markus Reiß, 2014. "Spectral Estimation of Covolatility from Noisy Observations Using Local Weights," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 23-50, March.
    309. Dong, Yingjie & Tse, Yiu-Kuen, 2017. "On estimating market microstructure noise variance," Economics Letters, Elsevier, vol. 150(C), pages 59-62.
    310. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    311. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    312. Chaker, Selma, 2017. "On high frequency estimation of the frictionless price: The use of observed liquidity variables," Journal of Econometrics, Elsevier, vol. 201(1), pages 127-143.
    313. Donggyu Kim & Minseok Shin, 2023. "Volatility models for stylized facts of high‐frequency financial data," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 262-279, May.
    314. Joshua C C Chan & Yong Song, 2017. "Measuring inflation expectations uncertainty using high-frequency data," CAMA Working Papers 2017-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    315. Dimitrios I. Vortelinos, 2015. "The Effect of Macro News on Volatility and Jumps," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 425-447, November.
    316. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    317. Markus Bibinger & Nikolaus Hautsch & Alexander Ristig, 2024. "Jump detection in high-frequency order prices," Papers 2403.00819, arXiv.org.
    318. Hanousek, Jan & Novotný, Jan, 2012. "Price jumps in Visegrad-country stock markets: An empirical analysis," Emerging Markets Review, Elsevier, vol. 13(2), pages 184-201.
    319. Xin Zhang & Donggyu Kim & Yazhen Wang, 2016. "Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets," Econometrics, MDPI, vol. 4(3), pages 1-26, August.
    320. Ding, Y., 2021. "Augmented Real-Time GARCH: A Joint Model for Returns, Volatility and Volatility of Volatility," Cambridge Working Papers in Economics 2112, Faculty of Economics, University of Cambridge.
    321. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    322. Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
    323. Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
    324. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    325. Chen Tong & Zhuo Huang, 2021. "Pricing VIX options with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1180-1200, August.
    326. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    327. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    328. Christophe Boucher & Gilles de Truchis & Elena Dumitrescu & Sessi Tokpavi, 2017. "Testing for Extreme Volatility Transmission with Realized Volatility Measures," EconomiX Working Papers 2017-20, University of Paris Nanterre, EconomiX.
    329. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    330. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    331. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    332. Enrique Sentana, 2018. "Volatility, Diversification and Contagion," Working Papers wp2018_1803, CEMFI.
    333. Giampiero M. Gallo & Edoardo Otranto, 2012. "Volatility Swings in the US Financial Markets," Econometrics Working Papers Archive 2012_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.
    334. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    335. Balcilar, Mehmet & Bonato, Matteo & Demirer, Riza & Gupta, Rangan, 2017. "The effect of investor sentiment on gold market return dynamics: Evidence from a nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 51(C), pages 77-84.
    336. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    337. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    338. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    339. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    340. Victor Bello Accioly & Beatriz Vaz de Melo Mendes, 2016. "Assessing the Impact of the Realized Range on the (E)GARCH Volatility: Evidence from Brazil," Brazilian Business Review, Fucape Business School, vol. 13(2), pages 1-26, March.
    341. Ji, Qiang & Bouri, Elie & Kristoufek, Ladislav & Lucey, Brian, 2021. "Realised volatility connectedness among Bitcoin exchange markets," Finance Research Letters, Elsevier, vol. 38(C).
    342. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
    343. Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
    344. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.
    345. Kim Christensen & Martin Thyrsgaard & Bezirgen Veliyev, 2018. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," CREATES Research Papers 2018-19, Department of Economics and Business Economics, Aarhus University.
    346. Johanna F. Ziegel & Fabian Kruger & Alexander Jordan & Fernando Fasciati, 2017. "Murphy Diagrams: Forecast Evaluation of Expected Shortfall," Papers 1705.04537, arXiv.org.
    347. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    348. M. Karanasos & S. Yfanti & A. Christopoulos, 2021. "The long memory HEAVY process: modeling and forecasting financial volatility," Annals of Operations Research, Springer, vol. 306(1), pages 111-130, November.
    349. Demetrio Lacava & Giampiero M. Gallo & Edoardo Otranto, 2020. "Unconventional Policies Effects on Stock Market Volatility: A MAP Approach," Papers 2010.08259, arXiv.org, revised Mar 2021.
    350. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
    351. Wu, Xinyu & Wang, Xiaona, 2020. "Forecasting volatility using realized stochastic volatility model with time-varying leverage effect," Finance Research Letters, Elsevier, vol. 34(C).
    352. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2016.
    353. Andersen, Torben G. & Archakov, Ilya & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2022. "Local mispricing and microstructural noise: A parametric perspective," Journal of Econometrics, Elsevier, vol. 230(2), pages 510-534.
    354. Yuan, Ying & Zhang, Tonghui, 2020. "Forecasting stock market in high and low volatility periods: a modified multifractal volatility approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    355. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2012. "International market links and volatility transmission," Journal of Econometrics, Elsevier, vol. 170(1), pages 117-141.
    356. Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
    357. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    358. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    359. Thomakos, Dimitrios D. & Wang, Tao, 2010. "'Optimal' probabilistic and directional predictions of financial returns," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 102-119, January.
    360. Fabrizio Cipollini & Giampiero M. Gallo, 2018. "Modeling Euro STOXX 50 Volatility with Common and Market–specific Components," Working Paper series 18-26, Rimini Centre for Economic Analysis.
    361. Tobias Fissler & Mark Podolskij, 2014. "Testing the maximal rank of the volatility process for continuous diffusions observed with noise," CREATES Research Papers 2014-52, Department of Economics and Business Economics, Aarhus University.
    362. Pellatt , Daniel & Sun, Yixiao, 2020. "Asymptotic F test in Regressions with Observations Collected at High Frequency over Long Span," University of California at San Diego, Economics Working Paper Series qt19f0d9wz, Department of Economics, UC San Diego.
    363. Per Mykland, 2012. "A Gaussian calculus for inference from high frequency data," Annals of Finance, Springer, vol. 8(2), pages 235-258, May.
    364. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    365. Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," SFB 649 Discussion Papers 2011-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    366. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    367. Selma Chaker & Nour Meddahi, 2013. "Volatility Forecasting when the Noise Variance Is Time-Varying," Staff Working Papers 13-48, Bank of Canada.
    368. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2014. "A Robust Neighborhood Truncation Approach To Estimation Of Integrated Quarticity," Econometric Theory, Cambridge University Press, vol. 30(1), pages 3-59, February.
    369. Naoto Kunitomo & Hiroumi Misaki, 2013. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Micro-market noise and Random Sampling," CIRJE F-Series CIRJE-F-893, CIRJE, Faculty of Economics, University of Tokyo.
    370. Cedric Okou & Eric Jacquier, 2014. "Horizon Effect in the Term Structure of Long-Run Risk-Return Trade-Offs," CIRANO Working Papers 2014s-36, CIRANO.
    371. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    372. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
    373. Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
    374. Ilze Kalnina & Natalia Sizova, 2015. "Estimation of volatility measures using high frequency data (in Russian)," Quantile, Quantile, issue 13, pages 3-14, May.
    375. Cathy W. S. Chen & Takaaki Koike & Wei‐Hsuan Shau, 2024. "Tail risk forecasting with semiparametric regression models by incorporating overnight information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1492-1512, August.
    376. Jos'e E. Figueroa-L'opez & Bei Wu, 2020. "Kernel Estimation of Spot Volatility with Microstructure Noise Using Pre-Averaging," Papers 2004.01865, arXiv.org, revised Feb 2022.
    377. Cathy W. S. Chen & Takaaki Koike & Wei-Hsuan Shau, 2024. "Tail risk forecasting with semi-parametric regression models by incorporating overnight information," Papers 2402.07134, arXiv.org.
    378. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    379. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
    380. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient Under Round-off Errors, Micro-market Price Adjustments and Random Sampling," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 333-368, September.
    381. Demetrio Lacava & Luca Scaffidi Domianello, 2021. "The Incidence of Spillover Effects during the Unconventional Monetary Policies Era," JRFM, MDPI, vol. 14(6), pages 1-18, May.
    382. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    383. Tim Bollerslev & Natalia Sizova & George Tauchen, 2009. "Volatility in Equilibrium: Asymmetries and Dynamic Dependencies," Working Papers 10-73, Duke University, Department of Economics.
    384. Kosuke Oya, 2009. "Bias-Corrected Realized Variance under Dependent Microstructure Noise," Discussion Papers in Economics and Business 09-39, Osaka University, Graduate School of Economics.
    385. Naoto Kunitomo & Seisho Sato, 2010. "Robustness of the Separating Information Maximum Likelihood Estimation of Realized Volatility with Micro-Market Noise," CIRJE F-Series CIRJE-F-733, CIRJE, Faculty of Economics, University of Tokyo.
    386. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    387. Adam E Clements & Christopher A Coleman-Fenn & Daniel R Smith, 2011. "Forecasting Equicorrelation," NCER Working Paper Series 72, National Centre for Econometric Research, revised 29 Aug 2011.
    388. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    389. Jacod, Jean & Li, Yingying & Zheng, Xinghua, 2019. "Estimating the integrated volatility with tick observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 80-100.
    390. Luwen Zhang & Li Wang, 2023. "Generalized Method of Moments Estimation of Realized Stochastic Volatility Model," JRFM, MDPI, vol. 16(8), pages 1-12, August.
    391. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," Working Papers hal-04141868, HAL.
    392. Lidan Grossmass, 2014. "Obtaining and Predicting the Bounds of Realized Correlations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 191-226, September.
    393. Tommaso Mariotti & Fabrizio Lillo & Giacomo Toscano, 2022. "From Zero-Intelligence to Queue-Reactive: Limit Order Book modeling for high-frequency volatility estimation and optimal execution," Papers 2202.12137, arXiv.org, revised Sep 2022.
    394. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    395. LAURENT, Sébastien & VIOLANTE, Francesco, 2012. "Volatility forecasts evaluation and comparison," LIDAM Reprints CORE 2414, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    396. Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
    397. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
    398. Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
    399. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    400. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    401. Chen Tong & Peter Reinhard Hansen & Zhuo Huang, 2021. "Option Pricing with State-dependent Pricing Kernel," Papers 2112.05308, arXiv.org, revised Apr 2022.
    402. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
    403. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    404. Madalina-Gabriela Anghel & Constantin Anghelache & Stefan Virgil Iacob, 2022. "Theoretical Elements Regarding The Management Of A Dynamic Portfolio," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 91-96, February.
    405. Selma Chaker & Nour Meddahi, 2013. "A Distributional Approach to Realized Volatility," Staff Working Papers 13-49, Bank of Canada.
    406. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2011. "Modeling microstructure noise with mutually exciting point processes," Papers 1101.3422, arXiv.org.
    407. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    408. Dimitrios I. Vortelinos, 2015. "Out‐of‐sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini‐futures markets," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 58-67, November.
    409. Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
    410. Malec, Peter & Schienle, Melanie, 2012. "Nonparametric Kernel density estimation near the boundary," SFB 649 Discussion Papers 2012-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    411. Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84, pages 1613-1633, July.
    412. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
    413. Matthieu Garcin, 2019. "Fractal analysis of the multifractality of foreign exchange rates [Analyse fractale de la multifractalité des taux de change]," Working Papers hal-02283915, HAL.
    414. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    415. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    416. Fabrizio Cipollini & Giampiero M Gallo & Alessandro Palandri, 2020. "Realized Variance Modeling: Decoupling Forecasting from Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 532-555.
    417. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    418. Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
    419. Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
    420. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    421. Yingying Li & Zhiyuan Zhang & Xinghua Zheng, 2013. "Volatility Inference in the Presence of Both Endogenous Time and Microstructure Noise," Papers 1303.5809, arXiv.org.
    422. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    423. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    424. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    425. Kunitomo, Naoto & Sato, Seisho, 2011. "The SIML estimation of realized volatility of the Nikkei-225 Futures and hedging coefficient with micro-market noise," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1272-1289.
    426. Adam D. Bull, 2013. "Estimating time-changes in noisy L\'evy models," Papers 1312.5911, arXiv.org, revised Nov 2014.
    427. Prateek Sharma & Swati Sharma, 2015. "Forecasting gains of robust realized variance estimators: evidence from European stock markets," Economics Bulletin, AccessEcon, vol. 35(1), pages 61-69.
    428. Jean Jacod, 2019. "Estimation of volatility in a high-frequency setting: a short review," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 351-385, December.
    429. Hao Liu & Shihan Shen & Tianyi Wang & Zhuo Huang, 2016. "Revisiting the risk-return relation in the Chinese stock market: Decomposition of risk premium and volatility feedback effect," China Economic Journal, Taylor & Francis Journals, vol. 9(2), pages 140-153, May.
    430. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    431. E. Otranto, 2024. "A Vector Multiplicative Error Model with Spillover Effects and Co-movements," Working Paper CRENoS 202404, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    432. Wu, Liuren, 2011. "Variance dynamics: Joint evidence from options and high-frequency returns," Journal of Econometrics, Elsevier, vol. 160(1), pages 280-287, January.
    433. Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
    434. Barunik, Jozef & Barunikova, Michaela, 2015. "Revisiting the long memory dynamics of implied-realized volatility relation: A new evidence from wavelet band spectrum regression," FinMaP-Working Papers 43, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    435. Venter, J.H. & de Jongh, P.J., 2014. "Extended stochastic volatility models incorporating realised measures," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 687-707.
    436. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    437. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    438. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki & 渡部, 渡部, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    439. Masato Ubukata & Toshiaki Watanabe, 2011. "Pricing Nikkei 225 Options Using Realized Volatility," IMES Discussion Paper Series 11-E-18, Institute for Monetary and Economic Studies, Bank of Japan.
    440. Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017. "Edgeworth expansion for the pre-averaging estimator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
    441. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2005. "Edgeworth Expansions for Realized Volatility and Related Estimators," NBER Technical Working Papers 0319, National Bureau of Economic Research, Inc.
    442. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    443. Becker, Janis & Leschinski, Christian, 2018. "The Bias of Realized Volatility," Hannover Economic Papers (HEP) dp-642, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    444. Zhang, Hongwei & Demirer, Riza & Huang, Jianbai & Huang, Wanjun & Tahir Suleman, Muhammad, 2021. "Economic policy uncertainty and gold return dynamics: Evidence from high-frequency data," Resources Policy, Elsevier, vol. 72(C).
    445. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    446. Gustavo Fruet Dias & Cristina M. Scherrer & Fotis Papailias, 2016. "Volatility Discovery," CREATES Research Papers 2016-07, Department of Economics and Business Economics, Aarhus University.
    447. Okou, Cédric & Jacquier, Éric, 2016. "Horizon effect in the term structure of long-run risk-return trade-offs," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 445-466.
    448. Tim Bollerslev & Viktor Todorov, 2010. "Estimation of Jump Tails," CREATES Research Papers 2010-16, Department of Economics and Business Economics, Aarhus University.
    449. Markus Reiss, 2010. "Asymptotic equivalence and sufficiency for volatility estimation under microstructure noise," Papers 1001.3006, arXiv.org.
    450. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    451. Ngo Hoang-Long & Ogawa Shigeyoshi, 2009. "A central limit theorem for the functional estimation of the spot volatility," Monte Carlo Methods and Applications, De Gruyter, vol. 15(4), pages 353-380, January.
    452. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    453. Masazumi Hattori & Andreas Schrimpf & Vladyslav Sushko, 2016. "The Response of Tail Risk Perceptions to Unconventional Monetary Policy," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(2), pages 111-136, April.
    454. Hiroumi Misaki & Naoto Kunitomo, 2013. "On Robust Properties of the SIML Estimation of Volatility under Micro-market noise and Random Sampling," CIRJE F-Series CIRJE-F-892, CIRJE, Faculty of Economics, University of Tokyo.
    455. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    456. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    457. Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
    458. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    459. Dinghai Xu, 2020. "Canadian Stock Market Volatility under COVID-19," Working Papers 2001, University of Waterloo, Department of Economics, revised May 2020.
    460. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    461. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    462. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    463. Yves Dominicy & Harry-Paul Vander Elst, 2015. "Macro-Driven VaR Forecasts: From Very High to Very Low Frequency Data," Working Papers ECARES ECARES 2015-41, ULB -- Universite Libre de Bruxelles.
    464. Li, Z. M. & Laeven, R. J. A. & Vellekoop, M. H., 2019. "Dependent Microstructure Noise and Integrated Volatility: Estimation from High-Frequency Data," Cambridge Working Papers in Economics 1952, Faculty of Economics, University of Cambridge.
    465. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    466. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," NBER Working Papers 13449, National Bureau of Economic Research, Inc.
    467. Donggyu Kim & Minseog Oh & Yazhen Wang, 2022. "Conditional quantile analysis for realized GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 640-665, July.
    468. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    469. Naoto Kunitomo & Seisho Sato, 2008. "Separating Information Maximum Likelihood Estimation of Realized Volatility and Covariance with Micro-Market Noise," CIRJE F-Series CIRJE-F-581, CIRJE, Faculty of Economics, University of Tokyo.
    470. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    471. Silja Kinnebrock & Mark Podolskij, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," OFRC Working Papers Series 2007fe03, Oxford Financial Research Centre.
    472. Naoto Kunitomo & Seisho Sato, 2008. "Realized Volatility, Covariance and Hedging Coefficient of the Nikkei-225 Futures with Micro-Market Noise," CIRJE F-Series CIRJE-F-601, CIRJE, Faculty of Economics, University of Tokyo.
    473. Allen, David E. & McAleer, Michael & Scharth, Marcel, 2011. "Monte Carlo option pricing with asymmetric realized volatility dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1247-1256.
    474. G.M. Gallo & D. Lacava & E. Otranto, 2020. "Measuring the Effects of Unconventional Policies on Stock Market Volatility," Working Paper CRENoS 202006, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    475. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.
    476. Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
    477. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    478. Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
    479. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    480. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    481. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    482. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    483. Jacod, Jean & Mykland, Per A., 2015. "Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2910-2936.
    484. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    485. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," EconomiX Working Papers 2019-19, University of Paris Nanterre, EconomiX.
    486. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    487. Mihaela Craioveanu & Eric Hillebrand, 2012. "Level changes in volatility models," Annals of Finance, Springer, vol. 8(2), pages 277-308, May.
    488. Yinfen Tang & Tao Su & Zhiyuan Zhang, 2022. "Distribution-free specification test for volatility function based on high-frequency data with microstructure noise," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 977-1022, November.
    489. Hiroyuki Kawakatsu, 2021. "Information in daily data volatility measurements," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1642-1656, April.
    490. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    491. Julien Chevallier, 2021. "Covid-19 Pandemic and Financial Contagion," Working Papers 2021-001, Department of Research, Ipag Business School.
    492. Masato Ubukata, 2010. "Large-scale portfolios using realized covariance matrix: evidence from the Japanese stock market," Economics Bulletin, AccessEcon, vol. 30(4), pages 2906-2919.
    493. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
    494. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
    495. Shin S. Ikeda, 2013. "A Note on the Mixingale Limit Theorem by McLeish (1977)," GRIPS Discussion Papers 13-11, National Graduate Institute for Policy Studies.
    496. Guido Russi, 2012. "Estimating the Leverage Effect Using High Frequency Data," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 1-24, February.
    497. Zu, Yang & Boswijk, H. Peter, 2017. "Consistent nonparametric specification tests for stochastic volatility models based on the return distribution," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 53-75.
    498. Jozef Barunik & Michaela Barunikova, 2012. "Revisiting the fractional cointegrating dynamics of implied-realized volatility relation with wavelet band spectrum regression," Papers 1208.4831, arXiv.org, revised Feb 2013.
    499. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    500. Ziegel, Johanna F. & Krueger, Fabian & Jordan, Alexander & Fasciati, Fernando, 2017. "Murphy Diagrams: Forecast Evaluation of Expected Shortfall," Working Papers 0632, University of Heidelberg, Department of Economics.
    501. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    502. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Janeway Institute Working Papers 2423, Faculty of Economics, University of Cambridge.
    503. Rui Da & Dacheng Xiu, 2021. "When Moving‐Average Models Meet High‐Frequency Data: Uniform Inference on Volatility," Econometrica, Econometric Society, vol. 89(6), pages 2787-2825, November.
    504. Markus Bibinger, 2024. "Probabilistic models and statistics for electronic financial markets in the digital age," Papers 2406.07388, arXiv.org.
    505. Ping, Yuan & Li, Rui, 2018. "Forecasting realized volatility based on the truncated two-scales realized volatility estimator (TTSRV): Evidence from China's stock market," Finance Research Letters, Elsevier, vol. 25(C), pages 222-229.
    506. Zhang, Congshan & Li, Jia & Bollerslev, Tim, 2022. "Occupation density estimation for noisy high-frequency data," Journal of Econometrics, Elsevier, vol. 227(1), pages 189-211.
    507. Tian, Shuairu & Hamori, Shigeyuki, 2015. "Modeling interest rate volatility: A Realized GARCH approach," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 158-171.
    508. Ciciretti, Vito & Bucci, Andrea, 2023. "Building optimal regime-switching portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    509. Manabu Asai, 2023. "Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter," Econometrics, MDPI, vol. 11(3), pages 1-14, July.
    510. Pelger, Markus, 2019. "Large-dimensional factor modeling based on high-frequency observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 23-42.
    511. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    512. Jian Chen & Michael P Clements & Andrew Urquhart, 2024. "Modeling Price and Variance Jump Clustering Using the Marked Hawkes Process," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 743-772.
    513. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2018. "News and expected returns in East Asian equity markets: The RV-GARCHM model," Journal of Asian Economics, Elsevier, vol. 57(C), pages 36-52.
    514. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    515. Kim Christensen & Roel Oomen & Roberto Renò, 2018. "The drift burst hypothesis," CREATES Research Papers 2018-21, Department of Economics and Business Economics, Aarhus University.
    516. Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
    517. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    518. Zu, Y., 2015. "Consistent nonparametric specification tests for stochastic volatility models based on the return distribution," Working Papers 15/02, Department of Economics, City University London.
    519. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    520. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    521. Kim Christensen & Roel Oomen & Roberto Renò, 2016. "The Drift Burst Hypothesis," CREATES Research Papers 2016-28, Department of Economics and Business Economics, Aarhus University.
    522. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility Regressions with Fat Tails," TSE Working Papers 20-1097, Toulouse School of Economics (TSE).
    523. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
    524. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    525. Giampiero M. Gallo & Edoardo Otranto, 2012. "Realized Volatility and Change of Regimes," Econometrics Working Papers Archive 2012_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.
    526. Liang-Ching Lin & Sangyeol Lee & Meihui Guo, 2014. "The Bickel–Rosenblatt test for continuous time stochastic volatility models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 195-218, March.
    527. Donggyu Kim, 2016. "Statistical Inference for Unified Garch–Itô Models with High-Frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 513-532, July.
    528. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    529. Ting Ting Chen & Tetsuya Takaishi, 2013. "Empirical Study of the GARCH model with Rational Errors," Papers 1312.7057, arXiv.org.
    530. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    531. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    532. Chao Liang & Yi Zhang & Yaojie Zhang, 2022. "Forecasting the volatility of the German stock market: New evidence," Applied Economics, Taylor & Francis Journals, vol. 54(9), pages 1055-1070, February.
    533. Mădălina-Gabriela ANGHEL & Ștefan Virgil IACOB & Gabriel-Ștefan DUMBRAVĂ & Marius POPOVICI, 2019. "Dynamic models used in analysis capital and population," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 149-162, Winter.
    534. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Feb 2017.
    535. Tong Fang & Deyu Miao & Zhi Su & Libo Yin, 2023. "Uncertainty‐driven oil volatility risk premium and international stock market volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 872-904, July.
    536. Ke Yang & Nan Hu & Fengping Tian, 2024. "Forecasting Crude Oil Volatility Using the Deep Learning‐Based Hybrid Models With Common Factors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1429-1446, August.
    537. Dimpfl, Thomas & Schweikert, Karsten, 2023. "Information shares for markets with partially overlapping trading hours," Journal of Banking & Finance, Elsevier, vol. 154(C).
    538. Naoto Kunitomo & Seisho Sato, 2010. "On Properties of Separating Information Maximum Likelihood Estimation of Realized Volatility and Covariance with Micro-Market Noise," CARF F-Series CARF-F-228, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    539. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    540. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    541. E. Otranto, 2015. "Adding Flexibility to Markov Switching Models," Working Paper CRENoS 201509, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    542. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    543. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
    544. Qiang Liu & Zhi Liu, 2022. "Estimating spot volatility under infinite variation jumps with dependent market microstructure noise," Papers 2205.15738, arXiv.org, revised Feb 2023.
    545. Vetter, Mathias, 2014. "Inference on the Lévy measure in case of noisy observations," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 125-133.
    546. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    547. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    548. Kong, Xin-Bing & Liu, Cheng, 2018. "Testing against constant factor loading matrix with large panel high-frequency data," Journal of Econometrics, Elsevier, vol. 204(2), pages 301-319.
    549. Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
    550. Elena Ivona Dumitrescu & Peter Hansen, 2020. "How Should Parameter Estimation Be Tailored to the Objective?," Post-Print hal-03331109, HAL.
    551. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    552. Kalnina, Ilze & Linton, Oliver, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.
    553. Curato, Imma Valentina & Mancino, Maria Elvira & Recchioni, Maria Cristina, 2018. "Spot volatility estimation using the Laplace transform," Econometrics and Statistics, Elsevier, vol. 6(C), pages 22-43.
    554. E. Otranto, 2012. "Spillover Effects in the Volatility of Financial Markets," Working Paper CRENoS 201217, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    555. Xie, Haibin & Yu, Chengtan, 2020. "Realized GARCH models: Simpler is better," Finance Research Letters, Elsevier, vol. 33(C).
    556. Taro Kanatani, 2007. "Finite Sample Analysis of Weighted Realized Covariance with Noisy Asynchronous Observations," KIER Working Papers 634, Kyoto University, Institute of Economic Research.
    557. Bibinger, Markus & Vetter, Mathias, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers 2013-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    558. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    559. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
    560. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    561. Ghysels, Eric, 2014. "Factor Analysis with Large Panels of Volatility Proxies," CEPR Discussion Papers 10034, C.E.P.R. Discussion Papers.
    562. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    563. Asuka Takeuchi-Nogimori, 2012. "An Empirical Analysis of the Nikkei 225 Put Options Using Realized GARCH Models," Global COE Hi-Stat Discussion Paper Series gd12-241, Institute of Economic Research, Hitotsubashi University.
    564. Seisho Sato & Naoto Kunitomo, 2015. "A Robust Estimation of Integrated Volatility under Round-off Errors, Micro-market Price Adjustments and Noises," CIRJE F-Series CIRJE-F-964, CIRJE, Faculty of Economics, University of Tokyo.
    565. Xin-Bing Kong, 2017. "On the number of common factors with high-frequency data," Biometrika, Biometrika Trust, vol. 104(2), pages 397-410.
    566. Curato, Imma Valentina, 2019. "Estimation of the stochastic leverage effect using the Fourier transform method," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3207-3238.
    567. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    568. Jiawen Luo & Qun Zhang, 2024. "Air pollution, weather factors, and realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 151-217, February.
    569. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    570. Jihyun Kim & Nour Meddahi, 2020. "Volatility Regressions with Fat Tails," Post-Print hal-03142647, HAL.
    571. Cui, Wenhao & Hu, Jie & Wang, Jiandong, 2024. "Nonparametric estimation for high-frequency data incorporating trading information," Journal of Econometrics, Elsevier, vol. 240(1).
    572. Bibinger, Markus, 2011. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," SFB 649 Discussion Papers 2011-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    573. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    574. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    575. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    576. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    577. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    578. Masato Ubukata & Kosuke Oya, 2008. "A Test for Dependence and Covariance Estimator of Market Microstructure Noise," Discussion Papers in Economics and Business 07-03-Rev.2, Osaka University, Graduate School of Economics.
    579. Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
    580. Roland Füss & Ferdinand Mager & Michael Stein & Lu Zhao, 2018. "Financial crises, price discovery, and information transmission: a high-frequency perspective," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(4), pages 333-365, November.
    581. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    582. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
    583. Jan Novotn?? & Jan Hanousek & Ev??en Ko??enda, 2013. "Price Jump Indicators: Stock Market Empirics During the Crisis," William Davidson Institute Working Papers Series wp1050, William Davidson Institute at the University of Michigan.
    584. Todorova, Neda & Souček, Michael, 2014. "Overnight information flow and realized volatility forecasting," Finance Research Letters, Elsevier, vol. 11(4), pages 420-428.
    585. Qu, Hui & Li, Guo, 2023. "Multi-perspective investor attention and oil futures volatility forecasting," Energy Economics, Elsevier, vol. 119(C).
    586. Didit Budi Nugroho & Takayuki Morimoto, 2019. "Incorporating Realized Quarticity into a Realized Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 495-528, December.
    587. Wu, Xinyu & Zhao, An & Liu, Li, 2023. "Forecasting VIX using two-component realized EGARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    588. Wei Wei & Denis Pelletier, 2015. "A Jump-Diffusion Model with Stochastic Volatility and Durations," CREATES Research Papers 2015-34, Department of Economics and Business Economics, Aarhus University.
    589. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    590. Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
    591. Flavia Barsotti & Simona Sanfelici, 2016. "Market Microstructure Effects on Firm Default Risk Evaluation," Econometrics, MDPI, vol. 4(3), pages 1-31, July.
    592. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    593. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
    594. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    595. Naoto Kunitomo & Seisho Sato, 2010. "On Properties of Separating Information Maximum Likelihood Estimation of Realized Volatility and Covariance with Micro-Market Noise," CIRJE F-Series CIRJE-F-758, CIRJE, Faculty of Economics, University of Tokyo.
    596. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    597. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    598. Vít Bubák & Filip Žikeš, 2009. "Distribution and Dynamics of Central-European Exchange Rates: Evidence from Intraday Data," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(4), pages 334-359, Oktober.
    599. Su, Fei & Zhang, Jingjing, 2018. "Global price discovery in the Australian dollar market and its determinants," Pacific-Basin Finance Journal, Elsevier, vol. 48(C), pages 35-55.
    600. Bachmair, K., 2023. "The Effects of the LIBOR Scandal on Volatility and Liquidity in LIBOR Futures Markets," Cambridge Working Papers in Economics 2303, Faculty of Economics, University of Cambridge.
    601. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    602. Peter Christensen, 2024. "Roughness Signature Functions," Papers 2401.02819, arXiv.org.
    603. Schmidt, Anatoly B., 2009. "Detrending the realized volatility in the global FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1887-1892.
    604. Ysusi Carla, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
    605. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
    606. Shen, Yiwen & Shi, Meiqi, 2024. "Intraday variation in cross-sectional stock comovement and impact of index-based strategies," Journal of Financial Markets, Elsevier, vol. 68(C).
    607. Ahoniemi, Katja & Lanne, Markku, 2013. "Overnight stock returns and realized volatility," International Journal of Forecasting, Elsevier, vol. 29(4), pages 592-604.
    608. Wang, Jiazhen & Jiang, Yuexiang & Zhu, Yanjian & Yu, Jing, 2020. "Prediction of volatility based on realized-GARCH-kernel-type models: Evidence from China and the U.S," Economic Modelling, Elsevier, vol. 91(C), pages 428-444.
    609. Yingjie Dong & Yiu-Kuen Tse, 2017. "Business Time Sampling Scheme with Applications to Testing Semi-Martingale Hypothesis and Estimating Integrated Volatility," Econometrics, MDPI, vol. 5(4), pages 1-19, November.
    610. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
    611. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.
    612. Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2019. "Asymptotic results for the Fourier estimator of the integrated quarticity," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 471-502, December.
    613. Antoine Bouveret & Martin Haferkorn & Gaetano Marseglia & Onofrio Panzarino, 2022. "Flash crashes on sovereign bond markets – EU evidence," Mercati, infrastrutture, sistemi di pagamento (Markets, Infrastructures, Payment Systems) 20, Bank of Italy, Directorate General for Markets and Payment System.
    614. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    615. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    616. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    617. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    618. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).
    619. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    620. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    621. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    622. Minxian Yang, 2014. "The Risk Return Relationship: Evidence from Index Return and Realised Variance Series," Discussion Papers 2014-16, School of Economics, The University of New South Wales.
    623. Donggyu Kim, 2021. "Exponential GARCH-Ito Volatility Models," Papers 2111.04267, arXiv.org.
    624. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    625. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    626. Donggyu Kim & Minseog Oh, 2024. "Dynamic Realized Minimum Variance Portfolio Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
    627. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    628. Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
    629. Jos'e E. Figueroa-L'opez & Cheng Li, 2016. "Optimal Kernel Estimation of Spot Volatility of Stochastic Differential Equations," Papers 1612.04507, arXiv.org.
    630. Qianli Zhao & Chao Wang & Richard Gerlach & Giuseppe Storti & Lingxiang Zhang, 2024. "Autoencoder Enhanced Realised GARCH on Volatility Forecasting," Papers 2411.17136, arXiv.org.
    631. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.
    632. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    633. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.
    634. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    635. Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
    636. Lidan He & Qiang Liu & Zhi Liu & Andrea Bucci, 2024. "Correcting spot power variation estimator via Edgeworth expansion," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 921-945, November.
    637. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    638. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.
    639. Avouyi-Dovi, S. & Idier, J., 2010. "Central bank liquidity and market liquidity: the role of collateral provision on the French government debt securities market," Working papers 278, Banque de France.
    640. Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "Roughness in spot variance? A GMM approach for estimation of fractional log-normal stochastic volatility models using realized measures," CREATES Research Papers 2020-12, Department of Economics and Business Economics, Aarhus University.
    641. Constantin Anghelache & Madalina-Gabriela Anghel & Stefan Virgil Iacob, 2021. "Statistical-Econometric Methods For Risk Diversification," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 157-163, October.
    642. Sung Hoon Choi & Donggyu Kim, 2024. "Cubic-based Prediction Approach for Large Volatility Matrix using High-Frequency Financial Data," Papers 2412.04293, arXiv.org.
    643. Baltussen, Guido & Da, Zhi & Lammers, Sten & Martens, Martin, 2021. "Hedging demand and market intraday momentum," Journal of Financial Economics, Elsevier, vol. 142(1), pages 377-403.
    644. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
    645. Silvia Goncalves & Nour Meddahi, 2008. "Edgeworth Corrections for Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 139-162.
    646. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    647. Yang, Minxian, 2019. "The risk return relationship: Evidence from index returns and realised variances," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.

  23. Frédérique Bec & Anders Rahbek & Neil Shephard, 2005. "The Autoregressive Conditional Root (ACR) Model," Working Papers 2005-26, Center for Research in Economics and Statistics.

    Cited by:

    1. Frédérique Bec & Songlin Zeng, 2013. "Are Southeast Asian Real Exchange Rates Mean Reverting?," Post-Print hal-02979368, HAL.
    2. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    3. Frédérique Bec & Alain Guay & Emmanuel Guerre, 2002. "Adaptive Consistent Unit Root Tests Based on Autoregressive Threshold Model," Working Papers 2002-46, Center for Research in Economics and Statistics.

  24. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Eric Hillebrand & Gunther Schnabl & Yasemin Ulu, 2006. "Japanese Foreign Exchange Intervention and the Yen/Dollar Exchange Rate: A Simultaneous Equations Approach Using Realized Volatility," CESifo Working Paper Series 1766, CESifo.
    2. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    3. Kilian, Lutz & Gonçalves, Sílvia, 2002. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Discussion Paper Series 1: Economic Studies 2002,26, Deutsche Bundesbank.
    4. Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2006. "On the Sensitivity of Firms' Investment to Cash Flow and Uncertainty," Boston College Working Papers in Economics 638, Boston College Department of Economics, revised 26 Apr 2008.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    6. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    7. Kiyohiko G. Nishimura & Fukujyu Yamazaki & Takako Idee & Toshiaki Watanabe, 1999. "Distortionary Taxation, Excessive Price Sensitivity, and Japanese Land Prices," NBER Working Papers 7254, National Bureau of Economic Research, Inc.
    8. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    9. Pitt, M.K. & Walker, S.G., 2001. "Construction of Stationary Time Series via the Giggs Sampler with Application to Volatility Models," The Warwick Economics Research Paper Series (TWERPS) 595, University of Warwick, Department of Economics.
    10. He, Changli & Teräsvirta, Timo, 1997. "Properties of Moments of a Family of GARCH Processes," SSE/EFI Working Paper Series in Economics and Finance 198, Stockholm School of Economics.
    11. Pesaran, M. Hashem & Zaffaroni, Paolo, 2005. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi-Asset Volatility Models for Risk Management," CEPR Discussion Papers 5279, C.E.P.R. Discussion Papers.
    12. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    14. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    15. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    16. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    17. Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
    18. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    19. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
    20. Fred Espen Benth & Jurate Saltyte-Benth, 2005. "Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 53-85.
    21. John M. Maheu & Thomas McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
    22. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    23. H. Peter Boswijk, 2001. "Testing for a Unit Root with Near-Integrated Volatility," Tinbergen Institute Discussion Papers 01-077/4, Tinbergen Institute.
    24. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    25. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    26. Jurgen A. Doornik & Marius Ooms, 2003. "Multimodality in the GARCH Regression Model," Economics Papers 2003-W20, Economics Group, Nuffield College, University of Oxford.
    27. Marco Del Negro, 2003. "Discussion of Cogley and Sargent's \"Drifts and volatilities: Monetary policies and outcomes in the post WWII U.S.\"," FRB Atlanta Working Paper 2003-26, Federal Reserve Bank of Atlanta.
    28. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.
    29. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
    30. Carnero, María Ángeles, 2003. "Detecting level shifts in the presence of conditional heteroscedasticity," DES - Working Papers. Statistics and Econometrics. WS ws036313, Universidad Carlos III de Madrid. Departamento de Estadística.
    31. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
    32. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
    33. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    34. Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
    35. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
    36. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    37. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    38. Robert Tompkins, 2001. "Implied volatility surfaces: uncovering regularities for options on financial futures," The European Journal of Finance, Taylor & Francis Journals, vol. 7(3), pages 198-230.
    39. Jurgen A. Doornik & Marius Ooms, 2005. "Outlier Detection in GARCH Models," Economics Papers 2005-W24, Economics Group, Nuffield College, University of Oxford.
    40. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    41. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    42. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    43. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
    44. François-Éric Racicot & Raymond Théoret & Alain Coën, 2008. "Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 14(1), pages 112-124, February.
    45. Benjamin Y. Zhang & Hao Zhou & Haibin Zhu, 2005. "Explaining credit default swap spreads with the equity volatility and jump risks of individual firms," Finance and Economics Discussion Series 2005-63, Board of Governors of the Federal Reserve System (U.S.).
    46. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    47. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    48. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    49. ANDERSEN, Torben G. & BOLLERSLEV, Tim & MEDDAHI, Nour, 2002. "Correcting the Errors : A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities," Cahiers de recherche 2002-21, Universite de Montreal, Departement de sciences economiques.
    50. Sean D. Campbell & Canlin Li, 2004. "Alternative estimates of the presidential premium," Finance and Economics Discussion Series 2004-69, Board of Governors of the Federal Reserve System (U.S.).
    51. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    52. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
    53. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    54. Borkowski, Bolesław & Krawiec, Monika & Shachmurove, Yochanan, 2013. "Impact of volatility estimation method on theoretical option values," Global Finance Journal, Elsevier, vol. 24(2), pages 119-128.
    55. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    56. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    57. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    58. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    59. Jurgen A. Doornik and Marius Ooms, 2001. "Multimodality and the GARCH Likelihood," Computing in Economics and Finance 2001 76, Society for Computational Economics.
    60. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    61. Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
    62. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    63. David Heath & Eckhard Platen, 2004. "Understanding the Implied Volatility Surface for Options on a Diversified Index," Research Paper Series 128, Quantitative Finance Research Centre, University of Technology, Sydney.
    64. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.
    65. Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    66. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
    67. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    68. Offer Lieberman & Peter Phillips, 2008. "Refined Inference on Long Memory in Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
    69. John W. Galbraith & Victoria Zinde-Walsh, 2001. "Properties of Estimates of Daily GARCH Parameters Basaed on Intra-Day Observations," CIRANO Working Papers 2001s-15, CIRANO.
    70. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    71. Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1995. "Models and Priors for Multivariate Stochastic Volatility," CIRANO Working Papers 95s-18, CIRANO.
    72. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    73. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    74. Scott I. White & Adam E. Clements & Stan Hurn, 2004. "Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility," Econometric Society 2004 Australasian Meetings 46, Econometric Society.
    75. Elisa Alòs & Jorge A. León & Josep Vives, 2006. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Economics Working Papers 968, Department of Economics and Business, Universitat Pompeu Fabra.
    76. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    77. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    78. Charles S. Bos & Ronald J. Mahieu & Herman K. van Dijk, 2000. "Daily Exchange Rate Behaviour and Hedging of Currency Risk," Econometric Society World Congress 2000 Contributed Papers 0504, Econometric Society.
    79. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    80. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    81. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    82. Busettti, F. & Harvey, A., 2007. "Tests of time-invariance," Cambridge Working Papers in Economics 0701, Faculty of Economics, University of Cambridge.
    83. Abramov, Vyacheslav & Klebaner, Fima, 2006. "Forecasting and testing a non-constant volatility," MPRA Paper 207, University Library of Munich, Germany.
    84. Lennart F. Hoogerheide & Johan F. Kaashoek, 2004. "Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling," Computing in Economics and Finance 2004 74, Society for Computational Economics.
    85. Timothy Cogley, 2005. "Changing Beliefs and the Term Structure of Interest Rates: Cross-Equation Restrictions with Drifting Parameters," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 420-451, April.
    86. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Power Variation and Time Change," Economics Papers 2002-W24, Economics Group, Nuffield College, University of Oxford.
    87. Mikkelsen, Peter, 2001. "MCMC Based Estimation of Term Structure Models," Finance Working Papers 01-7, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    88. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
    89. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.
    90. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    91. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    92. Boleslaw Borkowski & Monika Krawiec & Yochanan Shachmurove, 2013. "Modeling and Estimating Volatility of Options on Standard & Poor’s 500 Index," PIER Working Paper Archive 13-015, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    93. Pascale VALERY (HEC-Montreal) & Jean-Marie Dufour (University of Montreal), 2004. "A simple estimation method and finite-sample inference for a stochastic volatility model," Econometric Society 2004 North American Summer Meetings 153, Econometric Society.
    94. Joshua Rosenberg & Robert F. Engle, 2000. "Empirical Pricing Kernels," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-014, New York University, Leonard N. Stern School of Business-.
    95. Haselmann, Rainer & Helmut, Herwartz, 2005. "The Introduction of the Euro and its Effects on Investment Decisions," Economics Working Papers 2005-15, Christian-Albrechts-University of Kiel, Department of Economics.
    96. Francis X. Diebold & Til Schuermann, 1996. "Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models," NBER Technical Working Papers 0194, National Bureau of Economic Research, Inc.
    97. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    98. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    99. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
    100. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, University Library of Munich, Germany.
    101. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
    102. Veiga, Helena, 2006. "Modelling long-memory volatilities with leverage effect: ALMSV versus FIEGARCH," DES - Working Papers. Statistics and Econometrics. WS ws066016, Universidad Carlos III de Madrid. Departamento de Estadística.
    103. DeRossi, G. & Harvey, A., 2006. "Time-Varying Quantiles," Cambridge Working Papers in Economics 0649, Faculty of Economics, University of Cambridge.
    104. Willa Chen & Rohit Deo, 2005. "The Variance Ratio Statistic at large Horizons," Econometrics 0501003, University Library of Munich, Germany.
    105. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    106. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    107. Yacine Ait-Sahalia & Per A. Mykland, 2003. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," NBER Working Papers 9611, National Bureau of Economic Research, Inc.
    108. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    109. Daniel B. Nelson, 1994. "Asymptotically Optimal Smoothing with ARCH Models," NBER Technical Working Papers 0161, National Bureau of Economic Research, Inc.
    110. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.
    111. B. Jungbacker & S.J. Koopman, 2005. "Model-based Measurement of Actual Volatility in High-Frequency Data," Tinbergen Institute Discussion Papers 05-002/4, Tinbergen Institute.
    112. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    113. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    114. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    115. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    116. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.
    117. Michael K. Pitt & Neil Shephard, 1999. "Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 63-85, January.
    118. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," Economics Papers 2004-W20, Economics Group, Nuffield College, University of Oxford.
    119. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    120. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    121. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    122. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," OFRC Working Papers Series 2004fe20, Oxford Financial Research Centre.
    123. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    124. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    125. Peter C.B. Phillips & Jun Yu, 2005. "A Two-Stage Realized Volatility Approach to the Estimation for Diffusion Processes from Discrete Observations," Cowles Foundation Discussion Papers 1523, Cowles Foundation for Research in Economics, Yale University.
    126. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    127. GARCIA, René & RENAULT, Éric, 2000. "Latent Variable Models for Stochastic Discount Factors," Cahiers de recherche 2000-01, Universite de Montreal, Departement de sciences economiques.
    128. Enrique Sentana & Giorgio Calzolari & Gabriele Fiorentini, 2004. "Indirect Estimation of Conditionally Heteroskedastic Factor Models," Working Papers wp2004_0409, CEMFI.
    129. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations," Stan Hurn Discussion Papers 2006, School of Economics and Finance, Queensland University of Technology.
    130. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    131. Yoon-Jin Lee & Yongmiao Hong, 2004. "Specification Testing for Multivariate Time Series Volatility Models," Econometric Society 2004 Far Eastern Meetings 696, Econometric Society.
    132. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    133. Mora Galán, Alberto & Pérez, Ana, 2004. "Stochastic volatility models and the Taylor effect," DES - Working Papers. Statistics and Econometrics. WS ws046315, Universidad Carlos III de Madrid. Departamento de Estadística.
    134. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    135. Yacine Ait-Sahalia & Robert Kimmel, 2004. "Maximum Likelihood Estimation of Stochastic Volatility Models," NBER Working Papers 10579, National Bureau of Economic Research, Inc.
    136. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    137. Perry Sadorsky, 2005. "Stochastic volatility forecasting and risk management," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 121-135.
    138. Comte, F. & Lacour, C. & Rozenholc, Y., 2010. "Adaptive estimation of the dynamics of a discrete time stochastic volatility model," Journal of Econometrics, Elsevier, vol. 154(1), pages 59-73, January.
    139. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.

  25. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
    2. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
    3. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    6. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    7. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    8. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    9. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    10. Peter C. B. Phillips & Jun Yu, 2006. "A Two-Stage Realized Volatility Approach to Estimation of Diffusion Processes with Discrete," Macroeconomics Working Papers 22472, East Asian Bureau of Economic Research.
    11. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    12. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    14. Mancini, Cecilia, 2008. "Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 869-879, May.
    15. Amorino, Chiara & Gloter, Arnaud, 2020. "Unbiased truncated quadratic variation for volatility estimation in jump diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5888-5939.
    16. Vetter, Mathias, 2010. "Limit theorems for bipower variation of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 22-38, January.
    17. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    18. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    19. George Tauchen & Viktor Todorov, 2010. "Activity Signature Functions for High-Frequency Data Analysis," Working Papers 10-08, Duke University, Department of Economics.
    20. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    21. Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2017. "Empirical likelihood for high frequency data," STICERD - Econometrics Paper Series 591, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    22. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    23. Dovonon, Prosper & Goncalves, Silvia & Hounyo, Ulrich & Meddahi, Nour, 2017. "Bootstrapping high-frequency jump tests," IDEI Working Papers 870, Institut d'Économie Industrielle (IDEI), Toulouse.
    24. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.
    25. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    26. Chao YU & Xujie ZHAO, 2021. "Measuring the Jump Risk Contribution under Market Microstructure Noise – Evidence from Chinese Stock Market," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 32-47, December.
    27. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    28. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2011. "A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation," NBER Working Papers 17152, National Bureau of Economic Research, Inc.
    29. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    30. Phillips, Peter C.B. & Yu, Jun, 2009. "A two-stage realized volatility approach to estimation of diffusion processes with discrete data," Journal of Econometrics, Elsevier, vol. 150(2), pages 139-150, June.
    31. Mark Podolskij & Mathias Vetter, 2009. "Understanding limit theorems for semimartingales: a short survey," CREATES Research Papers 2009-47, Department of Economics and Business Economics, Aarhus University.
    32. Diep Duong & Norman R. Swanson, 2011. "Empirical Evidence on Jumps and Large Fluctuations in Individual Stocks," Departmental Working Papers 201116, Rutgers University, Department of Economics.
    33. Gabriel P. Mathy, 2014. "Uncertainty Shocks and Equity Return Jumps and Volatility During the Great Depression," Working Papers 2014-02, American University, Department of Economics.
    34. I. Gaia Becheri & Feike C. Drost & Bas J.M. Werker, 2016. "Asymptotic Inference for Jump Diffusions with State-Dependent Intensity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 520-542, June.
    35. Ysusi Carla, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
    36. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    37. Lee, Suzanne S. & Hannig, Jan, 2010. "Detecting jumps from Lévy jump diffusion processes," Journal of Financial Economics, Elsevier, vol. 96(2), pages 271-290, May.
    38. Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," Finance and Economics Discussion Series 2010-45, Board of Governors of the Federal Reserve System (U.S.).
    39. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    40. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    41. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2018. "Statistical inferences for price staleness," SAFE Working Paper Series 236, Leibniz Institute for Financial Research SAFE.
    42. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    43. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    44. Dong, Yingjie & Huang, Wenxin & Tse, Yiu-Kuen, 2023. "Price comovement and market segmentation of Chinese A- and H-shares: Evidence from a panel latent-factor model," Journal of International Money and Finance, Elsevier, vol. 131(C).
    45. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij & Jeannette H.C. Woerner, 2008. "Bipower variation for Gaussian processes with stationary increments," CREATES Research Papers 2008-21, Department of Economics and Business Economics, Aarhus University.
    46. Patrick Chang, 2020. "Fourier instantaneous estimators and the Epps effect," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-24, September.
    47. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    48. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    49. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    50. Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," International Finance Discussion Papers 1005, Board of Governors of the Federal Reserve System (U.S.).
    51. Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
    52. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2014. "A Robust Neighborhood Truncation Approach To Estimation Of Integrated Quarticity," Econometric Theory, Cambridge University Press, vol. 30(1), pages 3-59, February.
    53. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    54. Cuchiero, Christa & Teichmann, Josef, 2015. "Fourier transform methods for pathwise covariance estimation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 116-160.
    55. Clément, Emmanuelle & Gloter, Arnaud, 2011. "Limit theorems in the Fourier transform method for the estimation of multivariate volatility," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1097-1124, May.
    56. Figueroa-López, José E. & Mancini, Cecilia, 2019. "Optimum thresholding using mean and conditional mean squared error," Journal of Econometrics, Elsevier, vol. 208(1), pages 179-210.
    57. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    58. Jean Jacod, 2019. "Estimation of volatility in a high-frequency setting: a short review," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 351-385, December.
    59. Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.
    60. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    61. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    62. Liu, Guangying & Zhang, Xinsheng, 2011. "Power variation of fractional integral processes with jumps," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 962-972, August.
    63. Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.
    64. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    65. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    66. Omura, Akihiro & Li, Bin & Chung, Richard & Todorova, Neda, 2018. "Convenience yield, realised volatility and jumps: Evidence from non-ferrous metals," Economic Modelling, Elsevier, vol. 70(C), pages 496-510.
    67. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
    68. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    69. Corradi, Valentina & Silvapulle, Mervyn J. & Swanson, Norman R., 2018. "Testing for jumps and jump intensity path dependence," Journal of Econometrics, Elsevier, vol. 204(2), pages 248-267.
    70. Rama Cont & Cecilia Mancini, 2010. "Nonparametric tests for pathwise properties of semimartingales," Working Papers - Mathematical Economics 2010-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    71. Charles S. Bos & Pawel Janus, 2013. "A Quantile-based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data," Tinbergen Institute Discussion Papers 13-155/III, Tinbergen Institute.
    72. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility Regressions with Fat Tails," TSE Working Papers 20-1097, Toulouse School of Economics (TSE).
    73. Ewald, Christian & Zou, Yihan, 2021. "Stochastic volatility: A tale of co-jumps, non-normality, GMM and high frequency data," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 37-52.
    74. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    75. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    76. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
    77. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    78. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
    79. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    80. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    81. Jihyun Kim & Nour Meddahi, 2020. "Volatility Regressions with Fat Tails," Post-Print hal-03142647, HAL.
    82. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Duration-Based Volatility Estimation," Global COE Hi-Stat Discussion Paper Series gd08-034, Institute of Economic Research, Hitotsubashi University.
    83. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    84. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    85. Yingjie Dong & Yiu-Kuen Tse, 2017. "Business Time Sampling Scheme with Applications to Testing Semi-Martingale Hypothesis and Estimating Integrated Volatility," Econometrics, MDPI, vol. 5(4), pages 1-19, November.
    86. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    87. Vasile George MARICA & Lucian Claudiu ANGHEL, 2015. "Sovereign Default Analysis through Extreme Events Identification," Management Dynamics in the Knowledge Economy, College of Management, National University of Political Studies and Public Administration, vol. 3(2), pages 339-353, June.
    88. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    89. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    90. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.

  26. Neil Shephard & Ole E. Barndorff-Nielsen & Department of Mathematical Sciences & University of Aarhus & Denmark, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Series Working Papers 240, University of Oxford, Department of Economics.

    Cited by:

    1. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    2. Bence Toth & Janos Kertesz, 2009. "The Epps effect revisited," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 793-802.
    3. Peter C. B. Phillips & Jun Yu, 2009. "Information Loss in Volatility Measurement with Flat Price Trading," Global COE Hi-Stat Discussion Paper Series gd08-039, Institute of Economic Research, Hitotsubashi University.
    4. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    5. Xinhong Lu & Ken-Ichi Kawai & Koichi Maekawa, 2010. "Estimating Bivariate Garch-Jump Model Based On High Frequency Data: The Case Of Revaluation Of The Chinese Yuan In July 2005," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(02), pages 287-300.
    6. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    7. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    8. Yi, Chae-Deug, 2020. "Jump probability using volatility periodicity filters in US Dollar/Euro exchange rates," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    9. Gael M. Martin & Andrew Reidy & Jill Wright, 2006. "Assessing the Impact of Market Microstructure Noise and Random Jumps on the Relative Forecasting Performance of Option-Implied and Returns-Based Volatility," Monash Econometrics and Business Statistics Working Papers 10/06, Monash University, Department of Econometrics and Business Statistics.
    10. Aktham Maghyereh & Hussein Abdoh, 2022. "COVID-19 and the volatility interlinkage between bitcoin and financial assets," Empirical Economics, Springer, vol. 63(6), pages 2875-2901, December.
    11. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    12. Chae-Deug, Yi, 2024. "Realized normal volatility and maximum outlying jumps in high frequency returns for Korean won–US Dollar," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    13. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    15. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    16. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    17. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    18. Irving Fisher Committee, 2005. "Proceedings of the Bank of Canada/IFC Workshop on "Data requirements for analysing the stability and vulnerability of mature financial systems", Ottawa, June 2005," IFC Bulletins, Bank for International Settlements, number 23.
    19. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    20. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    21. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.

  27. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," Economics Papers 2005-W06, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Réveillac, Anthony, 2009. "Estimation of quadratic variation for two-parameter diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1652-1672, May.
    2. Xavier Brouty & Matthieu Garcin & Hugo Roccaro, 2024. "Estimation of bid-ask spreads in the presence of serial dependence," Papers 2407.17401, arXiv.org, revised Jan 2025.
    3. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    4. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    5. Peter C. B. Phillips & Jun Yu, 2009. "Information Loss in Volatility Measurement with Flat Price Trading," Global COE Hi-Stat Discussion Paper Series gd08-039, Institute of Economic Research, Hitotsubashi University.
    6. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
    7. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    8. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    9. Fangfang Wang, 2016. "An Unbiased Measure of Integrated Volatility in the Frequency Domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 147-164, March.
    10. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2012. "Parametric Inference and Dynamic State Recovery from Option Panels," Global COE Hi-Stat Discussion Paper Series gd12-266, Institute of Economic Research, Hitotsubashi University.
    11. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    12. Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," Working Papers in Economics 11/11, University of Canterbury, Department of Economics and Finance.
    13. Almut Veraart, 2008. "Inference for the jump part of quadratic variation of Itô semimartingales," CREATES Research Papers 2008-17, Department of Economics and Business Economics, Aarhus University.
    14. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2011. "A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation," NBER Working Papers 17152, National Bureau of Economic Research, Inc.
    15. Phillips, Peter C.B. & Yu, Jun, 2009. "A two-stage realized volatility approach to estimation of diffusion processes with discrete data," Journal of Econometrics, Elsevier, vol. 150(2), pages 139-150, June.
    16. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    17. Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    18. Ysusi Carla, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
    19. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.
    20. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    21. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    22. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org, revised Sep 2020.
    23. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij & Jeannette H.C. Woerner, 2008. "Bipower variation for Gaussian processes with stationary increments," CREATES Research Papers 2008-21, Department of Economics and Business Economics, Aarhus University.
    24. Ceylan, Ozcan, 2012. "Time-Varying Volatility Asymmetry: A Conditioned HAR-RV(CJ) EGARCH-M Model," GIAM Working Papers 12-4, Galatasaray University Economic Research Center.
    25. Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
    26. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    27. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
    28. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    29. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
    30. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
    31. Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2015. "Nonparametric likelihood for volatility under high frequency data," STICERD - Econometrics Paper Series /2015/581, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    32. Bo Yu & Bruce Mizrach & Norman R. Swanson, 2020. "New Evidence of the Marginal Predictive Content of Small and Large Jumps in the Cross-Section," Econometrics, MDPI, vol. 8(2), pages 1-52, May.
    33. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    34. Dimitrios I. Vortelinos, 2015. "Out‐of‐sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini‐futures markets," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 58-67, November.
    35. Clément, Emmanuelle & Gloter, Arnaud, 2011. "Limit theorems in the Fourier transform method for the estimation of multivariate volatility," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1097-1124, May.
    36. Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.
    37. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    38. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    39. Cem Cakmakli & Verda Ozturk, 2021. "Economic Value of Modeling the Joint Distribution of Returns and Volatility: Leverage Timing," Koç University-TUSIAD Economic Research Forum Working Papers 2110, Koc University-TUSIAD Economic Research Forum.
    40. Li, Meiyu & Gençay, Ramazan & Xue, Yi, 2016. "Is it Brownian or fractional Brownian motion?," Economics Letters, Elsevier, vol. 145(C), pages 52-55.
    41. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    42. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    43. Silja Kinnebrock & Mark Podolskij, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," OFRC Working Papers Series 2007fe03, Oxford Financial Research Centre.
    44. Adam D. Bull, 2014. "Near-optimal estimation of jump activity in semimartingales," Papers 1409.8150, arXiv.org, revised Jan 2016.
    45. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    46. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    47. Dennis Kristensen, 2007. "Nonparametric Filtering of the Realised Spot Volatility: A Kernel-based Approach," CREATES Research Papers 2007-02, Department of Economics and Business Economics, Aarhus University.
    48. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
    49. Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    50. Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
    51. He, Xin-Jiang & Lin, Sha, 2023. "Analytically pricing variance and volatility swaps under a Markov-modulated model with liquidity risks," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    52. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    53. Nirei, Makoto & Sushko, Vladyslav, 2011. "Jumps in foreign exchange rates and stochastic unwinding of carry trades," International Review of Economics & Finance, Elsevier, vol. 20(1), pages 110-127, January.
    54. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    55. Xu, De-xuan & Yang, Ben-zhang & Kang, Jian-hao & Huang, Nan-jing, 2021. "Variance and volatility swaps valuations with the stochastic liquidity risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    56. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
    57. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Duration-Based Volatility Estimation," Global COE Hi-Stat Discussion Paper Series gd08-034, Institute of Economic Research, Hitotsubashi University.
    58. Yan, Han & Liu, Bin & Zhu, Xingting & Wu, Yan, 2024. "Systemic risk monitoring model from the perspective of public information arrival," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    59. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    60. Ysusi Carla, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
    61. Wang, Jiazhen & Jiang, Yuexiang & Zhu, Yanjian & Yu, Jing, 2020. "Prediction of volatility based on realized-GARCH-kernel-type models: Evidence from China and the U.S," Economic Modelling, Elsevier, vol. 91(C), pages 428-444.
    62. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    63. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    64. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    65. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.
    66. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    67. Ysusi Carla, 2006. "Estimating Integrated Volatility Using Absolute High-Frequency Returns," Working Papers 2006-13, Banco de México.
    68. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.

  28. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.

    Cited by:

    1. Yuriy Kitsul & Jonathan H. Wright, 2012. "The Economics of Options-Implied Inflation Probability Density Functions," Economics Working Paper Archive 600, The Johns Hopkins University,Department of Economics.
    2. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    3. Toshitaka Sekine, 2006. "Time-varying exchange rate pass-through: experiences of some industrial countries," BIS Working Papers 202, Bank for International Settlements.
    4. Fruhwirth-Schnatter, Sylvia & Fruhwirth, Rudolf, 2007. "Auxiliary mixture sampling with applications to logistic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3509-3528, April.
    5. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2014. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-932, CIRJE, Faculty of Economics, University of Tokyo.
    6. Fulvia Focker & Umberto Triacca, 2006. "A new proxy of the average volatility of a basket of returns: A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-14.

  29. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," Economics Papers 2004-W20, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Juan F. Rubio-Ramírez, 2014. "Estimating Dynamic Equilibrium Models with Stochastic Volatility," Working Papers 2014-11, FEDEA.
    2. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    3. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    4. Matthew M. Graham & Alexandre H. Thiery & Alexandros Beskos, 2022. "Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1229-1256, September.
    5. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    6. Martin J. Lenardon & Anna Amirdjanova, 2006. "Interaction between stock indices via changepoint analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(5‐6), pages 573-586, September.
    7. Peavoy, Daniel & Franzke, Christian L.E. & Roberts, Gareth O., 2015. "Systematic physics constrained parameter estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 182-199.
    8. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.

  30. Ole Barndorff-Nielsen & Svend Erik Graversen & Jean Jacod & Mark Podolskij & Neil Shephard, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," Economics Papers 2004-W29, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
    2. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
    3. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    5. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.
    6. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Podolskij, Mark & Vetter, Mathias, 2008. "Bipower-type estimation in a noisy diffusion setting," Technical Reports 2008,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    11. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
    12. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    13. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    14. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    15. Almut Veraart, 2008. "Inference for the jump part of quadratic variation of Itô semimartingales," CREATES Research Papers 2008-17, Department of Economics and Business Economics, Aarhus University.
    16. Nikolaus Hautsch & Mark Podolskij, 2010. "Pre-Averaging Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," CREATES Research Papers 2010-29, Department of Economics and Business Economics, Aarhus University.
    17. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2011. "A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation," NBER Working Papers 17152, National Bureau of Economic Research, Inc.
    18. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    19. Mark Podolskij & Mathias Vetter, 2009. "Understanding limit theorems for semimartingales: a short survey," CREATES Research Papers 2009-47, Department of Economics and Business Economics, Aarhus University.
    20. Diep Duong & Norman R. Swanson, 2011. "Empirical Evidence on Jumps and Large Fluctuations in Individual Stocks," Departmental Working Papers 201116, Rutgers University, Department of Economics.
    21. Ysusi Carla, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
    22. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    23. Cecilia Mancini & Fabio Gobbi, 2010. "Identifying the Brownian Covariation from the Co-Jumps Given Discrete Observations," Working Papers - Mathematical Economics 2010-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    24. Mark Podolskij & Daniel Ziggel, 2008. "New tests for jumps: a threshold-based approach," CREATES Research Papers 2008-34, Department of Economics and Business Economics, Aarhus University.
    25. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    26. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    27. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij & Jeannette H.C. Woerner, 2008. "Bipower variation for Gaussian processes with stationary increments," CREATES Research Papers 2008-21, Department of Economics and Business Economics, Aarhus University.
    28. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    29. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    30. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
    31. Holger Dette & Mark Podolskij & Mathias Vetter, 2006. "Estimation of Integrated Volatility in Continuous‐Time Financial Models with Applications to Goodness‐of‐Fit Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 259-278, June.
    32. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    33. Dette, Holger & Podolskij, Mark, 2005. "Testing the parametric form of the volatility in continuous time diffusion models: an empirical process approach," Technical Reports 2005,50, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    34. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    35. Alexander Alvarez & Fabien Panloup & Monique Pontier & Nicolas Savy, 2012. "Estimation of the instantaneous volatility," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 27-59, April.
    36. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    37. Mark Podolskij & Daniel Ziggel, 2007. "A Range-Based Test for the Parametric Form of the Volatility in Diffusion Models," CREATES Research Papers 2007-26, Department of Economics and Business Economics, Aarhus University.
    38. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    39. Mark Podolskij & Mathieu Rosenbaum, 2012. "Testing the local volatility assumption: a statistical approach," Annals of Finance, Springer, vol. 8(1), pages 31-48, February.
    40. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    41. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    42. Bekiros, Stelios & Jlassi, Mouna & Naoui, Kamel & Uddin, Gazi Salah, 2017. "The asymmetric relationship between returns and implied volatility: Evidence from global stock markets," Journal of Financial Stability, Elsevier, vol. 30(C), pages 156-174.
    43. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    44. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    45. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    46. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    47. Jan Novotn?? & Jan Hanousek & Ev??en Ko??enda, 2013. "Price Jump Indicators: Stock Market Empirics During the Crisis," William Davidson Institute Working Papers Series wp1050, William Davidson Institute at the University of Michigan.
    48. Ysusi Carla, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
    49. Fabio Gobbi & Cecilia Mancini, 2006. "Identifying the covariation between the diffusion parts and the co-jumps given discrete observations," Papers math/0610621, arXiv.org, revised Jul 2008.
    50. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    51. Ysusi Carla, 2006. "Estimating Integrated Volatility Using Absolute High-Frequency Returns," Working Papers 2006-13, Banco de México.
    52. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.

  31. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Inekwe John Nkwoma, 2014. "Business Cycle Variability and Growth Linkage," Monash Economics Working Papers 38-14, Monash University, Department of Economics.
    2. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    3. de Vilder, Robin G. & Visser, Marcel P., 2007. "Volatility Proxies for Discrete Time Models," MPRA Paper 4917, University Library of Munich, Germany.
    4. Basel Awartani & Valentina Corradi, 2004. "Testing and Modelling Market Microstructure Effects with an Application to the Dow Jones Industrial Average," Econometric Society 2004 North American Summer Meetings 487, Econometric Society.

  32. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," Economics Papers 2004-W28, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    2. Giuseppe Curci & Fulvio Corsi, 2012. "Discrete sine transform for multi-scale realized volatility measures§," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 263-279, April.
    3. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    4. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    6. Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
    7. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    8. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    9. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    10. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    11. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    13. Michiel de Pooter & Martin Martens & Dick van Dijk, 2008. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
    14. Torben G. Andersen & Luca Benzoni, 2007. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification test for Affine Term Structure Models," NBER Working Papers 12962, National Bureau of Economic Research, Inc.
    15. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    17. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    18. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    19. Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
    20. Masato Ubukata & Toshiaki Watanabe, 2011. "Pricing Nikkei 225 Options Using Realized Volatility," IMES Discussion Paper Series 11-E-18, Institute for Monetary and Economic Studies, Bank of Japan.
    21. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2005. "Edgeworth Expansions for Realized Volatility and Related Estimators," NBER Technical Working Papers 0319, National Bureau of Economic Research, Inc.
    22. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    23. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    24. B. Jungbacker & S.J. Koopman, 2005. "Model-based Measurement of Actual Volatility in High-Frequency Data," Tinbergen Institute Discussion Papers 05-002/4, Tinbergen Institute.
    25. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
    26. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    27. Benlagha, Noureddine & Chargui, Sana, 2017. "Range-based and GARCH volatility estimation: Evidence from the French asset market," Global Finance Journal, Elsevier, vol. 32(C), pages 149-165.
    28. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    29. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
    30. Lidan He & Qiang Liu & Zhi Liu & Andrea Bucci, 2024. "Correcting spot power variation estimator via Edgeworth expansion," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 921-945, November.

  33. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Michel Beine & Charles Bos & Serge Coulombe, 2009. "Does the Canadian economy suffer from Dutch Disease?," DEM Discussion Paper Series 09-06, Department of Economics at the University of Luxembourg.
    2. Carmen Broto & Esther Ruiz, 2008. "Testing for conditional heteroscedasticity in the components of inflation," Working Papers 0812, Banco de España.
    3. Michel Beine & Charles S. Bos & Sébastien Laurent, 2007. "The Impact of Central Bank FX Interventions on Currency Components," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 154-183.
    4. Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
    5. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    6. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Huang Yu-Fan, 2021. "An effcient exact Bayesian method For state space models with stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-10, April.
    8. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    9. Christophe Chesneau & Salima El Kolei & Fabien Navarro, 2022. "Parametric estimation of hidden Markov models by least squares type estimation and deconvolution," Statistical Papers, Springer, vol. 63(5), pages 1615-1648, October.
    10. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    11. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    12. Grassi, Stefano & Proietti, Tommaso, 2008. "Has the Volatility of U.S. Inflation Changed and How?," MPRA Paper 11453, University Library of Munich, Germany.
    13. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    14. Strickland, Chris M. & Turner, Ian. W. & Denham, Robert & Mengersen, Kerrie L., 2009. "Efficient Bayesian estimation of multivariate state space models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4116-4125, October.
    15. Kjartan Kloster Osmundsen & Tore Selland Kleppe & Roman Liesenfeld & Atle Oglend, 2021. "Estimating the Competitive Storage Model with Stochastic Trends in Commodity Prices," Econometrics, MDPI, vol. 9(4), pages 1-24, November.

  34. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    3. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    4. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    5. Basel Awartani & Valentina Corradi, 2004. "Testing and Modelling Market Microstructure Effects with an Application to the Dow Jones Industrial Average," Econometric Society 2004 North American Summer Meetings 487, Econometric Society.
    6. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.

  35. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Yu-Min Yen, 2013. "Testing Jumps via False Discovery Rate Control," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    2. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2012. "A nonparametric test of the leverage hypothesis," CeMMAP working papers CWP24/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Viktor Todorov & Yang Zhang, 2022. "Information gains from using short‐dated options for measuring and forecasting volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 368-391, March.
    4. Imane El Ouadghiri & Remzi Uctum, 2016. "Jumps in equilibrium prices and asymmetric news in foreign exchange markets," Post-Print hal-01386027, HAL.
    5. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    6. Ravi Bansal & Ivan Shaliastovich, 2011. "Learning and Asset-price Jumps," The Review of Financial Studies, Society for Financial Studies, vol. 24(8), pages 2738-2780.
    7. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    8. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2023. "Forecasting the Realized Volatility of Agricultural Commodity Prices: Does Sentiment Matter?," Working Papers 202316, University of Pretoria, Department of Economics.
    9. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    10. Adam Clements & Yin Liao, 2014. "The role in index jumps and cojumps in forecasting stock index volatility: Evidence from the Dow Jones index," NCER Working Paper Series 101, National Centre for Econometric Research.
    11. Christian Palmes & Jeannette H. C. Woerner, 2016. "The Gumbel test and jumps in the volatility process," Statistical Inference for Stochastic Processes, Springer, vol. 19(2), pages 235-258, July.
    12. Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
    13. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
    14. Turan G. Bali & Armen Hovakimian, 2009. "Volatility Spreads and Expected Stock Returns," Management Science, INFORMS, vol. 55(11), pages 1797-1812, November.
    15. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    16. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
    17. Anisha Ghosh & Oliver Linton, 2019. "Estimation with Mixed Data Frequencies: A Bias-Correction Approach," CeMMAP working papers CWP65/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2017. "The Memory of Stock Return Volatility: Asset Pricing Implications," Hannover Economic Papers (HEP) dp-613, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    19. Degiannakis, Stavros & Floros, Christos, 2013. "Modeling CAC40 volatility using ultra-high frequency data," Research in International Business and Finance, Elsevier, vol. 28(C), pages 68-81.
    20. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    21. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    22. Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
    23. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    24. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
    25. Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    26. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    27. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
    28. Imane El Ouadghiri & Remzi Uctum, 2015. "Jumps in Equilibrium Prices and Asymmetric News in Foreign Exchange Markets," Working Papers hal-04141414, HAL.
    29. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    30. Megaritis, Anastasios & Vlastakis, Nikolaos & Triantafyllou, Athanasios, 2021. "Stock market volatility and jumps in times of uncertainty," Journal of International Money and Finance, Elsevier, vol. 113(C).
    31. Feng, Yun & Hou, Weijie & Song, Yuping, 2023. "Asymmetric contagion of jump risk in the Chinese financial sector: Monetary policy transmission matters," Economic Modelling, Elsevier, vol. 119(C).
    32. Da Fonseca, José & Ignatieva, Katja, 2019. "Jump activity analysis for affine jump-diffusion models: Evidence from the commodity market," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 45-62.
    33. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    34. Gao, Ya & Han, Xing & Li, Youwei & Xiong, Xiong, 2019. "Overnight Momentum, Informational Shocks, and Late-Informed Trading in China," MPRA Paper 96784, University Library of Munich, Germany.
    35. Chien-Hsiu Lin & Shih-Kuei Lin & An-Chi Wu, 2015. "Foreign exchange option pricing in the currency cycle with jump risks," Review of Quantitative Finance and Accounting, Springer, vol. 44(4), pages 755-789, May.
    36. Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
    37. John Cotter & Stuart Gabriel & Richard Roll, 2011. "Integration and Contagion in US Housing Markets," Working Papers 201131, Geary Institute, University College Dublin.
    38. Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
    39. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    40. Robinson Kruse & Christian Leschinski & Michael Will, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," CREATES Research Papers 2016-17, Department of Economics and Business Economics, Aarhus University.
    41. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Post-Print hal-01474249, HAL.
    42. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    43. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    44. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    45. Peter Christoffersen & Bruno Feunou & Yoontae Jeon, 2014. "Option Valuation with Observable Volatility and Jump Dynamics," CREATES Research Papers 2015-07, Department of Economics and Business Economics, Aarhus University.
    46. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    47. Basel M. A. Awartani, 2008. "Forecasting volatility with noisy jumps: an application to the Dow Jones Industrial Average stocks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 267-278.
    48. M. Podolskij & D. Ziggel, 2010. "New tests for jumps in semimartingale models," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 15-41, April.
    49. Kalnina, Ilze & Linton, Oliver, 2007. "Inference about realized volatility using infill subsampling," LSE Research Online Documents on Economics 4411, London School of Economics and Political Science, LSE Library.
    50. Ourania Theodosiadou & Sotiris Skaperas & George Tsaklidis, 2017. "Change Point Detection and Estimation of the Two-Sided Jumps of Asset Returns Using a Modified Kalman Filter," Risks, MDPI, vol. 5(1), pages 1-14, March.
    51. Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
    52. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    53. Arif, Muhammad & Naeem, Muhammad Abubakr & Farid, Saqib & Nepal, Rabindra & Jamasb, Tooraj, 2022. "Diversifier or more? Hedge and safe haven properties of green bonds during COVID-19," Energy Policy, Elsevier, vol. 168(C).
    54. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    55. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    56. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    57. Kapadia, Nishad & Zekhnini, Morad, 2019. "Do idiosyncratic jumps matter?," Journal of Financial Economics, Elsevier, vol. 131(3), pages 666-692.
    58. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    59. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    60. Usman Arief & Zaäfri Ananto Husodo, 2021. "Private Information from Extreme Price Movements (Empirical Evidences from Southeast Asia Countries)," International Symposia in Economic Theory and Econometrics, in: Recent Developments in Asian Economics International Symposia in Economic Theory and Econometrics, volume 28, pages 221-242, Emerald Group Publishing Limited.
    61. Lavička, H. & Lichard, T. & Novotný, J., 2016. "Sand in the wheels or wheels in the sand? Tobin taxes and market crashes," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 328-342.
    62. Minseog Oh & Donggyu Kim, 2021. "Effect of the U.S.--China Trade War on Stock Markets: A Financial Contagion Perspective," Papers 2111.09655, arXiv.org.
    63. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    64. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    65. Gongyue Jiang & Gaoxiu Qiao & Lu Wang & Feng Ma, 2024. "Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2378-2398, September.
    66. Andersen, Torben G. & Bondarenko, Oleg & Todorov, Viktor & Tauchen, George, 2015. "The fine structure of equity-index option dynamics," Journal of Econometrics, Elsevier, vol. 187(2), pages 532-546.
    67. Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
    68. Shuichi Nagata, 2012. "Consistent Estimation of Integrated Volatility Using Intraday Absolute Returns for SV Jump Diffusion Processes," Economics Bulletin, AccessEcon, vol. 32(1), pages 306-314.
    69. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    70. Jose E. Figueroa-Lopez & Martin Forde, 2011. "The small-maturity smile for exponential Levy models," Papers 1105.3180, arXiv.org, revised Dec 2011.
    71. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    72. Schulz, Frowin C., 2010. "Robust estimation of integrated variance and quarticity under flat price and no trading bias," Discussion Papers in Econometrics and Statistics 4/10, University of Cologne, Institute of Econometrics and Statistics.
    73. Luo, Xin & Tao, Yunqing & Zou, Kai, 2022. "A new measure of realized volatility: Inertial and reverse realized semivariance," Finance Research Letters, Elsevier, vol. 47(PA).
    74. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    75. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "High-Frequency Jump Tests: Which Test Should We Use?," Papers 1708.09520, arXiv.org, revised Jan 2020.
    76. Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010. "Trading activity, realized volatility and jumps," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
    77. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
    78. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    79. Huang, Jianbai & Tang, Jing & Zhang, Hongwei, 2020. "The effect of investors’ information search behaviors on rebar market return dynamics using high frequency data," Resources Policy, Elsevier, vol. 66(C).
    80. Wen, Zhuzhu & Gong, Xu & Ma, Diandian & Xu, Yahua, 2021. "Intraday momentum and return predictability: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 95(C), pages 374-384.
    81. Vatis Christian Kemezang & André Ilaire Djou & Ivette Gnitedem Keubeng, 2024. "Measuring market risk with GARCH models under Basel III: selection and application to German firms," SN Business & Economics, Springer, vol. 4(10), pages 1-30, October.
    82. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    83. Márcio Poletti Laurini & Roberto Baltieri Mauad & Fernando Antonio Lucena Aiube, 2016. "Multivariate Stochastic Volatility-Double Jump Model: an application for oil assets," Working Papers Series 415, Central Bank of Brazil, Research Department.
    84. David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
    85. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    86. Wang, Yajing & Liang, Fang & Wang, Tianyi & Huang, Zhuo, 2020. "Does measurement error matter in volatility forecasting? Empirical evidence from the Chinese stock market," Economic Modelling, Elsevier, vol. 87(C), pages 148-157.
    87. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    88. Geon Ho Choe & Kyungsub Lee, 2013. "High moment variations and their application," Papers 1311.4973, arXiv.org.
    89. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
    90. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019. "Unified inference for nonlinear factor models from panels with fixed and large time span," Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
    91. Maria Elvira Mancino & Simona Sanfelici, 2011. "Estimation of Quarticity with High Frequency Data," Working Papers - Mathematical Economics 2011-06, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa, revised Jan 2012.
    92. Lee, Suzanne S. & Wang, Minho, 2019. "The impact of jumps on carry trade returns," Journal of Financial Economics, Elsevier, vol. 131(2), pages 433-455.
    93. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    94. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    95. Yeh, Jin-Huei & Yun, Mu-Shu, 2023. "Assessing jump and cojumps in financial asset returns with applications in futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    96. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
    97. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    98. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    99. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    100. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    101. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    102. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    103. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    104. Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021. "Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    105. Pérez-Rodríguez, Jorge V. & Andrada-Félix, Julián & Rachinger, Heiko, 2021. "Testing the forward volatility unbiasedness hypothesis in exchange rates under long-range dependence," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    106. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2017. "Jumps in Commodity Markets," Hannover Economic Papers (HEP) dp-615, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    107. Aitor Ciarreta & Peru Muniain & Ainhoa Zarraga, 2020. "Realized volatility and jump testing in the Japanese electricity spot market," Empirical Economics, Springer, vol. 58(3), pages 1143-1166, March.
    108. José Figueroa-López, 2012. "Statistical estimation of Lévy-type stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 309-335, May.
    109. Kobayashi, Masahito, 2009. "Testing for jumps in the stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2597-2608.
    110. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, New Economic School (NES).
    111. Jeremy Large, 2007. "Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment," Economics Series Working Papers 340, University of Oxford, Department of Economics.
    112. Wing Hong Chan & Ranjini Jha & Madhu Kalimipalli, 2009. "The Economic Value Of Using Realized Volatility In Forecasting Future Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 231-259, September.
    113. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    114. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2012. "Parametric Inference and Dynamic State Recovery from Option Panels," Global COE Hi-Stat Discussion Paper Series gd12-266, Institute of Economic Research, Hitotsubashi University.
    115. Liu, Wenwen & Zhang, Chang & Qiao, Gaoxiu & Xu, Lei, 2022. "Impact of network investor sentiment and news arrival on jumps," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    116. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2017. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Working Papers 2017-10, University of Tasmania, Tasmanian School of Business and Economics.
    117. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    118. Wang, Kent & Liu, Junwei & Liu, Zhi, 2013. "Disentangling the effect of jumps on systematic risk using a new estimator of integrated co-volatility," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1777-1786.
    119. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    120. Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2017. "Empirical likelihood for high frequency data," STICERD - Econometrics Paper Series 591, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    121. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    122. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    123. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    124. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    125. Ai-ru (Meg) Cheng & Kuntal Das & Takeshi Shimatani, 2013. "Central Bank Intervention and Exchange Rate Volatility: Evidence from Japan Using Realized Volatility," Working Papers in Economics 13/19, University of Canterbury, Department of Economics and Finance.
    126. Pham, Son Duy & Nguyen, Thao Thac Thanh & Li, Xiao-Ming, 2024. "Stabilizing global foreign exchange markets in the time of COVID-19: The role of vaccinations," Global Finance Journal, Elsevier, vol. 59(C).
    127. Benjamin Y. Zhang & Hao Zhou & Haibin Zhu, 2005. "Explaining credit default swap spreads with the equity volatility and jump risks of individual firms," Finance and Economics Discussion Series 2005-63, Board of Governors of the Federal Reserve System (U.S.).
    128. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    129. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    130. Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
    131. Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2017. "High-Frequency Jump Analysis of the Bitcoin Market," Papers 1704.08175, arXiv.org, revised Jun 2017.
    132. Jan Hanousek & Evžen Kočenda & Jan Novotný, 2016. "Shluková analýza skoků na kapitálových trzích [Cluster Analysis of Jumps on Capital Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2016(2), pages 127-144.
    133. Xu, Weijun & Liu, Guifang & Li, Hongyi, 2016. "A novel jump diffusion model based on SGT distribution and its applications," Economic Modelling, Elsevier, vol. 59(C), pages 74-92.
    134. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    135. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    136. Tong, Yuan & Wan, Ning & Dai, Xingyu & Bi, Xiaoyi & Wang, Qunwei, 2022. "China's energy stock market jumps: To what extent does the COVID-19 pandemic play a part?," Energy Economics, Elsevier, vol. 109(C).
    137. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    138. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    139. Tsai, Ping Chen & Eom, Cheoljun & Wang, Chou Wen, 2024. "State-dependent intra-day volatility pattern and its impact on price jump detection - Evidence from international equity indices," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    140. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    141. Krauss, Christopher & Herrmann, Klaus & Teis, Stefan, 2015. "On the power and size properties of cointegration tests in the light of high-frequency stylized facts," FAU Discussion Papers in Economics 11/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    142. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    143. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2013. "A nonparametric test of a strong leverage hypothesis," CeMMAP working papers 28/13, Institute for Fiscal Studies.
    144. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    145. Dovonon, Prosper & Goncalves, Silvia & Hounyo, Ulrich & Meddahi, Nour, 2017. "Bootstrapping high-frequency jump tests," IDEI Working Papers 870, Institut d'Économie Industrielle (IDEI), Toulouse.
    146. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    147. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    148. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.
    149. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    150. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    151. Andor, György & Bohák, András, 2017. "Identifying events in financial time series – A new approach with bipower variation," Finance Research Letters, Elsevier, vol. 22(C), pages 42-48.
    152. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
    153. Xindan Li & Bing Zhang, 2013. "Spillover and Cojumps Between the U.S. and Chinese Stock Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S2), pages 23-42, March.
    154. Liling Deng & Haifang Xiong & Zhiqiang Wang, 2023. "Research on cojumps of electronic commerce overnight factors in volatility prediction based on joint BW test," Electronic Commerce Research, Springer, vol. 23(1), pages 115-135, March.
    155. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
    156. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    157. Gkillas, Konstantinos & Boako, Gideon & Vortelinos, Dimitrios & Vasiliadis, Lavrentios, 2020. "Non-parametric quantile dependencies between volatility discontinuities and political risk," Finance Research Letters, Elsevier, vol. 32(C).
    158. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    159. Mehmet Balcilar & Matteo Bonato & Riza Demirer & Rangan Gupta, 2016. "The Effect of Investor Sentiment on Gold Market Dynamics," Working Papers 201638, University of Pretoria, Department of Economics.
    160. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    161. Yi, Chae-Deug, 2020. "Jump probability using volatility periodicity filters in US Dollar/Euro exchange rates," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    162. Álvaro Cartea & Dimitrios Karyampas, 2009. "The Relationship Between the Volatility of Returns and the Number of Jumps in Financial Markets," Birkbeck Working Papers in Economics and Finance 0914, Birkbeck, Department of Economics, Mathematics & Statistics.
    163. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    164. Pan, Ging-Ginq & Shiu, Yung-Ming & Wu, Tu-Cheng, 2022. "Can risk-neutral skewness and kurtosis subsume the information content of historical jumps?," Journal of Financial Markets, Elsevier, vol. 57(C).
    165. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    166. Erdemlioglu, Deniz & Petitjean, Mikael & Vargas, Nicolas, 2021. "Market Instability and Technical Trading at High Frequency: Evidence from NASDAQ Stocks," LIDAM Reprints LFIN 2021016, Université catholique de Louvain, Louvain Finance (LFIN).
    167. Arnerić, Josip & Matković, Mario & Sorić, Petar, 2019. "Comparison of range-based volatility estimators against integrated volatility in European emerging markets," Finance Research Letters, Elsevier, vol. 28(C), pages 118-124.
    168. Mardi Dungey & Michael McKenzie & Vanessa Smith, 2007. "Empirical Evidence On Jumps In The Term Structure Of The Us Treasury Market," CAMA Working Papers 2007-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    169. Xu, Yanyan & Liu, Jing & Ma, Feng & Chu, Jielei, 2024. "Liquidity and realized volatility prediction in Chinese stock market: A time-varying transitional dynamic perspective," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 543-560.
    170. Yang Gao & Chengjie Zhao & Bianxia Sun & Wandi Zhao, 2022. "Effects of investor sentiment on stock volatility: new evidences from multi-source data in China’s green stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    171. BOUSALAM, Issam & HAMZAOUI, Moustapha & ZOUHAYR, Otman, 2016. "Forecasting Daily Stock Volatility Using GARCH-CJ Type Models with Continuous and Jump Variation," MPRA Paper 69636, University Library of Munich, Germany.
    172. Wu, Fan & Wang, Guan-jun & Kong, Xin-bing, 2022. "Inference on common intraday periodicity at high frequencies," Statistics & Probability Letters, Elsevier, vol. 191(C).
    173. Xin Huang, 2015. "Macroeconomic News Announcements, Systemic Risk, Financial Market Volatility and Jumps," Finance and Economics Discussion Series 2015-97, Board of Governors of the Federal Reserve System (U.S.).
    174. Ghosh, Anisha & Linton, Oliver, 2007. "Consistent estimation of the risk-return tradeoff in the presence of measurement error," LSE Research Online Documents on Economics 24506, London School of Economics and Political Science, LSE Library.
    175. Hung, Jui-Cheng & Liu, Hung-Chun & Jimmy Yang, J., 2024. "The economic value of Bitcoin: A volatility timing perspective with portfolio rebalancing," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    176. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    177. Liu, Cheng & Wang, Moming & Xia, Ningning, 2022. "Design-free estimation of integrated covariance matrices for high-frequency data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    178. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    179. Vortelinos, Dimitrios I., 2014. "Optimally sampled realized range-based volatility estimators," Research in International Business and Finance, Elsevier, vol. 30(C), pages 34-50.
    180. Liu, Xiaochun, 2015. "Modeling time-varying skewness via decomposition for out-of-sample forecast," International Journal of Forecasting, Elsevier, vol. 31(2), pages 296-311.
    181. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    182. Mark Podolskij & Mathias Vetter, 2009. "Understanding limit theorems for semimartingales: a short survey," CREATES Research Papers 2009-47, Department of Economics and Business Economics, Aarhus University.
    183. Hu, Genhua & Jiang, Haifeng, 2023. "Time-varying jumps in China crude oil futures market impacted by COVID-19 pandemic," Resources Policy, Elsevier, vol. 82(C).
    184. Diep Duong & Norman R. Swanson, 2011. "Empirical Evidence on Jumps and Large Fluctuations in Individual Stocks," Departmental Working Papers 201116, Rutgers University, Department of Economics.
    185. Fredj Jawadi & Waël Louhichi & Abdoulkarim Idi Cheffou & Rivo Randrianarivony, 2016. "Intraday jumps and trading volume: a nonlinear Tobit specification," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1167-1186, November.
    186. Li, Xiaoqian & Ma, Xiaoqi, 2023. "Jumps and gold futures volatility prediction," Finance Research Letters, Elsevier, vol. 58(PC).
    187. Sensoy, Ahmet & Serdengeçti, Süleyman, 2020. "Impact of portfolio flows and heterogeneous expectations on FX jumps: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 68(C).
    188. Yi-Ting Chen & Wan-Ni Lai & Edward W. Sun, 2019. "Jump Detection and Noise Separation by a Singular Wavelet Method for Predictive Analytics of High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 809-844, August.
    189. Gabriel P. Mathy, 2014. "Uncertainty Shocks and Equity Return Jumps and Volatility During the Great Depression," Working Papers 2014-02, American University, Department of Economics.
    190. Eric Jondeau & Jérôme Lahaye & Michael Rockinger, 2013. "Estimating the Price Impact of Trades in an High-Frequency Microstructure Model with Jumps," Swiss Finance Institute Research Paper Series 13-47, Swiss Finance Institute, revised Feb 2016.
    191. Jacod, Jean & Klüppelberg, Claudia & Müller, Gernot, 2017. "Testing for non-correlation between price and volatility jumps," Journal of Econometrics, Elsevier, vol. 197(2), pages 284-297.
    192. Giampiero M. Gallo & Demetrio Lacava & Edoardo Otranto, 2023. "Volatility jumps and the classification of monetary policy announcements," Papers 2305.12192, arXiv.org.
    193. Ysusi Carla, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
    194. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    195. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    196. Ralf Becker & Adam Clements & Andrew McClelland, 2008. "The Jump component of S&P 500 volatility and the VIX index," NCER Working Paper Series 24, National Centre for Econometric Research.
    197. Charles S. Bos & Phillip Gould, 2007. "Dynamic Correlations and Optimal Hedge Ratios," Tinbergen Institute Discussion Papers 07-025/4, Tinbergen Institute.
    198. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
    199. Li, Jianhua & Xu, Jianxiang, 2023. "Does the introduction of market maker improve market quality? Evidence from China's Sci-Tech innovation board," Finance Research Letters, Elsevier, vol. 55(PA).
    200. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    201. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    202. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
    203. Adam Canopius, 2006. "Practitioners' Corner," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 346-351.
    204. Marcelo Fernandes & Ms. Deniz O Igan & Marcelo Pinheiro, 2015. "March Madness in Wall Street: (What) Does the Market Learn from Stress Tests?," IMF Working Papers 2015/271, International Monetary Fund.
    205. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    206. Boudt, Kris & Petitjean, Mikael, 2014. "Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks," LIDAM Reprints LFIN 2014006, Université catholique de Louvain, Louvain Finance (LFIN).
    207. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    208. Zhou, Chunyang & Wu, Chongfeng & Wang, Yudong, 2019. "Dynamic portfolio allocation with time-varying jump risk," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 113-124.
    209. Mohammad Al-Shboul & Aktham Maghyereh, 2023. "Did real economic uncertainty drive risk connectedness in the oil–stock nexus during the COVID-19 outbreak? A partial wavelet coherence analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 12(1), pages 1-23, December.
    210. John Cotter & Stuart Gabriel & Richard Roll, 2012. "Can Metropolitan Housing Risk be Diversified? A Cautionary Tale from the Recent Boom and Bust," Papers 1208.0371, arXiv.org.
    211. Worapree Maneesoonthorn & David T. Frazier & Gael M. Martin, 2024. "Probabilistic Predictions of Option Prices Using Multiple Sources of Data," Papers 2412.00658, arXiv.org.
    212. Zhou, Haigang & Zhu, John Qi, 2019. "Firm characteristics and jump dynamics in stock prices around earnings announcements," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    213. Fan, Yingying & Fan, Jianqing, 2011. "Testing and detecting jumps based on a discretely observed process," Journal of Econometrics, Elsevier, vol. 164(2), pages 331-344, October.
    214. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
    215. Jiang, George J. & Zhu, Kevin X., 2017. "Information Shocks and Short-Term Market Underreaction," Journal of Financial Economics, Elsevier, vol. 124(1), pages 43-64.
    216. Yin Liao & Heather Anderson & Farshid Vahid, 2010. "Do Jumps Matter? Forecasting Multivariate Realized Volatility Allowing for Common Jumps," ANU Working Papers in Economics and Econometrics 2010-520, Australian National University, College of Business and Economics, School of Economics.
    217. Tang, Yusui & Ma, Feng, 2023. "The volatility of natural resources implications for sustainable development: Crude oil volatility prediction based on the multivariate structural regime switching," Resources Policy, Elsevier, vol. 83(C).
    218. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    219. Yin-Wong Cheung & Wenhao Wang, 2020. "Uncovered Interest Rate Parity Redux: Non- Uniform Effects," GRU Working Paper Series GRU_2020_004, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    220. Jérôme Lahaye & Christopher Neely, 2020. "The Role of Jumps in Volatility Spillovers in Foreign Exchange Markets: Meteor Shower and Heat Waves Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 410-427, April.
    221. Yusaku Nishimura & Xuyi Dong & Bianxia Sun, 2021. "Trump's tweets: Sentiment, stock market volatility, and jumps," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 497-512, September.
    222. Balázs Egert & Evžen Kočenda, 2012. "The impact of macro news and central bank communication on emerging European forex markets," Working Papers hal-04141076, HAL.
    223. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    224. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    225. Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
    226. Lee, Suzanne S. & Mykland, Per A., 2012. "Jumps in equilibrium prices and market microstructure noise," Journal of Econometrics, Elsevier, vol. 168(2), pages 396-406.
    227. Li, Jia & Todorov, Viktor & Tauchen, George, 2017. "Adaptive estimation of continuous-time regression models using high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 36-47.
    228. Jui‐Cheng Hung & Hung‐Chun Liu & J. Jimmy Yang, 2023. "Does the tail risk index matter in forecasting downside risk?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3451-3466, July.
    229. Nicholas Bloom, 2007. "The Impact of Uncertainty Shocks," NBER Working Papers 13385, National Bureau of Economic Research, Inc.
    230. Gerlach, Richard & Naimoli, Antonio & Storti, Giuseppe, 2018. "Time Varying Heteroskedastic Realized GARCH models for tracking measurement error bias in volatility forecasting," MPRA Paper 83893, University Library of Munich, Germany.
    231. Marcel Scharth & Marcelo Cunha Medeiros, 2006. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," Textos para discussão 532, Department of Economics PUC-Rio (Brazil).
    232. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    233. Johnson, James A. & Medeiros, Marcelo C. & Paye, Bradley S., 2022. "Jumps in stock prices: New insights from old data," Journal of Financial Markets, Elsevier, vol. 60(C).
    234. Taesuk Lee & Mico Loretan & Werner Ploberger, 2013. "Rate-optimal tests for jumps in diffusion processes," Statistical Papers, Springer, vol. 54(4), pages 1009-1041, November.
    235. Souček, Michael & Todorova, Neda, 2014. "Realized volatility transmission: The role of jumps and leverage effects," Economics Letters, Elsevier, vol. 122(2), pages 111-115.
    236. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    237. George Jiang & Ingrid Lo & Adrien Verdelhan, 2008. "Information Shocks, Jumps, and Price Discovery -- Evidence from the U.S. Treasury Market," Staff Working Papers 08-22, Bank of Canada.
    238. Yao, Wenying & Tian, Jing, 2015. "The role of intra-day volatility pattern in jump detection: empirical evidence on how financial markets respond to macroeconomic news announcements," Working Papers 2015-05, University of Tasmania, Tasmanian School of Business and Economics.
    239. Jeong, Daehee & Kim, Hwagyun & Park, Joon Y., 2015. "Does ambiguity matter? Estimating asset pricing models with a multiple-priors recursive utility," Journal of Financial Economics, Elsevier, vol. 115(2), pages 361-382.
    240. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    241. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    242. Chae-Deug, Yi, 2024. "Realized normal volatility and maximum outlying jumps in high frequency returns for Korean won–US Dollar," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    243. Ana-Maria Dumitru, 2013. "Bootstrapping tests for jumps with an application to test averaging," School of Economics Discussion Papers 0113, School of Economics, University of Surrey.
    244. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    245. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    246. Gong, Xu & Lin, Boqiang, 2019. "Modeling stock market volatility using new HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 194-211.
    247. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    248. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org, revised Sep 2020.
    249. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
    250. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    251. Leong, Minhao & Kwok, Simon, 2023. "The pricing of jump and diffusive risks in the cross-section of cryptocurrency returns," Journal of Empirical Finance, Elsevier, vol. 74(C).
    252. Benoît Sévi, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Post-Print hal-01500860, HAL.
    253. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    254. Tim Bollerslev & Viktor Todorov, 2010. "Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns," CREATES Research Papers 2010-64, Department of Economics and Business Economics, Aarhus University.
    255. Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
    256. Ceylan, Ozcan, 2012. "Time-Varying Volatility Asymmetry: A Conditioned HAR-RV(CJ) EGARCH-M Model," GIAM Working Papers 12-4, Galatasaray University Economic Research Center.
    257. Rene Carmona & Laura Leal, 2021. "Optimal Execution with Quadratic Variation Inventories," Papers 2104.14615, arXiv.org.
    258. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2023. "Exploring volatility of crude oil intraday return curves: A functional GARCH-X model," Journal of Commodity Markets, Elsevier, vol. 32(C).
    259. Ao Kong & Hongliang Zhu & Robert Azencott, 2021. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 416-438, April.
    260. Ye, Wuyi & Xia, Wenjing & Wu, Bin & Chen, Pengzhan, 2022. "Using implied volatility jumps for realized volatility forecasting: Evidence from the Chinese market," International Review of Financial Analysis, Elsevier, vol. 83(C).
    261. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    262. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    263. Yuewen Xiao & Xiangkang Yin & Jing Zhao, 2020. "Jumps, News, And Subsequent Return Dynamics: An Intraday Study," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 43(3), pages 705-731, August.
    264. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    265. Bilel Sanhaji & Julien Chevallier, 2023. "Tracking ‘Pure’ Systematic Risk with Realized Betas for Bitcoin and Ethereum," Post-Print hal-04218488, HAL.
    266. Lena Cleanthous & Pany Karamanou, 2011. "The ECB Monetary Policy and the Current Financial Crisis," Working Papers 2011-1, Central Bank of Cyprus.
    267. Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Cholesky-MIDAS model for predicting stock portfolio volatility," Centre for Growth and Business Cycle Research Discussion Paper Series 149, Economics, The University of Manchester.
    268. Wen, Zhuzhu & Bouri, Elie & Xu, Yahua & Zhao, Yang, 2022. "Intraday return predictability in the cryptocurrency markets: Momentum, reversal, or both," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    269. Shaliastovich, Ivan, 2015. "Learning, confidence, and option prices," Journal of Econometrics, Elsevier, vol. 187(1), pages 18-42.
    270. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    271. Wang, Yunyan & Zhang, Lixin & Tang, Mingtian, 2012. "Local M-estimation for jump-diffusion processes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1273-1284.
    272. Vortelinos, Dimitrios I. & Saha, Shrabani, 2016. "The impact of political risk on return, volatility and discontinuity: Evidence from the international stock and foreign exchange markets," Finance Research Letters, Elsevier, vol. 17(C), pages 222-226.
    273. Donggyu Kim & Minseok Shin, 2023. "Volatility models for stylized facts of high‐frequency financial data," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 262-279, May.
    274. Dimitrios I. Vortelinos, 2015. "The Effect of Macro News on Volatility and Jumps," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 425-447, November.
    275. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    276. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.
    277. John, Kose & Li, Jingrui, 2021. "COVID-19, volatility dynamics, and sentiment trading," Journal of Banking & Finance, Elsevier, vol. 133(C).
    278. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    279. Markus Bibinger & Nikolaus Hautsch & Alexander Ristig, 2024. "Jump detection in high-frequency order prices," Papers 2403.00819, arXiv.org.
    280. Hanousek, Jan & Novotný, Jan, 2012. "Price jumps in Visegrad-country stock markets: An empirical analysis," Emerging Markets Review, Elsevier, vol. 13(2), pages 184-201.
    281. Xin Zhang & Donggyu Kim & Yazhen Wang, 2016. "Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets," Econometrics, MDPI, vol. 4(3), pages 1-26, August.
    282. Ding, Y., 2021. "Augmented Real-Time GARCH: A Joint Model for Returns, Volatility and Volatility of Volatility," Cambridge Working Papers in Economics 2112, Faculty of Economics, University of Cambridge.
    283. Jan Hanousek & Jan Novotný, 2014. "Cenové skoky během finanční nejistoty: od intuice k regulační perspektivě [Price Jumps during Financial Crisis: From Intuition to Financial Regulation]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 32-48.
    284. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    285. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    286. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    287. Maciej Kostrzewski, 2014. "Bayesian DEJD model and detection of asymmetric jumps," Papers 1404.2050, arXiv.org.
    288. Shabir A.A. Saleem & Peter N. Smith & Abdullah Yalaman, 2020. "Analysis of Systematic Risk around Firm-specific News in an Emerging Market using High Frequency Data," Discussion Papers 20/09, Department of Economics, University of York.
    289. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    290. Lin, Tiantian & Liu, Dehong & Zhang, Lili & Lung, Peter, 2019. "The information content of realized volatility of sector indices in China’s stock market," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 625-640.
    291. Federico A. Bugni & Jia Li & Qiyuan Li, 2023. "Permutation‐based tests for discontinuities in event studies," Quantitative Economics, Econometric Society, vol. 14(1), pages 37-70, January.
    292. Youcong Chao & Xiaoqun Liu & Shijun Guo, 2017. "Sign realized jump risk and the cross-section of stock returns: Evidence from China's stock market," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    293. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    294. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2014. "Multi-jumps," MPRA Paper 58175, University Library of Munich, Germany.
    295. Piyachart Phiromswad & Pattanaporn Chatjuthamard & Sirimon Treepongkaruna & Sabin Srivannaboon, 2021. "Jumps and Cojumps analyses of major and minor cryptocurrencies," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-9, February.
    296. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    297. Ji, Qiang & Zhang, Dayong, 2019. "China’s crude oil futures: Introduction and some stylized facts," Finance Research Letters, Elsevier, vol. 28(C), pages 376-380.
    298. Ao Kong & Robert Azencott & Hongliang Zhu & Xindan Li, 2020. "Pattern recognition in micro-trading behaviors before stock price jumps: A framework based on multivariate time series analysis," Papers 2011.04939, arXiv.org, revised Feb 2021.
    299. Jos'e E. Figueroa-L'opez & Yankeng Luo & Cheng Ouyang, 2011. "Small-time expansions for local jump-diffusion models with infinite jump activity," Papers 1108.3386, arXiv.org, revised Jul 2014.
    300. Vitali Alexeev & Mardi Dungey & Wenying Yao, 2016. "Continuous and Jump Betas: Implications for Portfolio Diversification," Econometrics, MDPI, vol. 4(2), pages 1-15, June.
    301. Konstantinos Gkillas & Rangan Gupta & Chi Keung Marco Lau & Muhammad Tahir Suleman, 2020. "Jumps beyond the realms of cricket: India's performance in One Day Internationals and stock market movements," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1109-1127, April.
    302. Chunyang Zhou & Chongfeng Wu & Weidong Xu, 2020. "Incorporating time‐varying jump intensities in the mean‐variance portfolio decisions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 460-478, March.
    303. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    304. Balcilar, Mehmet & Bonato, Matteo & Demirer, Riza & Gupta, Rangan, 2017. "The effect of investor sentiment on gold market return dynamics: Evidence from a nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 51(C), pages 77-84.
    305. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    306. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    307. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2013. "Modelling systemic price cojumps with Hawkes factor models," Papers 1301.6141, arXiv.org, revised Mar 2013.
    308. Huynh, Toan Luu Duc, 2021. "Does Bitcoin React to Trump’s Tweets?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    309. Jean Jacod & Viktor Todorov, 2010. "Do price and volatility jump together?," Papers 1010.4990, arXiv.org.
    310. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.
    311. Weber, Christoph S., 2019. "The effect of central bank transparency on exchange rate volatility," Journal of International Money and Finance, Elsevier, vol. 95(C), pages 165-181.
    312. Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
    313. Song, Yuping & Huang, Jiefei & Zhang, Qichao & Xu, Yang, 2024. "Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China," Economic Modelling, Elsevier, vol. 136(C).
    314. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
    315. Chen, Yan & Zhang, Lei & Bouri, Elie, 2024. "Can a self-exciting jump structure better capture the jump behavior of cryptocurrencies? A comparative analysis with the S&P 500," Research in International Business and Finance, Elsevier, vol. 69(C).
    316. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    317. Brian Basvi, 2024. "Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 674-695, May.
    318. Arnerić Josip, 2020. "Realized density estimation using intraday prices," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 6(1), pages 1-9, May.
    319. Jan Novotný & Giovanni Urga, 2018. "Testing for Co-jumps in Financial Markets," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 118-128.
    320. Nekhili, Ramzi & Bouri, Elie, 2023. "Higher-order moments and co-moments' contribution to spillover analysis and portfolio risk management," Energy Economics, Elsevier, vol. 119(C).
    321. Dumitru, Ana-Maria & Urga, Giovanni, 2016. "Jumps and Information Asymmetry in the US Treasury Market," EconStor Preprints 130148, ZBW - Leibniz Information Centre for Economics.
    322. Hwang, Eunju & Shin, Dong Wan, 2014. "A bootstrap test for jumps in financial economics," Economics Letters, Elsevier, vol. 125(1), pages 74-78.
    323. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Business Applications and State-Level Stock Market Realized Volatility: A Forecasting Experiment," Working Papers 202247, University of Pretoria, Department of Economics.
    324. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    325. William A. Brock & Steven N. Durlauf, 2009. "Adoption Curves and Social Interactions," NBER Working Papers 15065, National Bureau of Economic Research, Inc.
    326. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    327. Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
    328. Zhihong Jian & Zhican Zhu & Jie Zhou & Shuai Wu, 2018. "The Magnet Effect of Circuit Breakers: A role of price jumps and market liquidity," Departmental Working Papers 2018-01, The University of Winnipeg, Department of Economics.
    329. Zhang, Chuanhai & Ma, Huan & Arkorful, Gideon Bruce & Peng, Zhe, 2023. "The impacts of futures trading on volatility and volatility asymmetry of Bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 86(C).
    330. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2014. "A Robust Neighborhood Truncation Approach To Estimation Of Integrated Quarticity," Econometric Theory, Cambridge University Press, vol. 30(1), pages 3-59, February.
    331. YI, Chae-Deug, 2023. "Exchange rate volatility and intraday jump probability with periodicity filters using a local robust variance," Finance Research Letters, Elsevier, vol. 55(PA).
    332. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    333. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
    334. Zhang, Yuan-Yuan & Zhang, Yue-Jun, 2022. "The impact of institutional analyst forecast divergence on crude oil market: Evidence from the mixed frequency models," International Review of Financial Analysis, Elsevier, vol. 84(C).
    335. Tai‐Yong Roh & Alireza Tourani‐Rad & Yahua Xu & Yang Zhao, 2021. "Volatility‐of‐volatility risk in the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 245-265, February.
    336. Brini, Alessio & Lenz, Jimmie, 2024. "Pricing cryptocurrency options with machine learning regression for handling market volatility," Economic Modelling, Elsevier, vol. 136(C).
    337. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    338. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
    339. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    340. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    341. Liu, Yuna, 2016. "Essays on Stock Market Integration - On Stock Market Efficiency, Price Jumps and Stock Market Correlations," Umeå Economic Studies 926, Umeå University, Department of Economics.
    342. Hui Qu & Tianyang Wang & Peng Shangguan & Mengying He, 2024. "Revisiting the puzzle of jumps in volatility forecasting: The new insights of high‐frequency jump intensity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 218-251, February.
    343. Caporin, Massimiliano & Kolokolov, Alexey & Renò, Roberto, 2016. "Systemic co-jumps," SAFE Working Paper Series 149, Leibniz Institute for Financial Research SAFE.
    344. Yin Liao, 2012. "Does Modeling Jumps Help? A Comparison of Realized Volatility Models for Risk Prediction," CAMA Working Papers 2012-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    345. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    346. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    347. Liu, Xiaoqun & Zhang, Yuchen & Tian, Mengqiao & Chao, Youcong, 2023. "Financial distress and jump tail risk: Evidence from China's listed companies," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 316-336.
    348. Angelo Ranaldo & Paul Söderlind, 2007. "Safe Haven Currencies," University of St. Gallen Department of Economics working paper series 2007 2007-22, Department of Economics, University of St. Gallen.
    349. Hainaut, Donatien, 2016. "Impact of volatility clustering on equity indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 367-381.
    350. Mardi Dungey & Lyudmyla Hvozdyk, 2010. "Cojumping: Evidence from the US Treasury Bond and Futures Markets," NCER Working Paper Series 56, National Centre for Econometric Research, revised 20 Jul 2010.
    351. Dräger, Lena & Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The Long Memory of Equity Volatility and the Macroeconomy: International Evidence," Hannover Economic Papers (HEP) dp-667, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    352. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    353. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    354. Jean-Yves Gnabo & J�rôme Lahaye & S�bastien Laurent & Christelle Lecourt, 2012. "Do jumps mislead the FX market?," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1521-1532, October.
    355. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    356. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    357. Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2020. "Do Bitcoin and other cryptocurrencies jump together?," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 396-409.
    358. Andrey Rafalson, 2012. "Bootstrap inference about integrated volatility (in Russian)," Quantile, Quantile, issue 10, pages 91-108, December.
    359. Dimitrios I. Vortelinos, 2015. "Out‐of‐sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini‐futures markets," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 58-67, November.
    360. Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
    361. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    362. Figueroa-López, José E. & Mancini, Cecilia, 2019. "Optimum thresholding using mean and conditional mean squared error," Journal of Econometrics, Elsevier, vol. 208(1), pages 179-210.
    363. Vortelinos, Dimitrios I., 2014. "Non-parametric analysis of equity arbitrage," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 199-216.
    364. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    365. John Elder, Hong Miao, and Sanjay Ramchander, 2013. "Jumps in Oil Prices: The Role of Economic News," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    366. Alexander Alvarez & Fabien Panloup & Monique Pontier & Nicolas Savy, 2012. "Estimation of the instantaneous volatility," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 27-59, April.
    367. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    368. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2006. "The Information Content Of Treasury Bond Options Concerning Future Volatility And Price Jumps," Working Paper 1188, Economics Department, Queen's University.
    369. Adam D. Bull, 2013. "Estimating time-changes in noisy L\'evy models," Papers 1312.5911, arXiv.org, revised Nov 2014.
    370. Matteo Bonato & Rangan Gupta & Chi Keung Marco Lau & Shixuan Wang, 2019. "Moments-Based Spillovers across Gold and Oil Markets," Working Papers 201966, University of Pretoria, Department of Economics.
    371. Lu, Xinjie & Ma, Feng & Wang, Jianqiong & Dong, Dayong, 2022. "Singlehanded or joint race? Stock market volatility prediction," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 734-754.
    372. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    373. Odusami, Babatunde O, 2021. "Forecasting the Value-at-Risk of REITs using realized volatility jump models," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    374. Hussain, Syed Mujahid & Ahmad, Nisar & Ahmed, Sheraz, 2023. "Applications of high-frequency data in finance: A bibliometric literature review," International Review of Financial Analysis, Elsevier, vol. 89(C).
    375. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    376. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    377. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2017. "The Long Memory of Equity Volatility: International Evidence," Hannover Economic Papers (HEP) dp-614, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    378. Barunik, Jozef & Barunikova, Michaela, 2015. "Revisiting the long memory dynamics of implied-realized volatility relation: A new evidence from wavelet band spectrum regression," FinMaP-Working Papers 43, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    379. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch & Seong-Min Yoon, 2020. "OPEC News and Jumps in the Oil Market," Working Papers 202053, University of Pretoria, Department of Economics.
    380. Sanjay Sehgal & Neharika Sobti & Florent Diesting, 2021. "Who leads in intraday gold price discovery and volatility connectedness: Spot, futures, or exchange‐traded fund?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1092-1123, July.
    381. Jan Novotny, 2010. "Were Stocks during the Financial Crisis More Jumpy: A Comparative Study," CERGE-EI Working Papers wp416, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    382. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Post-Print hal-01393994, HAL.
    383. Gnabo, Jean-Yves & Hvozdyk, Lyudmyla & Lahaye, Jérôme, 2014. "System-wide tail comovements: A bootstrap test for cojump identification on the S&P 500, US bonds and currencies," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 147-174.
    384. Ben-zhang Yang & Jia Yue & Ming-hui Wang & Nan-jing Huang, 2018. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Papers 1805.06226, arXiv.org, revised May 2018.
    385. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    386. Dungey, Mardi & Hvozdyk, Lyudmyla, 2010. "Cojumping: Evidence from the US Treasury Bond and Future Markets (Discussion Paper 2010-06)," Working Papers 10450, University of Tasmania, Tasmanian School of Business and Economics, revised 14 Jul 2010.
    387. Fung, Scott & Obaid, Khaled & Tsai, Shih-Chuan, 2024. "Information acquisition and processing skills of institutions and retail investors around information shocks," Journal of Empirical Finance, Elsevier, vol. 77(C).
    388. Dion Bongaerts & Richard Roll & Dominik Rösch & Mathijs van Dijk & Darya Yuferova, 2022. "How Do Shocks Arise and Spread Across Stock Markets? A Microstructure Perspective," Management Science, INFORMS, vol. 68(4), pages 3071-3089, April.
    389. Masato Ubukata, 2023. "Variance Risk Premium Components in Japan for Predictability: Evidence from the COVID-19 Pandemic," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 15(8), pages 1-27, August.
    390. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    391. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    392. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    393. Chan, Kam Fong & Powell, John G. & Treepongkaruna, Sirimon, 2014. "Currency jumps and crises: Do developed and emerging market currencies jump together?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 132-157.
    394. Li, Meiyu & Gençay, Ramazan & Xue, Yi, 2016. "Is it Brownian or fractional Brownian motion?," Economics Letters, Elsevier, vol. 145(C), pages 52-55.
    395. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    396. Bruce Mizrach, 2007. "Recovering Probabilistic Information From Options Prices and the Underlying," Departmental Working Papers 200702, Rutgers University, Department of Economics.
    397. Frowin Schulz & Karl Mosler, 2011. "The effect of infrequent trading on detecting price jumps," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 27-58, March.
    398. Gabriel Natividad & Olav Sorenson, 2015. "Competitive Threats, Constraint, and Contagion in the Multiunit Firm," Organization Science, INFORMS, vol. 26(6), pages 1721-1733, December.
    399. Yousaf, Imran & Jareño, Francisco & Esparcia, Carlos, 2022. "Tail connectedness between lending/borrowing tokens and commercial bank stocks," International Review of Financial Analysis, Elsevier, vol. 84(C).
    400. Degiannakis, Stavros & Filis, George, 2023. "Oil price assumptions for macroeconomic policy," Energy Economics, Elsevier, vol. 117(C).
    401. Michal Czerwonko & Stylianos Perrakis, 2016. "Portfolio Selection with Transaction Costs and Jump-Diffusion Asset Dynamics II: Economic Implications," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-28, December.
    402. Liu, Guangying & Zhang, Xinsheng, 2011. "Power variation of fractional integral processes with jumps," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 962-972, August.
    403. Tim Bollerslev & Viktor Todorov, 2010. "Estimation of Jump Tails," CREATES Research Papers 2010-16, Department of Economics and Business Economics, Aarhus University.
    404. Schulz, Frowin C., 2010. "Explaining time-varying risk of electricity forwards: trading activity and news announcements," Discussion Papers in Econometrics and Statistics 8/10, University of Cologne, Institute of Econometrics and Statistics.
    405. Dinesh Gajurel & Mardi Dungey & Wenying Yao & Nagaratnam Jeyasreedharan, 2020. "Jump Risk in the US Financial Sector," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 331-349, September.
    406. Liao, Yin & Pan, Zheyao, 2022. "Extreme risk connectedness among global major financial institutions: Links to globalization and emerging market fear," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    407. Jian, Zhihong & Zhu, Zhican & Zhou, Jie & Wu, Shuai, 2020. "Intraday price jumps, market liquidity, and the magnet effect of circuit breakers," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 168-186.
    408. Cheng Jiang & Kose John & David Larsen, 2021. "R&D investment intensity and jump volatility of stock price," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 235-277, July.
    409. Yuping Song & Weijie Hou & Zhengyan Lin, 2022. "Double Smoothed Volatility Estimation of Potentially Non‐stationary Jump‐diffusion Model of Shibor," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 53-82, January.
    410. Neda Todorova & Michael Soucek & Eduardo Roca, 2015. "Volatility spillovers from international commodity markets to the Australian equity market," Discussion Papers in Finance finance:201505, Griffith University, Department of Accounting, Finance and Economics.
    411. PeiLin Hsieh & QinQin Zhang & Yajun Wang, 2018. "Jump risk and option liquidity in an incomplete market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1334-1369, November.
    412. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    413. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    414. Christopher Krauss & Klaus Herrmann, 2017. "On the Power and Size Properties of Cointegration Tests in the Light of High-Frequency Stylized Facts," JRFM, MDPI, vol. 10(1), pages 1-24, February.
    415. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    416. Niu, Zilong, 2020. "Essays in empirical asset pricing and international finance," Other publications TiSEM 986cefd5-4d2b-4d5f-be7a-2, Tilburg University, School of Economics and Management.
    417. Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.
    418. Aitor Ciarreta & Peru Muniainy & Ainhoa Zarraga, 2017. "Modelling Realized Volatility in Electricity Spot Prices: New insights and Application to the Japanese Electricity Market," ISER Discussion Paper 0991, Institute of Social and Economic Research, Osaka University.
    419. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    420. Chen, Xi & Wang, Junbo & Wu, Chunchi, 2022. "Jump and volatility risk in the cross-section of corporate bond returns," Journal of Financial Markets, Elsevier, vol. 60(C).
    421. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    422. Grobys, Klaus & Huynh, Toan Luu Duc, 2022. "When Tether says “JUMP!” Bitcoin asks “How low?”," Finance Research Letters, Elsevier, vol. 47(PA).
    423. Alexeev, Vitali & Dungey, Mardi & Yao, Wenying, 2017. "Time-varying continuous and jump betas: The role of firm characteristics and periods of stress," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 1-19.
    424. Ao Kong & Hongliang Zhu & Robert Azencott, 2019. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Papers 1912.07165, arXiv.org.
    425. Silja Kinnebrock & Mark Podolskij, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," OFRC Working Papers Series 2007fe03, Oxford Financial Research Centre.
    426. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    427. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    428. Wymer Clifford R., 2012. "Continuous-Tme Econometrics of Structural Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(2), pages 1-28, April.
    429. Benoît Sévi & César Baena, 2013. "The explanatory power of signed jumps for the risk-return tradeoff," Economics Bulletin, AccessEcon, vol. 33(2), pages 1029-1046.
    430. Prodromou, Tina & Westerholm, P. Joakim, 2022. "Are high frequency traders responsible for extreme price movements?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 94-111.
    431. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
    432. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    433. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    434. Gongyue Jiang & Gaoxiu Qiao & Feng Ma & Lu Wang, 2022. "Directly pricing VIX futures with observable dynamic jumps based on high‐frequency VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1518-1548, August.
    435. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    436. Jing, Bing-Yi & Kong, Xin-Bing & Liu, Zhi & Mykland, Per, 2012. "On the jump activity index for semimartingales," Journal of Econometrics, Elsevier, vol. 166(2), pages 213-223.
    437. Adam E Clements & Yin Liao, 2013. "Modeling and forecasting realized volatility: getting the most out of the jump component," NCER Working Paper Series 93, National Centre for Econometric Research.
    438. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    439. Benoît Sévi & César Baena, 2011. "Brownian motion vs. pure-jump processes for individual stocks," Economics Bulletin, AccessEcon, vol. 31(4), pages 3138-3152.
    440. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    441. Bruno Solnik & Thaisiri Watewai, 2016. "International Correlation Asymmetries: Frequent-but-Small and Infrequent-but-Large Equity Returns," PIER Discussion Papers 31, Puey Ungphakorn Institute for Economic Research.
    442. Rama Cont & Cecilia Mancini, 2010. "Nonparametric tests for pathwise properties of semimartingales," Working Papers - Mathematical Economics 2010-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    443. Shixuan Wang & Rangan Gupta & Matteo Bonato & Oguzhan Cepni, 2022. "The Effects of Conventional and Unconventional Monetary Policy Shocks on US REITs Moments: Evidence from VARs with Functional Shocks," Working Papers 202219, University of Pretoria, Department of Economics.
    444. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    445. Song, Shijia & Li, Handong, 2023. "Is a co-jump in prices a sparse jump?," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    446. Nattapong Laksomya & John G. Powell & Suparatana Tanthanongsakkun & Sirimon Treepongkaruna, 2018. "Are Internet message boards used to facilitate stock price manipulation? Evidence from an emerging market, Thailand," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 275-309, November.
    447. Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
    448. Talpsepp, Tõnn & Rieger, Marc Oliver, 2010. "Explaining asymmetric volatility around the world," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 938-956, December.
    449. Hellström, Jörgen & Lönnbark, Carl, 2011. "Identi�cation of jumps in �financial price series," MPRA Paper 30977, University Library of Munich, Germany.
    450. Jozef Barunik & Michaela Barunikova, 2012. "Revisiting the fractional cointegrating dynamics of implied-realized volatility relation with wavelet band spectrum regression," Papers 1208.4831, arXiv.org, revised Feb 2013.
    451. Mingmian Cheng & Norman R. Swanson, 2019. "Fixed and Long Time Span Jump Tests: New Monte Carlo and Empirical Evidence," Econometrics, MDPI, vol. 7(1), pages 1-32, March.
    452. Giacomo Toscano & Maria Cristina Recchioni, 2022. "Bias-optimal vol-of-vol estimation: the role of window overlapping," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 137-185, June.
    453. Tian, Xiao & Duong, Huu Nhan & Kalev, Petko S., 2019. "Information content of the limit order book for crude oil futures price volatility," Energy Economics, Elsevier, vol. 81(C), pages 584-597.
    454. Ji‐Eun Choi & Dong Wan Shin, 2018. "Forecasts for leverage heterogeneous autoregressive models with jumps and other covariates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 691-704, September.
    455. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Janeway Institute Working Papers 2423, Faculty of Economics, University of Cambridge.
    456. Ping, Yuan & Li, Rui, 2018. "Forecasting realized volatility based on the truncated two-scales realized volatility estimator (TTSRV): Evidence from China's stock market," Finance Research Letters, Elsevier, vol. 25(C), pages 222-229.
    457. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    458. Shi, Xiuhong & Kobayashi, Masahito, 2009. "Testing for jumps in the EGARCH process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2797-2808.
    459. Bent Jesper Christensen & Petra Posedel, 2010. "The Risk-Return Tradeoff and Leverage Effect in a Stochastic Volatility-in-Mean Model," CREATES Research Papers 2010-50, Department of Economics and Business Economics, Aarhus University.
    460. Masato Ubukata, 2022. "A time-varying jump tail risk measure using high-frequency options data," Empirical Economics, Springer, vol. 63(5), pages 2633-2653, November.
    461. Benoît Sévi & César Baena, 2012. "A reassessment of the risk-return tradeoff at the daily horizon," Economics Bulletin, AccessEcon, vol. 32(1), pages 190-203.
    462. Wu, Feng & Myers, Robert J. & Guan, Zhengfei & Wang, Zhiguang, 2015. "Risk-adjusted implied volatility and its performance in forecasting realized volatility in corn futures prices," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 260-274.
    463. Jawadi, Fredj & Bourghelle, David & Rozin, Philippe & Cheffou, Abdoulkarim Idi & Uddin, Gazi Salah, 2024. "Sentiment and energy price volatility: A nonlinear high frequency analysis," Energy Economics, Elsevier, vol. 133(C).
    464. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    465. Dai, Xingyu & Li, Matthew C. & Xiao, Ling & Wang, Qunwei, 2022. "COVID-19 and China commodity price jump behavior: An information spillover and wavelet coherency analysis," Resources Policy, Elsevier, vol. 79(C).
    466. Zhao, Wandi & Gao, Yang, 2024. "Dynamic patterns and the latent community structure of sectoral volatility and jump risk contagion," Emerging Markets Review, Elsevier, vol. 59(C).
    467. Chen, Chin-Ho, 2019. "Downside jump risk and the levels of futures-cash basis," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    468. Todorova, Neda & Clements, Adam E., 2018. "The volatility-volume relationship in the LME futures market for industrial metals," Resources Policy, Elsevier, vol. 58(C), pages 111-124.
    469. Pirino, Davide, 2009. "Jump detection and long range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1150-1156.
    470. Ahdi Noomen Ajmi & Roula Inglesi-Lotz, 2021. "Revisiting the Kuznets Curve Hypothesis for Tunisia: Carbon Dioxide vs. Ecological Footprint," Working Papers 202171, University of Pretoria, Department of Economics.
    471. Pattanaporn Chatjuthamard & Pavitra Jindahra & Pattarake Sarajoti & Sirimon Treepongkaruna, 2021. "The effect of COVID‐19 on the global stock market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4923-4953, September.
    472. Hassan Zada & Huma Maqsood & Shakeel Ahmed & Muhammad Zeb Khan, 2023. "Information shocks, market returns and volatility: a comparative analysis of developed equity markets in Asia," SN Business & Economics, Springer, vol. 3(1), pages 1-22, January.
    473. Ahn, Yongkil & Tsai, Shih-Chuan, 2021. "What factors are associated with stock price jumps in high frequency?," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    474. Asgharian, Hossein & Nossman, Marcus, 2011. "Risk contagion among international stock markets," Journal of International Money and Finance, Elsevier, vol. 30(1), pages 22-38, February.
    475. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
    476. Wang, Jianxin & Yang, Minxian, 2009. "Asymmetric volatility in the foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 597-615, October.
    477. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis," Working Papers 202114, University of Pretoria, Department of Economics.
    478. Ullrich, Carl J., 2012. "Realized volatility and price spikes in electricity markets: The importance of observation frequency," Energy Economics, Elsevier, vol. 34(6), pages 1809-1818.
    479. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    480. Evans, Kevin P., 2011. "Intraday jumps and US macroeconomic news announcements," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2511-2527, October.
    481. Bin Wu & Pengzhan Chen & Wuyi Ye, 2021. "Jump activity analysis of the equity index and the corresponding volatility: Evidence from the Chinese market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1055-1073, July.
    482. Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.
    483. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    484. Anders Eriksson, 2010. "A Levy process for the GNIG probability law with 2nd order stochastic volatility and applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 75-90.
    485. Richard Mawulawoe Ahadzie & Nagaratnam Jeyasreedharan, 2024. "Higher‐order moments and asset pricing in the Australian stock market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 75-128, March.
    486. Julien Chevallier & Benoît Sévi, 2011. "On the volatility-volume relationship in energy futures markets using intraday data," Working Papers hal-04140997, HAL.
    487. Ronald Gallant, A. & Tauchen, George, 2018. "Exact Bayesian moment based inference for the distribution of the small-time movements of an Itô semimartingale," Journal of Econometrics, Elsevier, vol. 205(1), pages 140-155.
    488. Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.
    489. Maria Čuljak & Josip Arnerić & Ante Žigman, 2022. "Is Jump Robust Two Times Scaled Estimator Superior among Realized Volatility Competitors?," Mathematics, MDPI, vol. 10(12), pages 1-11, June.
    490. Mohammad Abu Sayeed & Mardi Dungey & Wenying Yao, 2018. "High-frequency Characterisation of Indian Banking Stocks," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 213-238, August.
    491. Gajurel, Dinesh & Chowdhury, Biplob, 2020. "Realized volatility, jump and beta: evidence from Canadian stock market," Working Papers 2020-11, University of Tasmania, Tasmanian School of Business and Economics.
    492. Martin, Ryan & Ouyang, Cheng & Domagni, Francois, 2018. "‘Purposely misspecified’ posterior inference on the volatility of a jump diffusion process," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 106-113.
    493. Gabriel Natividad & Olav Sorenson, 2011. "Spread Too Thin: Uncertainty Shocks and Diseconomies of Scope," Working Papers 11-04, NET Institute.
    494. Song, Xiaodong & Johnson, Paul & Duck, Peter, 2021. "A novel combination of Mycielski–Markov, regime switching and jump diffusion models for solar energy," Applied Energy, Elsevier, vol. 301(C).
    495. Aida Karmous & Heni Boubaker & Lotfi Belkacem, 2021. "Forecasting Volatility for an Optimal Portfolio with Stylized Facts Using Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 461-482, August.
    496. González-Urteaga, Ana & Muga, Luis & Santamaria, Rafael, 2015. "Momentum and default risk. Some results using the jump component," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 185-193.
    497. Liu, Yuna, 2016. "Stock exchange integration and price jump risks - The case of the OMX Nordic exchange mergers," Umeå Economic Studies 925, Umeå University, Department of Economics.
    498. Vortelinos, Dimitrios I. & Lakshmi, Geeta, 2015. "Market risk of BRIC Eurobonds in the financial crisis period," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 295-310.
    499. Sun, Bianxia & Gao, Yang, 2020. "Market liquidity and macro announcement around intraday jumps: Evidence from Chinese stock index futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    500. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    501. Huang, Darien & Schlag, Christian & Shaliastovich, Ivan & Thimme, Julian, 2018. "Volatility-of-volatility risk," SAFE Working Paper Series 210, Leibniz Institute for Financial Research SAFE.
    502. Hassan Zada & Arshad Hassan & Wing-Keung Wong, 2021. "Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets," Economies, MDPI, vol. 9(2), pages 1-26, June.
    503. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "El Nino, La Nina, and Forecastability of the Realized Variance of Agricultural Commodity Prices: Evidence from a Machine Learning Approach," Working Papers 202179, University of Pretoria, Department of Economics.
    504. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    505. Liu, Zhenya & Lu, Shanglin & Li, Bo & Wang, Shixuan, 2023. "Time series momentum and reversal: Intraday information from realized semivariance," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 54-77.
    506. Wright, Jonathan H. & Zhou, Hao, 2009. "Bond risk premia and realized jump risk," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2333-2345, December.
    507. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    508. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    509. Federico A. Bugni & Jia Li & Qiyuan Li, 2020. "Permutation-based tests for discontinuities in event studies," Papers 2007.09837, arXiv.org, revised Jul 2022.
    510. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    511. Nirei, Makoto & Sushko, Vladyslav, 2011. "Jumps in foreign exchange rates and stochastic unwinding of carry trades," International Review of Economics & Finance, Elsevier, vol. 20(1), pages 110-127, January.
    512. Haigang Zhou & John Zhu, 2011. "Jump risk and cross section of stock returns: evidence from China’s stock market," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 35(3), pages 309-331, July.
    513. Da Fonseca, José & Ignatieva, Katja & Ziveyi, Jonathan, 2016. "Explaining credit default swap spreads by means of realized jumps and volatilities in the energy market," Energy Economics, Elsevier, vol. 56(C), pages 215-228.
    514. Buncic, Daniel & Gisler, Katja I.M., 2017. "The role of jumps and leverage in forecasting volatility in international equity markets," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 1-19.
    515. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    516. Lennart Ante & Ingo Fiedler & Jan Marius Willruth & Fred Steinmetz, 2023. "A Systematic Literature Review of Empirical Research on Stablecoins," FinTech, MDPI, vol. 2(1), pages 1-14, January.
    517. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    518. Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
    519. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    520. Ignatieva, Katja & Wong, Patrick, 2022. "Modelling high frequency crude oil dynamics using affine and non-affine jump–diffusion models," Energy Economics, Elsevier, vol. 108(C).
    521. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    522. Atak, Alev & Kapetanios, George, 2013. "A factor approach to realized volatility forecasting in the presence of finite jumps and cross-sectional correlation in pricing errors," Economics Letters, Elsevier, vol. 120(2), pages 224-228.
    523. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    524. Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
    525. Bollerslev, Tim & Todorov, Viktor, 2014. "Time-varying jump tails," Journal of Econometrics, Elsevier, vol. 183(2), pages 168-180.
    526. Jan Novotn?? & Jan Hanousek & Ev??en Ko??enda, 2013. "Price Jump Indicators: Stock Market Empirics During the Crisis," William Davidson Institute Working Papers Series wp1050, William Davidson Institute at the University of Michigan.
    527. Jawadi, Fredj & Louhichi, Waël & Idi Cheffou, Abdoulkarim, 2015. "Testing and modeling jump contagion across international stock markets: A nonparametric intraday approach," Journal of Financial Markets, Elsevier, vol. 26(C), pages 64-84.
    528. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
    529. Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
    530. Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).
    531. Shimizu, Yasutaka, 2009. "Functional estimation for Lvy measures of semimartingales with Poissonian jumps," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1073-1092, July.
    532. Juho Kanniainen & Ye Yue, 2019. "The Arrival of News and Return Jumps in Stock Markets: A Nonparametric Approach," Papers 1901.02691, arXiv.org.
    533. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay & Villupuram, Sriram, 2014. "Currency jumps, cojumps and the role of macro news," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 42-62.
    534. Odusami, Babatunde O., 2021. "Volatility jumps and their determinants in REIT returns," Journal of Economics and Business, Elsevier, vol. 113(C).
    535. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    536. Jan Posp'iv{s}il & Tom'av{s} Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Papers 1912.06709, arXiv.org.
    537. Maciej Kostrzewski, 2012. "Bayesian Pricing of the Optimal-Replication Strategy for European Option in the JD(M)J Model," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 12, pages 53-72.
    538. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    539. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    540. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2020. "Uncertainty due to Infectious Diseases and Forecastability of the Realized Variance of US REITs: A Note," Working Papers 202099, University of Pretoria, Department of Economics.
    541. Vince Vella & Wing Lon Ng, 2015. "A Dynamic Fuzzy Money Management Approach for Controlling the Intraday Risk‐Adjusted Performance of AI Trading Algorithms," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(2), pages 153-178, April.
    542. Chourdakis, Kyriakos & Dotsis, George, 2011. "Maximum likelihood estimation of non-affine volatility processes," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 533-545, June.
    543. Ysusi Carla, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
    544. Bjursell, Johan & Gentle, James E. & Wang, George H.K., 2015. "Inventory announcements, jump dynamics, volatility and trading volume in U.S. energy futures markets," Energy Economics, Elsevier, vol. 48(C), pages 336-349.
    545. Behfar, Stefan Kambiz, 2016. "Long memory behavior of returns after intraday financial jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 716-725.
    546. Xin Huang, 2018. "Macroeconomic news announcements, systemic risk, financial market volatility, and jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 513-534, May.
    547. Anabelle Couleau & Teresa Serra & Philip Garcia, 2020. "Are Corn Futures Prices Getting “Jumpy”?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 569-588, March.
    548. Zhou, Dong-hai & Liu, Xiao-xing, 2023. "Do world stock markets “jump” together? A measure of high-frequency volatility risk spillover networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    549. Yingjie Dong & Yiu-Kuen Tse, 2017. "Business Time Sampling Scheme with Applications to Testing Semi-Martingale Hypothesis and Estimating Integrated Volatility," Econometrics, MDPI, vol. 5(4), pages 1-19, November.
    550. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.
    551. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    552. Zeng, Qing & Lu, Xinjie & Li, Tao & Wu, Lan, 2022. "Jumps and stock market variance during the COVID-19 pandemic: Evidence from international stock markets," Finance Research Letters, Elsevier, vol. 48(C).
    553. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    554. Pukthuanthong, Kuntara & Roll, Richard, 2012. "Internationally correlated jumps," Working Paper Series 1436, European Central Bank.
    555. Zhang, Yi & Zhou, Long & Chen, Yajiao & Liu, Fang, 2022. "The contagion effect of jump risk across Asian stock markets during the Covid-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    556. Donggyu Kim & Minseog Oh, 2024. "Dynamic Realized Minimum Variance Portfolio Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
    557. Gao, Jun & Gao, Xiang & Gu, Chen, 2023. "Forecasting European stock volatility: The role of the UK," International Review of Financial Analysis, Elsevier, vol. 89(C).
    558. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    559. Paweł Kliber, 2019. "Continuous and jump changes in prices processes in the selected stock markets," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 54, pages 333-344.
    560. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    561. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    562. Zhou, Dong-hai & Liu, Xiao-xing & Tang, Chun & Yang, Guang-yi, 2023. "Time-varying risk spillovers in Chinese stock market – New evidence from high-frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    563. Guangying Liu & Meiyao Liu & Jinguan Lin, 2022. "Testing the volatility jumps based on the high frequency data," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 669-694, September.
    564. Torben B. Rasmussen, 2009. "Jump Testing and the Speed of Market Adjustment," CREATES Research Papers 2009-08, Department of Economics and Business Economics, Aarhus University.
    565. Jos'e E. Figueroa-L'opez & Cecilia Mancini, 2017. "Optimum thresholding using mean and conditional mean square error," Papers 1708.04339, arXiv.org.
    566. Hellström, Jörgen & Lönnbark, Carl, 2011. "Identification of jumps in financial price series," Umeå Economic Studies 827, Umeå University, Department of Economics.
    567. Figueroa-López, José E. & Gong, Ruoting & Houdré, Christian, 2012. "Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1808-1839.
    568. David S. Bates, 2016. "How Crashes Develop: Intradaily Volatility and Crash Evolution," NBER Working Papers 22028, National Bureau of Economic Research, Inc.
    569. Adam Clements & Yin Liao, 2013. "The dynamics of co-jumps, volatility and correlation," NCER Working Paper Series 91, National Centre for Econometric Research.
    570. Huang, Henry H. & Wang, Kent & Wang, Zhanglong, 2016. "A test of efficiency for the S&P 500 index option market using the generalized spectrum method," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 52-70.
    571. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    572. Huang, Xiuqi & Meng, Yongqiang, 2024. "Information shock, market reaction, and stock message board information diffusion," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 180-192.

  36. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Yu-Min Yen, 2013. "Testing Jumps via False Discovery Rate Control," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    2. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    3. Ralf Becker & Adam Clements, 2010. "Volatility and the role of order book structure," NCER Working Paper Series 64, National Centre for Econometric Research.
    4. Imane El Ouadghiri & Remzi Uctum, 2016. "Jumps in equilibrium prices and asymmetric news in foreign exchange markets," Post-Print hal-01386027, HAL.
    5. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    6. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    7. Réveillac, Anthony, 2009. "Estimation of quadratic variation for two-parameter diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1652-1672, May.
    8. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2019. "Forecasting Realized Volatility of Agricultural Commodities," MPRA Paper 96267, University Library of Munich, Germany.
    9. Tim Bollerslev & Viktor Todorov, 2010. "Tails, Fears and Risk Premia," Working Papers 10-33, Duke University, Department of Economics.
    10. Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
    11. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
    12. Dimitrios Karyampas & Paola Paiardini, 2011. "Probability of Informed Trading and Volatility for an ETF," Birkbeck Working Papers in Economics and Finance 1101, Birkbeck, Department of Economics, Mathematics & Statistics.
    13. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    14. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
    15. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    16. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    17. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2010. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," Working Papers 10-06, Duke University, Department of Economics.
    18. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    19. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    20. Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
    21. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    22. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    23. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
    24. Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2006. "On the Sensitivity of Firms' Investment to Cash Flow and Uncertainty," Boston College Working Papers in Economics 638, Boston College Department of Economics, revised 26 Apr 2008.
    25. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    26. Ng, F.C. & Li, W.K. & Yu, Philip L.H., 2016. "Diagnostic checking of the vector multiplicative error model," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 86-97.
    27. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.
    28. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    29. Sankar, Ganesh & Ramachandran, Shankar & Lukose P J, Jijo, 2020. "Dynamics of variance risk premium: Evidence from India," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 321-334.
    30. Da Fonseca, José & Ignatieva, Katja, 2019. "Jump activity analysis for affine jump-diffusion models: Evidence from the commodity market," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 45-62.
    31. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    32. Gao, Ya & Han, Xing & Li, Youwei & Xiong, Xiong, 2019. "Overnight Momentum, Informational Shocks, and Late-Informed Trading in China," MPRA Paper 96784, University Library of Munich, Germany.
    33. Wang, Bin & Zheng, Xu, 2022. "Testing for the presence of jump components in jump diffusion models," Journal of Econometrics, Elsevier, vol. 230(2), pages 483-509.
    34. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    35. Radu LUPU & Alexandra MATEESCU & Mihai MITRACHE, 2017. "Analysis of Macroeconomic Events Impact Using the Event Study Methodology," Hyperion Economic Journal, Faculty of Economic Sciences, Hyperion University of Bucharest, Romania, vol. 5(2), pages 3-13, June.
    36. Adam Albogatchiev & Jean-Sébastien Fontaine & Jabir Sandhu & Reginald Xie, 2018. "The Impact of Surprising Monetary Policy Announcements on Exchange Rate Volatility," Staff Analytical Notes 2018-39, Bank of Canada.
    37. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    38. Nkwoma John Inekwe, 2016. "Financial uncertainty, risk aversion and monetary policy," Empirical Economics, Springer, vol. 51(3), pages 939-961, November.
    39. Vit Bubak, 2010. "Forecasting the Quantiles of Daily Equity Returns Using Realized Volatility: Evidence from the Czech Stock Market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00650666, HAL.
    40. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    41. Inekwe John Nkwoma, 2014. "Business Cycle Variability and Growth Linkage," Monash Economics Working Papers 38-14, Monash University, Department of Economics.
    42. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    43. Duan, Yinying & Chen, Wang & Zeng, Qing & Liu, Zhicao, 2018. "Leverage effect, economic policy uncertainty and realized volatility with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 148-154.
    44. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    45. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    46. Shahzad, Syed Jawad Hussain & Raza, Naveed & Balcilar, Mehmet & Ali, Sajid & Shahbaz, Muhammad, 2017. "Can economic policy uncertainty and investors sentiment predict commodities returns and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 208-218.
    47. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Post-Print hal-01474249, HAL.
    48. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    49. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    50. Liu, Wenwen & Gui, Yiming & Qiao, Gaoxiu, 2022. "Dynamics lead-lag relationship of jumps among Chinese stock index and futures market during the Covid-19 epidemic," Research in International Business and Finance, Elsevier, vol. 61(C).
    51. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    52. Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2014. "Precious Metals Under the Microscope: A High-Frequency Analysis," Working Papers on Finance 1409, University of St. Gallen, School of Finance.
    53. Peter Christoffersen & Bruno Feunou & Yoontae Jeon, 2014. "Option Valuation with Observable Volatility and Jump Dynamics," CREATES Research Papers 2015-07, Department of Economics and Business Economics, Aarhus University.
    54. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    55. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    56. Viktor Todorov & George Tauchen & Iaryna Grynkiv, 2011. "Volatility Activity: Specification and Estimation," Working Papers 11-23, Duke University, Department of Economics.
    57. Basel M. A. Awartani, 2008. "Forecasting volatility with noisy jumps: an application to the Dow Jones Industrial Average stocks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 267-278.
    58. M. Podolskij & D. Ziggel, 2010. "New tests for jumps in semimartingale models," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 15-41, April.
    59. Ourania Theodosiadou & Sotiris Skaperas & George Tsaklidis, 2017. "Change Point Detection and Estimation of the Two-Sided Jumps of Asset Returns Using a Modified Kalman Filter," Risks, MDPI, vol. 5(1), pages 1-14, March.
    60. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    61. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    62. Podolskij, Mark & Vetter, Mathias, 2008. "Bipower-type estimation in a noisy diffusion setting," Technical Reports 2008,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    63. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    64. Lam, K.P. & Ng, H.S., 2009. "Intra-daily information of range-based volatility for MEM-GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2625-2632.
    65. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    66. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    67. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    68. Lahiri, Ananya & Sen, Rituparna, 2020. "Fractional Brownian markets with time-varying volatility and high-frequency data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 91-107.
    69. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    70. Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
    71. Dungey, Mardi & Luciani, Matteo & Veredas, David, 2012. "Ranking systemically important financial institutions," Working Papers 15473, University of Tasmania, Tasmanian School of Business and Economics, revised 21 Nov 2012.
    72. Virgil DAMIAN & Cosmin – Octavian CEPOI, 2016. "Volatility Estimators With High-Frequency Data From Bucharest Stock Exchange," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 247-264.
    73. Lavička, H. & Lichard, T. & Novotný, J., 2016. "Sand in the wheels or wheels in the sand? Tobin taxes and market crashes," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 328-342.
    74. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    75. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    76. Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
    77. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    78. Pan, Zhiyuan & Shuai, Jiangyu & Liang, Zhilei & Sun, Xianchao, 2022. "Jump dynamics, spillover effect and option valuation," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    79. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    80. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    81. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    82. Maslyuk-Escobedo, Svetlana & Rotaru, Kristian & Dokumentov, Alexander, 2017. "News sentiment and jumps in energy spot and futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 186-210.
    83. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized Volatility or Price Range: Evidence from a discrete simulation of the continuous time diffusion process," MPRA Paper 80489, University Library of Munich, Germany.
    84. Schulz, Frowin C., 2010. "Robust estimation of integrated variance and quarticity under flat price and no trading bias," Discussion Papers in Econometrics and Statistics 4/10, University of Cologne, Institute of Econometrics and Statistics.
    85. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," PIER Working Paper Archive 05-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    86. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "High-Frequency Jump Tests: Which Test Should We Use?," Papers 1708.09520, arXiv.org, revised Jan 2020.
    87. Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
    88. Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010. "Trading activity, realized volatility and jumps," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
    89. Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2020. "Volatility Forecasting in European Government Bond Markets," Essex Finance Centre Working Papers 27362, University of Essex, Essex Business School.
    90. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    91. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
    92. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
    93. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    94. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    95. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    96. Rihab Bedoui & Sana Braeik & Stéphane Goutte & Khaled Guesmi, 2018. "On the study of conditional dependence structure between oil, gold and USD exchange rates," Post-Print halshs-02148924, HAL.
    97. Huang, Jianbai & Tang, Jing & Zhang, Hongwei, 2020. "The effect of investors’ information search behaviors on rebar market return dynamics using high frequency data," Resources Policy, Elsevier, vol. 66(C).
    98. Valenzuela, Marcela & Zer, Ilknur & Fryzlewicz, Piotr & Rheinländer, Thorsten, 2015. "Relative liquidity and future volatility," Journal of Financial Markets, Elsevier, vol. 24(C), pages 25-48.
    99. Wen, Zhuzhu & Gong, Xu & Ma, Diandian & Xu, Yahua, 2021. "Intraday momentum and return predictability: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 95(C), pages 374-384.
    100. Michel Beine & Jerome Lahaye & Sebastien Laurent & Christopher J. Neely & Franz C. Palm, 2007. "Central bank intervention and exchange rate volatility, its continuous and jump components," Working Papers 2006-031, Federal Reserve Bank of St. Louis.
    101. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    102. Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
    103. Amorino, Chiara & Gloter, Arnaud, 2020. "Unbiased truncated quadratic variation for volatility estimation in jump diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5888-5939.
    104. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    105. Bouri, Elie & Lei, Xiaojie & Jalkh, Naji & Xu, Yahua & Zhang, Hongwei, 2021. "Spillovers in higher moments and jumps across US stock and strategic commodity markets," Resources Policy, Elsevier, vol. 72(C).
    106. Barbara Będowska-Sójka, 2018. "Is intraday data useful for forecasting VaR? The evidence from EUR/PLN exchange rate," Risk Management, Palgrave Macmillan, vol. 20(4), pages 326-346, November.
    107. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    108. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
    109. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019. "Unified inference for nonlinear factor models from panels with fixed and large time span," Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
    110. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    111. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    112. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    113. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2015. "Which continuous-time model is most appropriate for exchange rates?," Post-Print hal-01457402, HAL.
    114. Štefan Lyócsa & Peter Molnár, 2016. "Volatility forecasting of strategically linked commodity ETFs: gold-silver," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1809-1822, December.
    115. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    116. Daniel Preve, "undated". "Linear programming-based estimators in nonnegative autoregression," GRU Working Paper Series GRU_2016_001, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    117. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    118. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    119. Mohamed Arouri & Oussama M’saddek & Kuntara Pukthuanthong, 2017. "Jump risk premia across major international equity markets," Post-Print hal-02083723, HAL.
    120. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
    121. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    122. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    123. LUPU, Radu & MATEESCU, Alexandra, 2016. "Systemic Risk And Cojumps In High Frequency Data," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 20(4), pages 6-16.
    124. Avouyi-Dovi, S. & Idier, J., 2011. "The impact of unconventional monetary policy on the market for collateral: The case of the French bond market," Working papers 339, Banque de France.
    125. Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021. "Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    126. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    127. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    128. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    129. Aitor Ciarreta & Peru Muniain & Ainhoa Zarraga, 2020. "Realized volatility and jump testing in the Japanese electricity spot market," Empirical Economics, Springer, vol. 58(3), pages 1143-1166, March.
    130. José Figueroa-López, 2012. "Statistical estimation of Lévy-type stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 309-335, May.
    131. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, New Economic School (NES).
    132. Füss, Roland & Grabellus, Markus & Mager, Ferdinand & Stein, Michael, 2018. "Something in the air: Information density, news surprises, and price jumps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 53(C), pages 50-75.
    133. Jeremy Large, 2007. "Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment," Economics Series Working Papers 340, University of Oxford, Department of Economics.
    134. Wing Hong Chan & Ranjini Jha & Madhu Kalimipalli, 2009. "The Economic Value Of Using Realized Volatility In Forecasting Future Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 231-259, September.
    135. Yunus Emre Ergemen & Abderrahim Taamouti, 2015. "Parametric Portfolio Policies with Common Volatility Dynamics," CREATES Research Papers 2015-41, Department of Economics and Business Economics, Aarhus University.
    136. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    137. Liu, Wenwen & Zhang, Chang & Qiao, Gaoxiu & Xu, Lei, 2022. "Impact of network investor sentiment and news arrival on jumps," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    138. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2017. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Working Papers 2017-10, University of Tasmania, Tasmanian School of Business and Economics.
    139. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    140. Rangel José Gonzalo, 2009. "Macroeconomic News, Announcements, and Stock Market Jump Intensity Dynamics," Working Papers 2009-15, Banco de México.
    141. Kislay Kumar Jha & Dirk G. Baur, 2020. "Regime-Dependent Good and Bad Volatility of Bitcoin," JRFM, MDPI, vol. 13(12), pages 1-16, December.
    142. Giovanni Bonaccolto & Massimiliano Caporin & Rangan Gupta, 2015. "The Dynamic Impact of Uncertainty in Causing and Forecasting the Distribution of Oil Returns and Risk," Working Papers 201564, University of Pretoria, Department of Economics.
    143. Juan M. Londono, 2016. "Bad Bad Contagion," International Finance Discussion Papers 1178, Board of Governors of the Federal Reserve System (U.S.).
    144. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    145. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    146. Sébastien Laurent & Shuping Shi, 2018. "Volatility Estimation and Jump Detection for drift-diffusion Processes," Working Papers halshs-01944449, HAL.
    147. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    148. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    149. Aviral Kumar Tiwari & Goodness C. Aye & Rangan Gupta & Konstantinos Gkillas, 2019. "Gold-Oil Dependence Dynamics and the Role of Geopolitical Risks: Evidence from a Markov-Switching Time-Varying Copula Model," Working Papers 201918, University of Pretoria, Department of Economics.
    150. Chuliá, Helena & Martens, Martin & Dijk, Dick van, 2010. "Asymmetric effects of federal funds target rate changes on S&P100 stock returns, volatilities and correlations," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 834-839, April.
    151. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    152. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    153. Ai-ru (Meg) Cheng & Kuntal Das & Takeshi Shimatani, 2013. "Central Bank Intervention and Exchange Rate Volatility: Evidence from Japan Using Realized Volatility," Working Papers in Economics 13/19, University of Canterbury, Department of Economics and Finance.
    154. Benjamin Y. Zhang & Hao Zhou & Haibin Zhu, 2005. "Explaining credit default swap spreads with the equity volatility and jump risks of individual firms," Finance and Economics Discussion Series 2005-63, Board of Governors of the Federal Reserve System (U.S.).
    155. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    156. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    157. Won Seo, Sung & Jin Chung, Hae, 2017. "Capital structure and corporate reaction to negative stock return shocks," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 292-312.
    158. Daniela Osterrieder & Daniel Ventosa-Santaulària & J. Eduardo Vera-Valdés, 2015. "Unbalanced Regressions and the Predictive Equation," CREATES Research Papers 2015-09, Department of Economics and Business Economics, Aarhus University.
    159. Dahlqvist, Carl-Henrik & Gnabo, Jean-Yves, 2018. "Effective network inference through multivariate information transfer estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 376-394.
    160. Juho Kanniainen & Martin Magris, 2018. "Option market (in)efficiency and implied volatility dynamics after return jumps," Papers 1810.12200, arXiv.org.
    161. Luca Spadafora & Francesca Sivero & Nicola Picchiotti, 2018. "Jumping VaR: Order Statistics Volatility Estimator for Jumps Classification and Market Risk Modeling," Papers 1803.07021, arXiv.org, revised Mar 2018.
    162. Roh, Tai-Yong & Byun, Suk Joon & Xu, Yahua, 2020. "Downside uncertainty shocks in the oil and gold markets," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 291-307.
    163. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    164. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    165. Flávio B. Gonçalves & Gareth O. Roberts, 2014. "Exact Simulation Problems for Jump-Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 907-930, December.
    166. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    167. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    168. Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
    169. Jo-Hui & Chen & Sabbor Hussain, 2022. "Jump Dynamics and Leverage Effect: Evidences from Energy Exchange Traded Fund (ETFs)," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-7.
    170. Dovonon, Prosper & Goncalves, Silvia & Hounyo, Ulrich & Meddahi, Nour, 2017. "Bootstrapping high-frequency jump tests," IDEI Working Papers 870, Institut d'Économie Industrielle (IDEI), Toulouse.
    171. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    172. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    173. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.
    174. Jing-zhi Huang & Hao Zhou, 2008. "Specification analysis of structural credit risk models," Finance and Economics Discussion Series 2008-55, Board of Governors of the Federal Reserve System (U.S.).
    175. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    176. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    177. Aktas, Osman Ulas & Kryzanowski, Lawrence & Zhang, Jie, 2021. "Volatility spillover around price limits in an emerging market," Finance Research Letters, Elsevier, vol. 39(C).
    178. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    179. Zhang, Congshan & Li, Jia & Todorov, Viktor & Tauchen, George, 2022. "Variation and efficiency of high-frequency betas," Journal of Econometrics, Elsevier, vol. 228(1), pages 156-175.
    180. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    181. Bent Jesper Christensen & Rasmus Tangsgaard Varneskov, 2021. "Dynamic Global Currency Hedging [Arbitrage in the Foreign Exchange Market: Turning on the Microscope]," Journal of Financial Econometrics, Oxford University Press, vol. 19(1), pages 97-127.
    182. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
    183. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    184. Li, Jia & Todorov, Viktor & Tauchen, George & Chen, Rui, 2017. "Mixed-scale jump regressions with bootstrap inference," Journal of Econometrics, Elsevier, vol. 201(2), pages 417-432.
    185. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    186. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Forecasting with mixed-frequency data," University of Cyprus Working Papers in Economics 10-2010, University of Cyprus Department of Economics.
    187. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    188. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    189. Vassilios G. Papavassiliou, 2016. "Allowing For Jump Measurements In Volatility: A High-Frequency Financial Data Analysis Of Individual Stocks," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 124-132, April.
    190. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    191. Mehmet Balcilar & Matteo Bonato & Riza Demirer & Rangan Gupta, 2016. "The Effect of Investor Sentiment on Gold Market Dynamics," Working Papers 201638, University of Pretoria, Department of Economics.
    192. Yeh, Jin-Huei & Chen, Lien-Chuan, 2014. "Stabilizing the market with short sale constraint? New evidence from price jump activities," Finance Research Letters, Elsevier, vol. 11(3), pages 238-246.
    193. Nikolaus Hautsch & Mark Podolskij, 2010. "Pre-Averaging Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," CREATES Research Papers 2010-29, Department of Economics and Business Economics, Aarhus University.
    194. Chao YU & Xujie ZHAO, 2021. "Measuring the Jump Risk Contribution under Market Microstructure Noise – Evidence from Chinese Stock Market," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 32-47, December.
    195. Anderson, Heather M. & Vahid, Farshid, 2007. "Forecasting the Volatility of Australian Stock Returns: Do Common Factors Help?," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 76-90, January.
    196. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    197. Yi, Chae-Deug, 2020. "Jump probability using volatility periodicity filters in US Dollar/Euro exchange rates," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    198. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    199. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    200. Álvaro Cartea & Dimitrios Karyampas, 2009. "The Relationship Between the Volatility of Returns and the Number of Jumps in Financial Markets," Birkbeck Working Papers in Economics and Finance 0914, Birkbeck, Department of Economics, Mathematics & Statistics.
    201. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    202. Pan, Ging-Ginq & Shiu, Yung-Ming & Wu, Tu-Cheng, 2022. "Can risk-neutral skewness and kurtosis subsume the information content of historical jumps?," Journal of Financial Markets, Elsevier, vol. 57(C).
    203. Lanne, Markku, 2007. "Forecasting realized exchange rate volatility by decomposition," International Journal of Forecasting, Elsevier, vol. 23(2), pages 307-320.
    204. Xie, Haibin & Qi, Nan & Wang, Shouyang, 2019. "A new variant of RealGARCH for volatility modeling," Finance Research Letters, Elsevier, vol. 28(C), pages 438-443.
    205. Bruno Feunou & Cédric Okou, 2017. "Good Volatility, Bad Volatility and Option Pricing," Staff Working Papers 17-52, Bank of Canada.
    206. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    207. Chuong Luong & Nikolai Dokuchaev, 2018. "Forecasting of Realised Volatility with the Random Forests Algorithm," JRFM, MDPI, vol. 11(4), pages 1-15, October.
    208. Ymir Mäkinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2033-2050, December.
    209. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
    210. Liu, Qiang & Liu, Yiqi & Liu, Zhi, 2018. "Estimating spot volatility in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1958-1987.
    211. F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
    212. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    213. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    214. Dewachter, Hans & Erdemlioglu, Deniz & Gnabo, Jean-Yves & Lecourt, Christelle, 2014. "The intra-day impact of communication on euro-dollar volatility and jumps," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 131-154.
    215. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    216. Gael M. Martin & Andrew Reidy & Jill Wright, 2006. "Assessing the Impact of Market Microstructure Noise and Random Jumps on the Relative Forecasting Performance of Option-Implied and Returns-Based Volatility," Monash Econometrics and Business Statistics Working Papers 10/06, Monash University, Department of Econometrics and Business Statistics.
    217. Mardi Dungey & Michael McKenzie & Vanessa Smith, 2007. "Empirical Evidence On Jumps In The Term Structure Of The Us Treasury Market," CAMA Working Papers 2007-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    218. Liu, Guangqiang & Wang, Yan & Chen, Xiaodan & Zhang, Yifeng & Shang, Yue, 2020. "Forecasting volatility of the Chinese stock markets using TVP HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    219. Wanidwaranan, Phasin & Padungsaksawasdi, Chaiyuth, 2020. "The effect of return jumps on herd behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    220. Yang Gao & Chengjie Zhao & Bianxia Sun & Wandi Zhao, 2022. "Effects of investor sentiment on stock volatility: new evidences from multi-source data in China’s green stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    221. Dimos Kambouroudis & David McMillan & Katerina Tsakou, 2019. "Forecasting Realized Volatility: The role of implied volatility, leverage effect, overnight returns and volatility of realized volatility," Working Papers 2019-03, Swansea University, School of Management.
    222. Alam, Md. Samsul & Shahzad, Syed Jawad Hussain & Ferrer, Román, 2019. "Causal flows between oil and forex markets using high-frequency data: Asymmetries from good and bad volatility," Energy Economics, Elsevier, vol. 84(C).
    223. Rituparna Sen & Pulkit Mehrotra, 2016. "Modeling Jumps and Volatility of the Indian Stock Market Using High-Frequency Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(1), pages 137-150, June.
    224. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2014. "The Risk Premia Embedded in Index Options," CREATES Research Papers 2014-56, Department of Economics and Business Economics, Aarhus University.
    225. Xin Huang, 2015. "Macroeconomic News Announcements, Systemic Risk, Financial Market Volatility and Jumps," Finance and Economics Discussion Series 2015-97, Board of Governors of the Federal Reserve System (U.S.).
    226. Besma Hkiri & Juncal Cunado & Mehmet Balcilar & Rangan Gupta, 2019. "Time-Varying Relationship between Conventional and Unconventional Monetary Policies and Risk Aversion: International Evidence from Time- and Frequency-Domains," Working Papers 201965, University of Pretoria, Department of Economics.
    227. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    228. BOUDT, Kris & CROUX, Christophe & LAURENT, Sabéastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," LIDAM Reprints CORE 2411, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    229. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
    230. Kyungsub Lee & Byoung Ki Seo, 2017. "Performance of Tail Hedged Portfolio with Third Moment Variation Swap," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 447-471, October.
    231. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    232. Vortelinos, Dimitrios I., 2014. "Optimally sampled realized range-based volatility estimators," Research in International Business and Finance, Elsevier, vol. 30(C), pages 34-50.
    233. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    234. Andras Fulop & Junye Li & Jun Yu, 2012. "Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach," Global COE Hi-Stat Discussion Paper Series gd12-264, Institute of Economic Research, Hitotsubashi University.
    235. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    236. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    237. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    238. Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
    239. Bucci, Andrea, 2019. "Cholesky-ANN models for predicting multivariate realized volatility," MPRA Paper 95137, University Library of Munich, Germany.
    240. Stavros Degiannakis & Alexandra Livada, 2016. "Evaluation of realized volatility predictions from models with leptokurtically and asymmetrically distributed forecast errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 871-892, April.
    241. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
    242. Gianluca Cubadda & Alain Hecq & Antonio Riccardo, 2018. "Forecasting Realized Volatility Measures with Multivariate and Univariate Models: The Case of The US Banking Sector," CEIS Research Paper 445, Tor Vergata University, CEIS, revised 30 Oct 2018.
    243. Fredj Jawadi & Waël Louhichi & Abdoulkarim Idi Cheffou & Rivo Randrianarivony, 2016. "Intraday jumps and trading volume: a nonlinear Tobit specification," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1167-1186, November.
    244. Degiannakis, Stavros, 2017. "The one-trading-day-ahead forecast errors of intra-day realized volatility," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1298-1314.
    245. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    246. Sensoy, Ahmet & Serdengeçti, Süleyman, 2020. "Impact of portfolio flows and heterogeneous expectations on FX jumps: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 68(C).
    247. Lin, Xiaoqiang & Fei, Fangyu & Wang, Yudong, 2011. "Analysis of the efficiency of the Shanghai stock market: A volatility perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3486-3495.
    248. Gabriel P. Mathy, 2014. "Uncertainty Shocks and Equity Return Jumps and Volatility During the Great Depression," Working Papers 2014-02, American University, Department of Economics.
    249. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    250. Eric Jondeau & Jérôme Lahaye & Michael Rockinger, 2013. "Estimating the Price Impact of Trades in an High-Frequency Microstructure Model with Jumps," Swiss Finance Institute Research Paper Series 13-47, Swiss Finance Institute, revised Feb 2016.
    251. Peter Christoffersen & Bruno Feunou & Yoontae Jeon & Chayawat Ornthanalai, 2016. "Time-Varying Crash Risk: The Role of Stock Market Liquidity," Staff Working Papers 16-35, Bank of Canada.
    252. Ysusi Carla, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
    253. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    254. Ralf Becker & Adam Clements & Andrew McClelland, 2008. "The Jump component of S&P 500 volatility and the VIX index," NCER Working Paper Series 24, National Centre for Econometric Research.
    255. Ma, Chaoqun & Mi, Xianhua & Cai, Zongwu, 2020. "Nonlinear and time-varying risk premia," China Economic Review, Elsevier, vol. 62(C).
    256. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
    257. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2016. "Entropy and efficiency of the ETF market," Papers 1609.04199, arXiv.org.
    258. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    259. Park, Yang-Ho, 2015. "Volatility-of-volatility and tail risk hedging returns," Journal of Financial Markets, Elsevier, vol. 26(C), pages 38-63.
    260. Mensi, Walid & Shafiullah, Muhammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Asymmetric spillovers and connectedness between crude oil and currency markets using high-frequency data," Resources Policy, Elsevier, vol. 77(C).
    261. Będowska-Sójka, Barbara & Kliber, Agata, 2021. "Information content of liquidity and volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    262. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    263. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
    264. Yu, Qian & Bajja, Salwa, 2020. "Volatility estimation of general Gaussian Ornstein–Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 163(C).
    265. Qu, Hui & Duan, Qingling & Niu, Mengyi, 2018. "Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 767-776.
    266. Marcelo Fernandes & Ms. Deniz O Igan & Marcelo Pinheiro, 2015. "March Madness in Wall Street: (What) Does the Market Learn from Stress Tests?," IMF Working Papers 2015/271, International Monetary Fund.
    267. Mete Kilic & Ivan Shaliastovich, 2019. "Good and Bad Variance Premia and Expected Returns," Management Science, INFORMS, vol. 67(6), pages 2522-2544, June.
    268. Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," Finance and Economics Discussion Series 2010-45, Board of Governors of the Federal Reserve System (U.S.).
    269. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    270. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    271. Křehlík, Tomáš & Baruník, Jozef, 2017. "Cyclical properties of supply-side and demand-side shocks in oil-based commodity markets," Energy Economics, Elsevier, vol. 65(C), pages 208-218.
    272. Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
    273. Peter Reinhard Hansen & Zhuo Huang & Chen Tong & Tianyi Wang, 2024. "Realized GARCH, CBOE VIX, and the Volatility Risk Premium," Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 187-223.
    274. Cartea, Álvaro & Karyampas, Dimitrios, 2009. "Volatility and covariation of financial assets: a high-frequency analysis," DEE - Working Papers. Business Economics. WB wb097609, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    275. Zhou, Haigang & Zhu, John Qi, 2019. "Firm characteristics and jump dynamics in stock prices around earnings announcements," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    276. Yin Liao & Heather Anderson & Farshid Vahid, 2010. "Do Jumps Matter? Forecasting Multivariate Realized Volatility Allowing for Common Jumps," ANU Working Papers in Economics and Econometrics 2010-520, Australian National University, College of Business and Economics, School of Economics.
    277. Olesya V. Grishchenko & Zhaogang Song & Hao Zhou, 2015. "Term Structure of Interest Rates with Short-run and Long-run Risks," Finance and Economics Discussion Series 2015-95, Board of Governors of the Federal Reserve System (U.S.).
    278. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    279. Piotr Fiszeder & Grzegorz Perczak, 2013. "A new look at variance estimation based on low, high and closing prices taking into account the drift," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 456-481, November.
    280. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    281. Maki, Daiki & Ota, Yasushi, 2021. "Impacts of asymmetry on forecasting realized volatility in Japanese stock markets," Economic Modelling, Elsevier, vol. 101(C).
    282. Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
    283. Patrick Chang, 2020. "Fourier instantaneous estimators and the Epps effect," Papers 2007.03453, arXiv.org, revised Sep 2020.
    284. Gerlach, Richard & Naimoli, Antonio & Storti, Giuseppe, 2018. "Time Varying Heteroskedastic Realized GARCH models for tracking measurement error bias in volatility forecasting," MPRA Paper 83893, University Library of Munich, Germany.
    285. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    286. Melanie Frick & Annabelle Kehl, 2010. "Event risk—Parametrization and estimation in a generalized Pareto model with time-varying thresholds," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 455-460.
    287. Mazzarisi, Piero & Zaoli, Silvia & Campajola, Carlo & Lillo, Fabrizio, 2020. "Tail Granger causalities and where to find them: Extreme risk spillovers vs spurious linkages," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
    288. Milan Ficura & Jiri Witzany, 2016. "Estimating Stochastic Volatility and Jumps Using High-Frequency Data and Bayesian Methods," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 278-301, August.
    289. Johnson, James A. & Medeiros, Marcelo C. & Paye, Bradley S., 2022. "Jumps in stock prices: New insights from old data," Journal of Financial Markets, Elsevier, vol. 60(C).
    290. Bissoondoyal-Bheenick, Emawtee & Do, Hung & Hu, Xiaolu & Zhong, Angel, 2022. "Sentiment and stock market connectedness: Evidence from the U.S. – China trade war," International Review of Financial Analysis, Elsevier, vol. 80(C).
    291. Souček, Michael & Todorova, Neda, 2014. "Realized volatility transmission: The role of jumps and leverage effects," Economics Letters, Elsevier, vol. 122(2), pages 111-115.
    292. Nepp, Alexander & Okhrin, Ostap & Egorova, Julia & Dzhuraeva, Zarnigor & Zykov, Alexander, 2022. "What threatens stock markets more - The coronavirus or the hype around it?," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 519-539.
    293. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    294. Yu, Miao & Song, Jinguo, 2018. "Volatility forecasting: Global economic policy uncertainty and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 316-323.
    295. George Jiang & Ingrid Lo & Adrien Verdelhan, 2008. "Information Shocks, Jumps, and Price Discovery -- Evidence from the U.S. Treasury Market," Staff Working Papers 08-22, Bank of Canada.
    296. Yao, Wenying & Tian, Jing, 2015. "The role of intra-day volatility pattern in jump detection: empirical evidence on how financial markets respond to macroeconomic news announcements," Working Papers 2015-05, University of Tasmania, Tasmanian School of Business and Economics.
    297. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    298. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    299. Hui Qu & Ping Ji, 2016. "Modeling Realized Volatility Dynamics with a Genetic Algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 434-444, August.
    300. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    301. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    302. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    303. Gong, Xu & Lin, Boqiang, 2019. "Modeling stock market volatility using new HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 194-211.
    304. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
    305. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    306. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org, revised Sep 2020.
    307. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    308. Zhen Fang & Zhang Jin E., 2020. "Dissecting skewness under affine jump-diffusions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-19, September.
    309. Kshatriya, Saranya & Prasanna, Krishna, 2021. "Jump Interdependencies: Stochastic linkages among international stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    310. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    311. Masato Ubukata & Toshiaki Watanabe, 2011. "Market Variance Risk Premiums in Japan as Predictor Variables and Indicators of Risk Aversion," Global COE Hi-Stat Discussion Paper Series gd11-214, Institute of Economic Research, Hitotsubashi University.
    312. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    313. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    314. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    315. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    316. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij & Jeannette H.C. Woerner, 2008. "Bipower variation for Gaussian processes with stationary increments," CREATES Research Papers 2008-21, Department of Economics and Business Economics, Aarhus University.
    317. Tim Bollerslev & Viktor Todorov, 2010. "Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns," CREATES Research Papers 2010-64, Department of Economics and Business Economics, Aarhus University.
    318. Aganin, Artem, 2017. "Forecast comparison of volatility models on Russian stock market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 63-84.
    319. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
    320. Ceylan, Ozcan, 2012. "Time-Varying Volatility Asymmetry: A Conditioned HAR-RV(CJ) EGARCH-M Model," GIAM Working Papers 12-4, Galatasaray University Economic Research Center.
    321. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
    322. Haugom, Erik & Ullrich, Carl J., 2012. "Forecasting spot price volatility using the short-term forward curve," Energy Economics, Elsevier, vol. 34(6), pages 1826-1833.
    323. Bing-Yi Jing & Zhi Liu & Xin-Bing Kong, 2014. "On the Estimation of Integrated Volatility With Jumps and Microstructure Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 457-467, July.
    324. Martin Magris & Perttu Barholm & Juho Kanniainen, 2017. "Implied volatility smile dynamics in the presence of jumps," Papers 1711.02925, arXiv.org, revised May 2020.
    325. Ye, Wuyi & Xia, Wenjing & Wu, Bin & Chen, Pengzhan, 2022. "Using implied volatility jumps for realized volatility forecasting: Evidence from the Chinese market," International Review of Financial Analysis, Elsevier, vol. 83(C).
    326. Dimitrios I. Vortelinos & Dimitrios D. Thomakos, 2012. "Realized volatility and jumps in the Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 97-112, January.
    327. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    328. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    329. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    330. Lena Cleanthous & Pany Karamanou, 2011. "The ECB Monetary Policy and the Current Financial Crisis," Working Papers 2011-1, Central Bank of Cyprus.
    331. Diego Amaya & Peter Christoffersen & Kris Jacobs & Aurelio Vasquez, 2013. "Does Realized Skewness Predict the Cross-Section of Equity Returns?," CREATES Research Papers 2013-41, Department of Economics and Business Economics, Aarhus University.
    332. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    333. Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
    334. Hoerova, Marie & Bekaert, Geert, 2014. "The VIX, the variance premium and stock market volatility," Working Paper Series 1675, European Central Bank.
    335. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    336. Wen, Zhuzhu & Bouri, Elie & Xu, Yahua & Zhao, Yang, 2022. "Intraday return predictability in the cryptocurrency markets: Momentum, reversal, or both," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    337. Patrick Chang, 2020. "Fourier instantaneous estimators and the Epps effect," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-24, September.
    338. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1203-1218, August.
    339. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    340. Leopoldo Catania & Mads Sandholdt, 2019. "Bitcoin at High Frequency," JRFM, MDPI, vol. 12(1), pages 1-20, February.
    341. Taoufik Bouezmarni & Jeroen Rombouts & Abderrahim Taamouti, 2009. "A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality," CIRANO Working Papers 2009s-28, CIRANO.
    342. Perron, Benoit, 2004. "Détection non paramétrique de sauts dans la volatilité des marchés financiers," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 229-251, Juin-Sept.
    343. Kaminska, Iryna & Roberts-Sklar, Matt, 2017. "Volatility in equity markets and monetary policy rate uncertainty," Bank of England working papers 700, Bank of England.
    344. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    345. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.
    346. Dimitrios I. Vortelinos, 2015. "The Effect of Macro News on Volatility and Jumps," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 425-447, November.
    347. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    348. John, Kose & Li, Jingrui, 2021. "COVID-19, volatility dynamics, and sentiment trading," Journal of Banking & Finance, Elsevier, vol. 133(C).
    349. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    350. Hanousek, Jan & Novotný, Jan, 2012. "Price jumps in Visegrad-country stock markets: An empirical analysis," Emerging Markets Review, Elsevier, vol. 13(2), pages 184-201.
    351. Xin Zhang & Donggyu Kim & Yazhen Wang, 2016. "Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets," Econometrics, MDPI, vol. 4(3), pages 1-26, August.
    352. Ding, Y., 2021. "Augmented Real-Time GARCH: A Joint Model for Returns, Volatility and Volatility of Volatility," Cambridge Working Papers in Economics 2112, Faculty of Economics, University of Cambridge.
    353. Jan Hanousek & Jan Novotný, 2014. "Cenové skoky během finanční nejistoty: od intuice k regulační perspektivě [Price Jumps during Financial Crisis: From Intuition to Financial Regulation]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 32-48.
    354. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    355. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    356. Maciej Kostrzewski, 2014. "Bayesian DEJD model and detection of asymmetric jumps," Papers 1404.2050, arXiv.org.
    357. Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
    358. Lin, Tiantian & Liu, Dehong & Zhang, Lili & Lung, Peter, 2019. "The information content of realized volatility of sector indices in China’s stock market," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 625-640.
    359. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    360. Youcong Chao & Xiaoqun Liu & Shijun Guo, 2017. "Sign realized jump risk and the cross-section of stock returns: Evidence from China's stock market," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    361. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    362. Chu, Shan-Ying & Chan, Lin Kun & Yeh, Jin-Huei, 2019. "The stabilizing effects of price limits: New evidence from jump contributed price variations," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 529-539.
    363. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    364. Christophe Boucher & Gilles de Truchis & Elena Dumitrescu & Sessi Tokpavi, 2017. "Testing for Extreme Volatility Transmission with Realized Volatility Measures," EconomiX Working Papers 2017-20, University of Paris Nanterre, EconomiX.
    365. Cui, Jing & Zhao, Hua, 2015. "Intraday jumps in China's Treasury bond market and macro news announcements," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 211-223.
    366. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    367. Glenn Kit Foong Ho & Sirimon Treepongkaruna & Marvin Wee & Chaiyuth Padungsaksawasdi, 2022. "The effect of short selling on volatility and jumps," Australian Journal of Management, Australian School of Business, vol. 47(1), pages 34-52, February.
    368. Ji, Qiang & Zhang, Dayong, 2019. "China’s crude oil futures: Introduction and some stylized facts," Finance Research Letters, Elsevier, vol. 28(C), pages 376-380.
    369. Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
    370. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
    371. Vitali Alexeev & Mardi Dungey & Wenying Yao, 2016. "Continuous and Jump Betas: Implications for Portfolio Diversification," Econometrics, MDPI, vol. 4(2), pages 1-15, June.
    372. Yu, Xing & Li, Yanyan & Gong, Xue & Zhang, Nan, 2022. "Evaluating the performance of futures hedging using factors-driven realized volatility," International Review of Financial Analysis, Elsevier, vol. 84(C).
    373. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2020. "Entropy and Efficiency of the ETF Market," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 143-184, January.
    374. Balcilar, Mehmet & Bonato, Matteo & Demirer, Riza & Gupta, Rangan, 2017. "The effect of investor sentiment on gold market return dynamics: Evidence from a nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 51(C), pages 77-84.
    375. Štefan Lyócsa & Roman Horváth, 2018. "Stock Market Contagion: a New Approach," Open Economies Review, Springer, vol. 29(3), pages 547-577, July.
    376. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    377. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    378. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Clement Kyei, 2019. "Monetary Policy Uncertainty and Volatility Jumps in Advanced Equity Markets," Working Papers 201939, University of Pretoria, Department of Economics.
    379. Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," International Finance Discussion Papers 1005, Board of Governors of the Federal Reserve System (U.S.).
    380. Chin Wen CHEONG & Lee Min CHERNG & Grace Lee Ching YAP, 2016. "Heterogeneous Market Hypothesis Evaluations using Various Jump-Robust Realized Volatility," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 50-64, December.
    381. Tseng-Chan Tseng & Hung-Cheng Lai & Cha-Fei Lin, 2012. "The impact of overnight returns on realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 357-364, March.
    382. Jean Jacod & Viktor Todorov, 2010. "Do price and volatility jump together?," Papers 1010.4990, arXiv.org.
    383. Linlan Xiao & Vigdis Boasson & Sergey Shishlenin & Victoria Makushina, 2018. "Volatility forecasting: combinations of realized volatility measures and forecasting models," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1428-1441, March.
    384. Cheong, Chin Wen, 2008. "Time-varying volatility in Malaysian stock exchange: An empirical study using multiple-volatility-shift fractionally integrated model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 889-898.
    385. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
    386. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    387. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
    388. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
    389. Ahmad, Wasim & Prakash, Ravi & Uddin, Gazi Salah & Chahal, Rishman Jot Kaur & Rahman, Md. Lutfur & Dutta, Anupam, 2020. "On the intraday dynamics of oil price and exchange rate: What can we learn from China and India?," Energy Economics, Elsevier, vol. 91(C).
    390. Francis Breedon & Louisa Chen & Angelo Ranaldo & Nicholas Vause, 2018. "Judgement Day: Algorithmic Trading Around the Swiss Franc Cap Removal," Working Papers on Finance 1808, University of St. Gallen, School of Finance.
    391. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
    392. Abramov, Vyacheslav & Klebaner, Fima, 2006. "Forecasting and testing a non-constant volatility," MPRA Paper 207, University Library of Munich, Germany.
    393. Rosa, Carlo, 2014. "The high-frequency response of energy prices to U.S. monetary policy: Understanding the empirical evidence," Energy Economics, Elsevier, vol. 45(C), pages 295-303.
    394. Yuan, Ying & Zhang, Tonghui, 2020. "Forecasting stock market in high and low volatility periods: a modified multifractal volatility approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    395. Jang, Bong-Gyu & Rhee, Yuna & Yoon, Ji Hee, 2016. "Business cycle and credit risk modeling with jump risks," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 15-36.
    396. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2012. "International market links and volatility transmission," Journal of Econometrics, Elsevier, vol. 170(1), pages 117-141.
    397. Jan Novotný & Giovanni Urga, 2018. "Testing for Co-jumps in Financial Markets," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 118-128.
    398. Dumitru, Ana-Maria & Urga, Giovanni, 2016. "Jumps and Information Asymmetry in the US Treasury Market," EconStor Preprints 130148, ZBW - Leibniz Information Centre for Economics.
    399. Hwang, Eunju & Shin, Dong Wan, 2014. "A bootstrap test for jumps in financial economics," Economics Letters, Elsevier, vol. 125(1), pages 74-78.
    400. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    401. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Business Applications and State-Level Stock Market Realized Volatility: A Forecasting Experiment," Working Papers 202247, University of Pretoria, Department of Economics.
    402. B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Yuchen Han, 2022. "Efficient Integrated Volatility Estimation in the Presence of Infinite Variation Jumps via Debiased Truncated Realized Variations," Papers 2209.10128, arXiv.org, revised Apr 2024.
    403. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    404. Zhihong Jian & Zhican Zhu & Jie Zhou & Shuai Wu, 2018. "The Magnet Effect of Circuit Breakers: A role of price jumps and market liquidity," Departmental Working Papers 2018-01, The University of Winnipeg, Department of Economics.
    405. Hecq, A.W. & Palm, F.C. & Laurent, S.F.J.A., 2011. "Common intraday periodicity," Research Memorandum 010, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    406. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    407. Bo Yu & Bruce Mizrach & Norman R. Swanson, 2020. "New Evidence of the Marginal Predictive Content of Small and Large Jumps in the Cross-Section," Econometrics, MDPI, vol. 8(2), pages 1-52, May.
    408. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
    409. Fredj Jawadi & Wael Louhichi & Hachmi Ben Ameur & Abdoulkarim Idi Cheffou, 2017. "On Oil-US Exchange Rate Volatility Relationships: an Intradaily Analysis," Working Papers hal-04141662, HAL.
    410. Hossein Asgharian & Mia Holmfeldt & Marcus Larson, 2011. "An event study of price movements following realized jumps," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 933-946.
    411. Thierry Ane & Carole Metais, 2010. "Jump Distribution Characteristics: Evidence from European Stock Markets," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 9(1), pages 1-22, April.
    412. Ciarreta, Aitor & Zarraga, Ainhoa, 2016. "Modeling realized volatility on the Spanish intra-day electricity market," Energy Economics, Elsevier, vol. 58(C), pages 152-163.
    413. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    414. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    415. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    416. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2020. "Volatility forecasting using related markets’ information for the Tokyo stock exchange," Economic Modelling, Elsevier, vol. 90(C), pages 143-158.
    417. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    418. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    419. Angelo Ranaldo & Paul Söderlind, 2007. "Safe Haven Currencies," University of St. Gallen Department of Economics working paper series 2007 2007-22, Department of Economics, University of St. Gallen.
    420. Cuchiero, Christa & Teichmann, Josef, 2015. "Fourier transform methods for pathwise covariance estimation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 116-160.
    421. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
    422. Hainaut, Donatien, 2016. "Impact of volatility clustering on equity indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 367-381.
    423. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    424. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    425. Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
    426. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    427. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    428. Jean-Yves Gnabo & J�rôme Lahaye & S�bastien Laurent & Christelle Lecourt, 2012. "Do jumps mislead the FX market?," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1521-1532, October.
    429. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
    430. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    431. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    432. Klein, Tony & Todorova, Neda, 2021. "Night trading with futures in China: The case of Aluminum and Copper," Resources Policy, Elsevier, vol. 73(C).
    433. Fiszeder, Piotr & Perczak, Grzegorz, 2016. "Low and high prices can improve volatility forecasts during periods of turmoil," International Journal of Forecasting, Elsevier, vol. 32(2), pages 398-410.
    434. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    435. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    436. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    437. Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
    438. John Elder, Hong Miao, and Sanjay Ramchander, 2013. "Jumps in Oil Prices: The Role of Economic News," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    439. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    440. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2006. "The Information Content Of Treasury Bond Options Concerning Future Volatility And Price Jumps," Working Paper 1188, Economics Department, Queen's University.
    441. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
    442. Matteo Bonato & Rangan Gupta & Chi Keung Marco Lau & Shixuan Wang, 2019. "Moments-Based Spillovers across Gold and Oil Markets," Working Papers 201966, University of Pretoria, Department of Economics.
    443. Lu, Xinjie & Ma, Feng & Wang, Jianqiong & Dong, Dayong, 2022. "Singlehanded or joint race? Stock market volatility prediction," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 734-754.
    444. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš, 2019. "Central bank announcements and realized volatility of stock markets in G7 countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 58(C), pages 117-135.
    445. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    446. Jean Jacod, 2019. "Estimation of volatility in a high-frequency setting: a short review," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 351-385, December.
    447. Konstantinos Gkillas & Elie Bouri & Rangan Gupta & David Roubaud, 2020. "Spillovers in Higher-Order Moments of Crude Oil, Gold, and Bitcoin," Working Papers 202068, University of Pretoria, Department of Economics.
    448. Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Do, Hung Xuan & Smyth, Russell, 2020. "Exploiting the heteroskedasticity in measurement error to improve volatility predictions in oil and biofuel feedstock markets," Energy Economics, Elsevier, vol. 86(C).
    449. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    450. Odusami, Babatunde O, 2021. "Forecasting the Value-at-Risk of REITs using realized volatility jump models," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    451. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    452. Wu, Liuren, 2011. "Variance dynamics: Joint evidence from options and high-frequency returns," Journal of Econometrics, Elsevier, vol. 160(1), pages 280-287, January.
    453. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch & Seong-Min Yoon, 2020. "OPEC News and Jumps in the Oil Market," Working Papers 202053, University of Pretoria, Department of Economics.
    454. Vuorenmaa, Tommi A., 2008. "Decimalization, Realized Volatility, and Market Microstructure Noise," MPRA Paper 8692, University Library of Munich, Germany.
    455. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    456. Venter, J.H. & de Jongh, P.J., 2014. "Extended stochastic volatility models incorporating realised measures," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 687-707.
    457. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    458. Cem Cakmakli & Verda Ozturk, 2021. "Economic Value of Modeling the Joint Distribution of Returns and Volatility: Leverage Timing," Koç University-TUSIAD Economic Research Forum Working Papers 2110, Koc University-TUSIAD Economic Research Forum.
    459. Jan Novotny, 2010. "Were Stocks during the Financial Crisis More Jumpy: A Comparative Study," CERGE-EI Working Papers wp416, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    460. Masato Ubukata & Toshiaki Watanabe, 2011. "Pricing Nikkei 225 Options Using Realized Volatility," IMES Discussion Paper Series 11-E-18, Institute for Monetary and Economic Studies, Bank of Japan.
    461. Gnabo, Jean-Yves & Hvozdyk, Lyudmyla & Lahaye, Jérôme, 2014. "System-wide tail comovements: A bootstrap test for cojump identification on the S&P 500, US bonds and currencies," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 147-174.
    462. Christopher F Baum & Paola Zerilli, 2014. "Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility," Boston College Working Papers in Economics 860, Boston College Department of Economics.
    463. Ben-zhang Yang & Jia Yue & Ming-hui Wang & Nan-jing Huang, 2018. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Papers 1805.06226, arXiv.org, revised May 2018.
    464. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    465. Kaczmarek, Tomasz & Będowska-Sójka, Barbara & Grobelny, Przemysław & Perez, Katarzyna, 2022. "False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network," Research in International Business and Finance, Elsevier, vol. 60(C).
    466. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    467. Chen, Yu-Lun & Tsai, Wei-Che, 2017. "Determinants of price discovery in the VIX futures market," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 59-73.
    468. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    469. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    470. Li, Jia & Todorov, Viktor & Tauchen, George, 2016. "Inference theory for volatility functional dependencies," Journal of Econometrics, Elsevier, vol. 193(1), pages 17-34.
    471. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    472. Qu, Hui & Chen, Wei & Niu, Mengyi & Li, Xindan, 2016. "Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models," Energy Economics, Elsevier, vol. 54(C), pages 68-76.
    473. Chan, Kam Fong & Powell, John G. & Treepongkaruna, Sirimon, 2014. "Currency jumps and crises: Do developed and emerging market currencies jump together?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 132-157.
    474. Kam Fong Chan & Philip Gray, 2017. "Do Scheduled Macroeconomic Announcements Influence Energy Price Jumps?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(1), pages 71-89, January.
    475. Degiannakis, Stavros & Filis, George, 2023. "Oil price assumptions for macroeconomic policy," Energy Economics, Elsevier, vol. 117(C).
    476. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    477. Winkelmann, Lars, 2010. "The Norges Bank's key rate projections and the news element of monetary policy: A wavelet based jump detection approach," SFB 649 Discussion Papers 2010-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    478. Liu, Guangying & Zhang, Xinsheng, 2011. "Power variation of fractional integral processes with jumps," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 962-972, August.
    479. Tim Bollerslev & Viktor Todorov, 2010. "Estimation of Jump Tails," CREATES Research Papers 2010-16, Department of Economics and Business Economics, Aarhus University.
    480. Schulz, Frowin C., 2010. "Explaining time-varying risk of electricity forwards: trading activity and news announcements," Discussion Papers in Econometrics and Statistics 8/10, University of Cologne, Institute of Econometrics and Statistics.
    481. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    482. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    483. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    484. Jian, Zhihong & Zhu, Zhican & Zhou, Jie & Wu, Shuai, 2020. "Intraday price jumps, market liquidity, and the magnet effect of circuit breakers," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 168-186.
    485. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    486. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
    487. Cheng Jiang & Kose John & David Larsen, 2021. "R&D investment intensity and jump volatility of stock price," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 235-277, July.
    488. D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
    489. Stefan Lyocsa & Peter Molnar & Igor Fedorko, 2016. "Forecasting Exchange Rate Volatility: The Case of the Czech Republic, Hungary and Poland," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 453-475, October.
    490. Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
    491. Neda Todorova & Michael Soucek & Eduardo Roca, 2015. "Volatility spillovers from international commodity markets to the Australian equity market," Discussion Papers in Finance finance:201505, Griffith University, Department of Accounting, Finance and Economics.
    492. Martin L. Scholtus & Dick van Dijk & Bart Frijns, 2012. "Speed, Algorithmic Trading, and Market Quality around Macroeconomic News Announcements," Tinbergen Institute Discussion Papers 12-121/III, Tinbergen Institute.
    493. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    494. Hattori, Masazumi & Shim, Ilhyock & Sugihara, Yoshihiko, 2021. "Cross-stock market spillovers through variance risk premiums and equity flows," Journal of International Money and Finance, Elsevier, vol. 119(C).
    495. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    496. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    497. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    498. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    499. Sharon S. Yang & Jr-Wei Huang & Chuang-Chang Chang, 2016. "Detecting and modelling the jump risk of CO 2 emission allowances and their impact on the valuation of option on futures contracts," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 749-762, May.
    500. Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.
    501. Basel Awartani & Valentina Corradi, 2004. "Testing and Modelling Market Microstructure Effects with an Application to the Dow Jones Industrial Average," Econometric Society 2004 North American Summer Meetings 487, Econometric Society.
    502. Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
    503. Paula A. Yepes-Henao & Diego A. Agudelo & Ramazan Gencay, 2018. "Muddying the waters: Who Induces Volatility in an Emerging Market?," Documentos de Trabajo de Valor Público 16974, Universidad EAFIT.
    504. Chen, Xi & Wang, Junbo & Wu, Chunchi, 2022. "Jump and volatility risk in the cross-section of corporate bond returns," Journal of Financial Markets, Elsevier, vol. 60(C).
    505. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    506. Huang, Alex YiHou, 2016. "Impacts of implied volatility on stock price realized jumps," Economic Systems, Elsevier, vol. 40(4), pages 622-630.
    507. Heiny, Johannes & Podolskij, Mark, 2021. "On estimation of quadratic variation for multivariate pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 234-254.
    508. Ao Kong & Hongliang Zhu & Robert Azencott, 2019. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Papers 1912.07165, arXiv.org.
    509. Silja Kinnebrock & Mark Podolskij, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," OFRC Working Papers Series 2007fe03, Oxford Financial Research Centre.
    510. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    511. Benoît Sévi & César Baena, 2013. "The explanatory power of signed jumps for the risk-return tradeoff," Economics Bulletin, AccessEcon, vol. 33(2), pages 1029-1046.
    512. Omura, Akihiro & Li, Bin & Chung, Richard & Todorova, Neda, 2018. "Convenience yield, realised volatility and jumps: Evidence from non-ferrous metals," Economic Modelling, Elsevier, vol. 70(C), pages 496-510.
    513. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    514. Prodromou, Tina & Westerholm, P. Joakim, 2022. "Are high frequency traders responsible for extreme price movements?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 94-111.
    515. Ana-Maria Fuertes & Elena Kalotychou & Natasa Todorovic, 2015. "Daily volume, intraday and overnight returns for volatility prediction: profitability or accuracy?," Review of Quantitative Finance and Accounting, Springer, vol. 45(2), pages 251-278, August.
    516. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
    517. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    518. Dooyeon Cho & Seunghwa Rho, 2022. "On asymmetric volatility effects in currency markets," Empirical Economics, Springer, vol. 62(5), pages 2149-2177, May.
    519. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    520. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    521. Piero Mazzarisi & Silvia Zaoli & Carlo Campajola & Fabrizio Lillo, 2020. "Tail Granger causalities and where to find them: extreme risk spillovers vs. spurious linkages," Papers 2005.01160, arXiv.org, revised May 2021.
    522. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    523. Benoît Sévi & César Baena, 2011. "Brownian motion vs. pure-jump processes for individual stocks," Economics Bulletin, AccessEcon, vol. 31(4), pages 3138-3152.
    524. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
    525. Wong, Alfred, 2019. "Currency jumps, Euribor-OIS spreads and the volatility skew: A study on the dollar-euro crash risk of 2007–2015," Finance Research Letters, Elsevier, vol. 29(C), pages 7-16.
    526. Shixuan Wang & Rangan Gupta & Matteo Bonato & Oguzhan Cepni, 2022. "The Effects of Conventional and Unconventional Monetary Policy Shocks on US REITs Moments: Evidence from VARs with Functional Shocks," Working Papers 202219, University of Pretoria, Department of Economics.
    527. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
    528. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    529. Frédéric Délèze & Syed Mujahid Hussain, 2014. "Information Arrival, Jumps and Cojumps in European Financial Markets: Evidence Using Tick by Tick Data," Multinational Finance Journal, Multinational Finance Journal, vol. 18(3-4), pages 169-213, September.
    530. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    531. Nattapong Laksomya & John G. Powell & Suparatana Tanthanongsakkun & Sirimon Treepongkaruna, 2018. "Are Internet message boards used to facilitate stock price manipulation? Evidence from an emerging market, Thailand," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 275-309, November.
    532. Georg Dettmann, 2011. "A View on Global Imbalances and their Contribution to the Financial Crisis," Birkbeck Working Papers in Economics and Finance 1102, Birkbeck, Department of Economics, Mathematics & Statistics.
    533. Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
    534. Guido Russi, 2012. "Estimating the Leverage Effect Using High Frequency Data," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 1-24, February.
    535. Hellström, Jörgen & Lönnbark, Carl, 2011. "Identi�cation of jumps in �financial price series," MPRA Paper 30977, University Library of Munich, Germany.
    536. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    537. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    538. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    539. Mingmian Cheng & Norman R. Swanson, 2019. "Fixed and Long Time Span Jump Tests: New Monte Carlo and Empirical Evidence," Econometrics, MDPI, vol. 7(1), pages 1-32, March.
    540. Tian, Xiao & Duong, Huu Nhan & Kalev, Petko S., 2019. "Information content of the limit order book for crude oil futures price volatility," Energy Economics, Elsevier, vol. 81(C), pages 584-597.
    541. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2009. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working Papers 0905, University of Nevada, Las Vegas , Department of Economics.
    542. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    543. Ping, Yuan & Li, Rui, 2018. "Forecasting realized volatility based on the truncated two-scales realized volatility estimator (TTSRV): Evidence from China's stock market," Finance Research Letters, Elsevier, vol. 25(C), pages 222-229.
    544. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    545. Tian, Shuairu & Hamori, Shigeyuki, 2015. "Modeling interest rate volatility: A Realized GARCH approach," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 158-171.
    546. B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Yuchen Han, 2022. "Efficient Volatility Estimation for L\'evy Processes with Jumps of Unbounded Variation," Papers 2202.00877, arXiv.org.
    547. Fang, Yan & Ielpo, Florian & Sévi, Benoît, 2012. "Empirical bias in intraday volatility measures," Finance Research Letters, Elsevier, vol. 9(4), pages 231-237.
    548. Benoît Sévi & César Baena, 2012. "A reassessment of the risk-return tradeoff at the daily horizon," Economics Bulletin, AccessEcon, vol. 32(1), pages 190-203.
    549. Wu, Feng & Myers, Robert J. & Guan, Zhengfei & Wang, Zhiguang, 2015. "Risk-adjusted implied volatility and its performance in forecasting realized volatility in corn futures prices," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 260-274.
    550. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
    551. Ahadzie, Richard Mawulawoe & Jeyasreedharan, Nagaratnam, 2020. "Trading volume and realized higher-order moments in the Australian stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    552. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2018. "News and expected returns in East Asian equity markets: The RV-GARCHM model," Journal of Asian Economics, Elsevier, vol. 57(C), pages 36-52.
    553. Nkwoma, Inekwe John, 2017. "Futures-Based Measures Of Monetary Policy And Jump Risk," Macroeconomic Dynamics, Cambridge University Press, vol. 21(2), pages 384-405, March.
    554. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    555. Chen, Chin-Ho, 2019. "Downside jump risk and the levels of futures-cash basis," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    556. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    557. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
    558. Todorova, Neda & Clements, Adam E., 2018. "The volatility-volume relationship in the LME futures market for industrial metals," Resources Policy, Elsevier, vol. 58(C), pages 111-124.
    559. Pirino, Davide, 2009. "Jump detection and long range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1150-1156.
    560. Hiroyuki Kawakatsu, 2022. "Local projection variance impulse response," Empirical Economics, Springer, vol. 62(3), pages 1219-1244, March.
    561. Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
    562. Asgharian, Hossein & Nossman, Marcus, 2011. "Risk contagion among international stock markets," Journal of International Money and Finance, Elsevier, vol. 30(1), pages 22-38, February.
    563. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
    564. Wang, Jianxin & Yang, Minxian, 2009. "Asymmetric volatility in the foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 597-615, October.
    565. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis," Working Papers 202114, University of Pretoria, Department of Economics.
    566. Ullrich, Carl J., 2012. "Realized volatility and price spikes in electricity markets: The importance of observation frequency," Energy Economics, Elsevier, vol. 34(6), pages 1809-1818.
    567. Ewald, Christian & Zou, Yihan, 2021. "Stochastic volatility: A tale of co-jumps, non-normality, GMM and high frequency data," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 37-52.
    568. Evans, Kevin P., 2011. "Intraday jumps and US macroeconomic news announcements," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2511-2527, October.
    569. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    570. Dungey, Mardi & Matei, Marius & Treepongkaruna, Sirimon, 2020. "Examining stress in Asian currencies: A perspective offered by high frequency financial market data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    571. Sonnan Chen & Yuchi Gu, 2021. "Joint estimation of volatility risk and tail risk premia with time-varying macro-state-dependent property," Review of Quantitative Finance and Accounting, Springer, vol. 56(4), pages 1357-1397, May.
    572. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    573. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    574. Duan, Yunpeng & Xue, Yi, 2014. "Bipower variation with jumps and correlated returns," Economics Letters, Elsevier, vol. 125(3), pages 367-371.
    575. Ronald Gallant, A. & Tauchen, George, 2018. "Exact Bayesian moment based inference for the distribution of the small-time movements of an Itô semimartingale," Journal of Econometrics, Elsevier, vol. 205(1), pages 140-155.
    576. Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.
    577. Mohammad Abu Sayeed & Mardi Dungey & Wenying Yao, 2018. "High-frequency Characterisation of Indian Banking Stocks," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 213-238, August.
    578. Shahzad, Hassan & Duong, Huu Nhan & Kalev, Petko S. & Singh, Harminder, 2014. "Trading volume, realized volatility and jumps in the Australian stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 414-430.
    579. Peng, Huan & Chen, Ruoxun & Mei, Dexiang & Diao, Xiaohua, 2018. "Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 78-85.
    580. Aida Karmous & Heni Boubaker & Lotfi Belkacem, 2021. "Forecasting Volatility for an Optimal Portfolio with Stylized Facts Using Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 461-482, August.
    581. Nima Nonejad, 2013. "A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory," CREATES Research Papers 2013-24, Department of Economics and Business Economics, Aarhus University.
    582. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    583. Eunjeong Choi & Soohwan Cho & Dong Keun Kim, 2020. "Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability," Sustainability, MDPI, vol. 12(3), pages 1-14, February.
    584. Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2013. "Stylized Facts and Dynamic Modeling of High-frequency Data on Precious Metals," Working Papers on Finance 1318, University of St. Gallen, School of Finance.
    585. Friesen, Geoffrey C. & Weller, Paul A. & Dunham, Lee M., 2009. "Price trends and patterns in technical analysis: A theoretical and empirical examination," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1089-1100, June.
    586. Lyócsa, Štefan & Molnár, Peter, 2017. "The effect of non-trading days on volatility forecasts in equity markets," Finance Research Letters, Elsevier, vol. 23(C), pages 39-49.
    587. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    588. González-Urteaga, Ana & Muga, Luis & Santamaria, Rafael, 2015. "Momentum and default risk. Some results using the jump component," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 185-193.
    589. Xianfei Hui & Baiqing Sun & Indranil SenGupta & Yan Zhou & Hui Jiang, 2022. "Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning," Papers 2204.02891, arXiv.org, revised Jan 2023.
    590. Sun, Bianxia & Gao, Yang, 2020. "Market liquidity and macro announcement around intraday jumps: Evidence from Chinese stock index futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    591. Qiang Liu & Zhi Liu, 2022. "Estimating spot volatility under infinite variation jumps with dependent market microstructure noise," Papers 2205.15738, arXiv.org, revised Feb 2023.
    592. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    593. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    594. Huang, Darien & Schlag, Christian & Shaliastovich, Ivan & Thimme, Julian, 2018. "Volatility-of-volatility risk," SAFE Working Paper Series 210, Leibniz Institute for Financial Research SAFE.
    595. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    596. Hassan Zada & Arshad Hassan & Wing-Keung Wong, 2021. "Do Jumps Matter in Both Equity Market Returns and Integrated Volatility: A Comparison of Asian Developed and Emerging Markets," Economies, MDPI, vol. 9(2), pages 1-26, June.
    597. Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
    598. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    599. Wright, Jonathan H. & Zhou, Hao, 2009. "Bond risk premia and realized jump risk," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2333-2345, December.
    600. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
    601. Xie, Haibin & Yu, Chengtan, 2020. "Realized GARCH models: Simpler is better," Finance Research Letters, Elsevier, vol. 33(C).
    602. Bregantini, Daniele, 2013. "Moment-based estimation of stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4755-4764.
    603. Espinosa, Fernando & Vives, Josep, 2006. "A volatility-varying and jump-diffusion Merton type model of interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 157-166, February.
    604. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    605. Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
    606. Gnabo, Jean-Yves & Laurent, Sébastien & Lecourt, Christelle, 2009. "Does transparency in central bank intervention policy bring noise to the FX market?: The case of the Bank of Japan," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 94-111, February.
    607. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    608. Nirei, Makoto & Sushko, Vladyslav, 2011. "Jumps in foreign exchange rates and stochastic unwinding of carry trades," International Review of Economics & Finance, Elsevier, vol. 20(1), pages 110-127, January.
    609. Da Fonseca, José & Ignatieva, Katja & Ziveyi, Jonathan, 2016. "Explaining credit default swap spreads by means of realized jumps and volatilities in the energy market," Energy Economics, Elsevier, vol. 56(C), pages 215-228.
    610. Buncic, Daniel & Gisler, Katja I.M., 2017. "The role of jumps and leverage in forecasting volatility in international equity markets," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 1-19.
    611. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    612. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    613. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    614. Naeyoung Kang & Jungmu Kim, 2019. "An Empirical Analysis of Bitcoin Price Jump Risk," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    615. Atak, Alev & Kapetanios, George, 2013. "A factor approach to realized volatility forecasting in the presence of finite jumps and cross-sectional correlation in pricing errors," Economics Letters, Elsevier, vol. 120(2), pages 224-228.
    616. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    617. Thibault Vatter & Hau-Tieng Wu & Valérie Chavez-Demoulin & Bin Yu, 2015. "Non-Parametric Estimation of Intraday Spot Volatility: Disentangling Instantaneous Trend and Seasonality," Econometrics, MDPI, vol. 3(4), pages 1-24, December.
    618. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    619. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    620. Bollerslev, Tim & Todorov, Viktor, 2014. "Time-varying jump tails," Journal of Econometrics, Elsevier, vol. 183(2), pages 168-180.
    621. Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
    622. Jan Novotn?? & Jan Hanousek & Ev??en Ko??enda, 2013. "Price Jump Indicators: Stock Market Empirics During the Crisis," William Davidson Institute Working Papers Series wp1050, William Davidson Institute at the University of Michigan.
    623. Jawadi, Fredj & Louhichi, Waël & Idi Cheffou, Abdoulkarim, 2015. "Testing and modeling jump contagion across international stock markets: A nonparametric intraday approach," Journal of Financial Markets, Elsevier, vol. 26(C), pages 64-84.
    624. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    625. Qian, Lihua & Wang, Jiqian & Ma, Feng & Li, Ziyang, 2022. "Bitcoin volatility predictability–The role of jumps and regimes," Finance Research Letters, Elsevier, vol. 47(PB).
    626. Shimizu, Yasutaka, 2009. "Functional estimation for Lvy measures of semimartingales with Poissonian jumps," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1073-1092, July.
    627. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    628. Flavia Barsotti & Simona Sanfelici, 2016. "Market Microstructure Effects on Firm Default Risk Evaluation," Econometrics, MDPI, vol. 4(3), pages 1-31, July.
    629. Liu, Guangqiang & Wei, Yu & Chen, Yongfei & Yu, Jiang & Hu, Yang, 2018. "Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 288-297.
    630. Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
    631. J. Piplack & M. Beine & B. Candelon, 2009. "Comovements of Returns and Volatility in International Stock Markets: A High-Frequency Approach," Working Papers 09-10, Utrecht School of Economics.
    632. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
    633. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay & Villupuram, Sriram, 2014. "Currency jumps, cojumps and the role of macro news," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 42-62.
    634. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    635. Odusami, Babatunde O., 2021. "Volatility jumps and their determinants in REIT returns," Journal of Economics and Business, Elsevier, vol. 113(C).
    636. Yang, Kun & Wei, Yu & Li, Shouwei & Liu, Liang & Wang, Lei, 2021. "Global financial uncertainties and China’s crude oil futures market: Evidence from interday and intraday price dynamics," Energy Economics, Elsevier, vol. 96(C).
    637. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    638. S. Garg & Vipul, 2014. "Volatility forecasting performance of two-scale realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1111-1121, September.
    639. Lars Winkelmann & Markus Bibinger & Tobias Linzert, 2016. "ECB Monetary Policy Surprises: Identification Through Cojumps in Interest Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 613-629, June.
    640. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Duration-Based Volatility Estimation," Global COE Hi-Stat Discussion Paper Series gd08-034, Institute of Economic Research, Hitotsubashi University.
    641. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    642. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2020. "Uncertainty due to Infectious Diseases and Forecastability of the Realized Variance of US REITs: A Note," Working Papers 202099, University of Pretoria, Department of Economics.
    643. Ysusi Carla, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
    644. Bjursell, Johan & Gentle, James E. & Wang, George H.K., 2015. "Inventory announcements, jump dynamics, volatility and trading volume in U.S. energy futures markets," Energy Economics, Elsevier, vol. 48(C), pages 336-349.
    645. Behfar, Stefan Kambiz, 2016. "Long memory behavior of returns after intraday financial jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 716-725.
    646. Yingjie Dong & Yiu-Kuen Tse, 2017. "Business Time Sampling Scheme with Applications to Testing Semi-Martingale Hypothesis and Estimating Integrated Volatility," Econometrics, MDPI, vol. 5(4), pages 1-19, November.
    647. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
    648. Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
    649. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.
    650. Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2019. "Asymptotic results for the Fourier estimator of the integrated quarticity," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 471-502, December.
    651. McMillan, David G. & Speight, Alan E.H. & Evans, Kevin P., 2008. "How useful is intraday data for evaluating daily Value-at-Risk?: Evidence from three Euro rates," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 488-503, December.
    652. Emawtee Bissoondoyal-Bheenick & Robert Brooks & Wei Chi & Hung Xuan Do, 2018. "Volatility spillover between the US, Chinese and Australian stock markets," Australian Journal of Management, Australian School of Business, vol. 43(2), pages 263-285, May.
    653. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    654. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    655. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    656. Daiki Maki & Yasushi Ota, 2020. "The impacts of asymmetry on modeling and forecasting realized volatility in Japanese stock markets," Papers 2006.00158, arXiv.org.
    657. Zeng, Qing & Lu, Xinjie & Li, Tao & Wu, Lan, 2022. "Jumps and stock market variance during the COVID-19 pandemic: Evidence from international stock markets," Finance Research Letters, Elsevier, vol. 48(C).
    658. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    659. Xu, Yahua & Bouri, Elie & Saeed, Tareq & Wen, Zhuzhu, 2020. "Intraday return predictability: Evidence from commodity ETFs and their related volatility indices," Resources Policy, Elsevier, vol. 69(C).
    660. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    661. Lu, Botao & Ma, Feng & Wang, Jiqian & Ding, Hui & Wahab, M.I.M., 2021. "Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 672-689.
    662. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    663. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    664. George Filis & Stavros Degiannakis & Zacharias Bragoudakis, 2022. "Forecasting macroeconomic indicators for Eurozone and Greece: How useful are the oil price assumptions?," Working Papers 296, Bank of Greece.
    665. Valenzuela, Marcela & Zer, Ilknur & Fryzlewicz, Piotr & Rheinlander, Thorsten, 2015. "Relative liquidity and future volatility," LSE Research Online Documents on Economics 62181, London School of Economics and Political Science, LSE Library.
    666. Paweł Kliber, 2019. "Continuous and jump changes in prices processes in the selected stock markets," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 54, pages 333-344.
    667. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    668. Markku Lanne, 2006. "Forecasting Realized Volatility by Decomposition," Economics Working Papers ECO2006/20, European University Institute.
    669. Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).
    670. Kumar, Dilip, 2017. "Realized volatility transmission from crude oil to equity sectors: A study with economic significance analysis," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 149-167.
    671. Czado, Claudia & Ivanov, Eugen & Okhrin, Yarema, 2019. "Modelling temporal dependence of realized variances with vines," Econometrics and Statistics, Elsevier, vol. 12(C), pages 198-216.
    672. Ysusi Carla, 2006. "Estimating Integrated Volatility Using Absolute High-Frequency Returns," Working Papers 2006-13, Banco de México.
    673. Finbarr Murphy & Ehud Ronn, 2015. "The valuation and information content of options on crude-oil futures contracts," Review of Derivatives Research, Springer, vol. 18(2), pages 95-106, July.
    674. Torben B. Rasmussen, 2009. "Jump Testing and the Speed of Market Adjustment," CREATES Research Papers 2009-08, Department of Economics and Business Economics, Aarhus University.
    675. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    676. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.
    677. Avouyi-Dovi, S. & Idier, J., 2010. "Central bank liquidity and market liquidity: the role of collateral provision on the French government debt securities market," Working papers 278, Banque de France.
    678. Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
    679. David S. Bates, 2016. "How Crashes Develop: Intradaily Volatility and Crash Evolution," NBER Working Papers 22028, National Bureau of Economic Research, Inc.
    680. Gupta, Varun & Perera, Sandun, 2021. "Managing surges in online demand using bandwidth throttling: An optimal strategy amid the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    681. Wamg, Jianxin, 2011. "Forecasting Volatility in Asian Stock Markets: Contributions of Local, Regional, and Global Factors," Asian Development Review, Asian Development Bank, vol. 28(2), pages 32-57.
    682. Huang, Henry H. & Wang, Kent & Wang, Zhanglong, 2016. "A test of efficiency for the S&P 500 index option market using the generalized spectrum method," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 52-70.
    683. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.

  37. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
    2. Nkwoma John Inekwe, 2016. "Financial uncertainty, risk aversion and monetary policy," Empirical Economics, Springer, vol. 51(3), pages 939-961, November.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    4. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    5. Ivan Shaliastovich & George Tauchen, 2010. "Pricing of the Time-Change Risks," Working Papers 10-10, Duke University, Department of Economics.
    6. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    7. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    8. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    9. Kleiber, William, 2016. "High resolution simulation of nonstationary Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 277-288.
    10. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    11. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    12. Stefan Klößner, 2010. "A high-low-based omnibus test for symmetry, the Lévy property, and other hypotheses on intraday returns," Finance and Stochastics, Springer, vol. 14(1), pages 1-12, January.
    13. Li, Wenlan & Cheng, Yuxiang & Fang, Qiang, 2020. "Forecast on silver futures linked with structural breaks and day-of-the-week effect," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    14. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    15. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij & Jeannette H.C. Woerner, 2008. "Bipower variation for Gaussian processes with stationary increments," CREATES Research Papers 2008-21, Department of Economics and Business Economics, Aarhus University.
    16. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
    17. Maciej Kostrzewski, 2014. "Bayesian DEJD model and detection of asymmetric jumps," Papers 1404.2050, arXiv.org.
    18. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    19. Meng, Yongqiang & Li, Xiao & Xiong, Xiong, 2024. "Information shocks and short-term market overreaction: The role of investor attention," International Review of Financial Analysis, Elsevier, vol. 93(C).
    20. Thierry Ane & Carole Metais, 2010. "Jump Distribution Characteristics: Evidence from European Stock Markets," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 9(1), pages 1-22, April.
    21. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    22. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    23. Kallsen Jan & Muhle-Karbe Johannes, 2011. "Method of moment estimation in time-changed Lévy models," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 169-194, May.
    24. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    25. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    26. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    27. Jian Chen & Michael P Clements & Andrew Urquhart, 2024. "Modeling Price and Variance Jump Clustering Using the Marked Hawkes Process," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 743-772.
    28. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    29. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    30. Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
    31. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference (Revised in April 2006, subsequently published in "Journal of Econometrics", 140, 425-449, 2007. )," CARF F-Series CARF-F-011, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    32. Tomáš Tichý, 2006. "Model Dependency of the Digital Option Replication – Replication under an Incomplete Model (in English)," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(7-8), pages 361-379, July.
    33. Ole E. Barndorff-Nielsen & Makoto Maejima & Ken-iti Sato, 2006. "Infinite Divisibility for Stochastic Processes and Time Change," Journal of Theoretical Probability, Springer, vol. 19(2), pages 411-446, June.

  38. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    3. John Cotter, 2011. "Absolute Return Volatility," Papers 1103.5976, arXiv.org.
    4. Andrey Rafalson, 2012. "Bootstrap inference about integrated volatility (in Russian)," Quantile, Quantile, issue 10, pages 91-108, December.
    5. Nikolai Dokuchaev, 2015. "On statistical indistinguishability of complete and incomplete discrete time market models," Papers 1505.00638, arXiv.org.

  39. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2002. "Likelihood-based estimation of latent generalised ARCH structures," Economics Papers 2002-W19, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    2. Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Alain Hecq & Franz C. Palm & Sébastien Laurent, 2016. "On the Univariate Representation of BEKK Models with Common Factors," Post-Print hal-01440307, HAL.
    5. Gabriele Fiorentini & Alessandro Galesi & Enrique Sentana, 2015. "Fast ML Estimation of Dynamic Bifactor Models: An Application to European Inflation," Working Papers wp2015_1502, CEMFI.
    6. Sentana, Enrique & Calzolari, Giorgio & Fiorentini, Gabriele, 2008. "Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks," Journal of Econometrics, Elsevier, vol. 146(1), pages 10-25, September.
    7. Erie Febrian & Aldrin Herwany, 2010. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Business, Management and Finance 201005, Department of Management and Business, Padjadjaran University, revised May 2010.
    8. Dovonon, Prosper, 2008. "Conditionally heteroskedastic factor models with skewness and leverage effects," MPRA Paper 40206, University Library of Munich, Germany, revised Feb 2012.
    9. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    10. Dovonon, Prosper & Renault, Eric, 2011. "Testing for Common GARCH Factors," MPRA Paper 40224, University Library of Munich, Germany.
    11. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    12. Francesco Audrino & Fulvio Corsi & Kameliya Filipova, 2010. "Bond Risk Premia Forecasting: A Simple Approach for Extracting¨Macroeconomic Information from a Panel of Indicators," University of St. Gallen Department of Economics working paper series 2010 2010-09, Department of Economics, University of St. Gallen.
    13. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
    14. Weber, Enzo, 2013. "Decomposing U.S. Stock Market Comovement into spillovers and common factors," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 106-118.
    15. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    16. Dovonon, Prosper & Gonçalves, Sílvia, 2017. "Bootstrapping the GMM overidentification test under first-order underidentification," Journal of Econometrics, Elsevier, vol. 201(1), pages 43-71.
    17. Dungey, Mardi & Fry, Renee & Gonzalez-Hermosillo, Brenda & Martin, Vance, 2006. "Contagion in international bond markets during the Russian and the LTCM crises," Journal of Financial Stability, Elsevier, vol. 2(1), pages 1-27, April.
    18. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    19. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    20. Prosper Dovonon & Alastair R. Hall, 2017. "The Asymptotic Properties of GMM and Indirect Inference Under Second-Order Identification," Economics Discussion Paper Series 1705, Economics, The University of Manchester.
    21. Dovonon, Prosper & Hall, Alastair R., 2018. "The asymptotic properties of GMM and indirect inference under second-order identification," Journal of Econometrics, Elsevier, vol. 205(1), pages 76-111.
    22. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    23. Gabriele Fiorentini & Enrique Sentana, 2013. "Dynamic Specification Tests for Dynamic Factor Models," Working Papers wp2013_1306, CEMFI.
    24. M. Hashem Pesaran & Paolo Zaffaroni, 2009. "Optimality and Diversifiability of Mean Variance and Arbitrage Pricing Portfolios," CESifo Working Paper Series 2857, CESifo.
    25. Pesaran, M.H. & Zaffaroni, P., 2008. "Optimal Asset Allocation with Factor Models for Large Portfolios," Cambridge Working Papers in Economics 0813, Faculty of Economics, University of Cambridge.
    26. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    27. Kuruppuarachchi, Duminda & Premachandra, I.M., 2016. "Information spillover dynamics of the energy futures market sector: A novel common factor approach," Energy Economics, Elsevier, vol. 57(C), pages 277-294.
    28. Broto, Carmen, 2006. "Using auxiliary residuals to detect conditional heteroscedasticity in inflation," DES - Working Papers. Statistics and Econometrics. WS ws060402, Universidad Carlos III de Madrid. Departamento de Estadística.
    29. Cecilia Frale & Stefano Grassi & Massimiliano Marcellino & Gianluigi Mazzi & Tommaso Proietti, 2013. "EuroMInd-C: a Disaggregate Monthly Indicator of Economic Activity for the Euro Area and member countries," CEIS Research Paper 287, Tor Vergata University, CEIS, revised 01 Oct 2013.
    30. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    31. Broto, Carmen, 2003. "Unobserved component models with asymmetric conditional variances," DES - Working Papers. Statistics and Econometrics. WS ws032003, Universidad Carlos III de Madrid. Departamento de Estadística.
    32. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    33. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    34. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    35. Aramonte, Sirio & Giudice Rodriguez, Marius del & Wu, Jason, 2013. "Dynamic factor Value-at-Risk for large heteroskedastic portfolios," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4299-4309.
    36. Michael Creel, 2008. "Estimation of Dynamic Latent Variable Models Using Simulated Nonparametric Moments," UFAE and IAE Working Papers 725.08, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 02 Jun 2008.
    37. Mardi Dungey & Eric Renault, 2018. "Identifying contagion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 227-250, March.
    38. Gabriele Fiorentini & Enrique Sentana, 2009. "Dynamic Specification Tests for Static Factor Models," Working Papers wp2009_0912, CEMFI.
    39. Enrique Sentana & Giorgio Calzolari & Gabriele Fiorentini, 2004. "Indirect Estimation of Conditionally Heteroskedastic Factor Models," Working Papers wp2004_0409, CEMFI.
    40. Dovonon, Prosper & Hall, Alastair R. & Kleibergen, Frank, 2020. "Inference in second-order identified models," Journal of Econometrics, Elsevier, vol. 218(2), pages 346-372.
    41. Chew Lian Chua & G. C. Lim & Penelope Smith, 2008. "A Bayesian Simulation Approach to Inference on a Multi-State Latent Factor Intensity Model," Melbourne Institute Working Paper Series wp2008n16, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    42. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    43. Lakshina, Valeriya, 2014. "Is it possible to break the «curse of dimensionality»? Spatial specifications of multivariate volatility models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 36(4), pages 61-78.
    44. Borus Jungbacker & Siem Jan Koopman, 2015. "Likelihood‐based dynamic factor analysis for measurement and forecasting," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-21, June.
    45. Gabriele Fiorentini & Enrique Sentana, 2012. "Tests for Serial Dependence in Static, Non-Gaussian Factor Models," Working Papers wp2012_1211, CEMFI.
    46. Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
    47. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.

  40. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
    2. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
    3. Pierre Collin-Dufresne & Christopher S. Jones & Robert S. Goldstein, 2004. "Can Interest Rate Volatility be Extracted from the Cross Section of Bond Yields? An Investigation of Unspanned Stochastic Volatility," NBER Working Papers 10756, National Bureau of Economic Research, Inc.
    4. Siem Jan Koopman & Charles S. Bos, 2002. "Time Series Models with a Common Stochastic Variance for Analysing Economic Time Series," Tinbergen Institute Discussion Papers 02-113/4, Tinbergen Institute.
    5. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    6. Jean-Francois Richard & Roman Liesenfeld, 2007. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Working Paper 322, Department of Economics, University of Pittsburgh, revised Jan 2004.
    7. Siem Jan Koopman & John A. D. Aston, 2006. "A non-Gaussian generalization of the Airline model for robust seasonal adjustment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 325-349.

  41. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    2. Turgut Kısınbay, 2010. "Predictive ability of asymmetric volatility models at medium-term horizons," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3813-3829.
    3. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    4. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    5. Ysusi Carla, 2006. "Estimating Integrated Volatility Using Absolute High-Frequency Returns," Working Papers 2006-13, Banco de México.

  42. Tina Hviid Rydberg & Neil Shephard, 2002. "Dynamics of trade-by-trade price movements: decomposition and models," Economics Papers 2002-W1, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    2. Dionne, Georges & Zhou, Xiaozhou, 2016. "The Dynamics of Ex-ante High-Frequency Liquidity: An Empirical Analysis," Working Papers 15-5, HEC Montreal, Canada Research Chair in Risk Management.
    3. Lee Tae-Hwy & Wang He & Xi Zhou & Zhang Ru, 2023. "Density Forecast of Financial Returns Using Decomposition and Maximum Entropy," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 57-83, January.
    4. Roman Liesenfeld & Ingmar Nolte & Winfried Pohlmeier, 2008. "Modelling financial transaction price movements: a dynamic integer count data model," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 167-197, Springer.
    5. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    6. Enrico Scalas, 2006. "Five Years of Continuous-time Random Walks in Econophysics," Lecture Notes in Economics and Mathematical Systems, in: Akira Namatame & Taisei Kaizouji & Yuuji Aruka (ed.), The Complex Networks of Economic Interactions, pages 3-16, Springer.
    7. Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Bounds for Time-Varying Parameters of Observation Driven Models," Tinbergen Institute Discussion Papers 15-027/III, Tinbergen Institute, revised 07 Sep 2015.
    8. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    9. Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2012. "Stationarity and Ergodicity of Univariate Generalized Autoregressive Score Processes," Tinbergen Institute Discussion Papers 12-059/4, Tinbergen Institute.
    10. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, New Economic School (NES).
    11. Ito, Ryoko, 2013. "Modeling Dynamic Diurnal Patterns in High-Frequency Financial Data," Cambridge Working Papers in Economics 1315, Faculty of Economics, University of Cambridge.
    12. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    13. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    14. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    15. Peng, Rong & Lu, Zudi, 2024. "Semiparametric Averaging of Nonlinear Marginal Logistic Regressions and Forecasting for Time Series Classification," Econometrics and Statistics, Elsevier, vol. 31(C), pages 19-37.
    16. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    17. Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
    18. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
    19. Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," Working Papers in Economics 11/11, University of Canterbury, Department of Economics and Finance.
    20. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    21. Drescher, Daniel, 2005. "Alternative distributions for observation driven count series models," Economics Working Papers 2005-11, Christian-Albrechts-University of Kiel, Department of Economics.
    22. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    23. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
    24. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    25. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data: Modelling and Estimation," Economics Working Papers 2005-08, Christian-Albrechts-University of Kiel, Department of Economics.
    26. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    27. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    28. Haibin Xie & Yuying Sun & Pengying Fan, 2023. "Return direction forecasting: a conditional autoregressive shape model with beta density," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-16, December.
    29. Eric Jondeau & Jérôme Lahaye & Michael Rockinger, 2013. "Estimating the Price Impact of Trades in an High-Frequency Microstructure Model with Jumps," Swiss Finance Institute Research Paper Series 13-47, Swiss Finance Institute, revised Feb 2016.
    30. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    31. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    32. Heikki Kauppi, 2008. "Yield-Curve Based Probit Models for Forecasting U.S. Recessions: Stability and Dynamics," Discussion Papers 31, Aboa Centre for Economics.
    33. Giuseppe Buccheri & Stefano Grassi & Giorgio Vocalelli, 2021. "Estimating Risk in Illiquid Markets: a Model of Market Friction with Stochastic Volatility," CEIS Research Paper 506, Tor Vergata University, CEIS, revised 08 Nov 2021.
    34. Zihao Wang & Kun Li & Steve Q. Xia & Hongfu Liu, 2021. "Economic Recession Prediction Using Deep Neural Network," Papers 2107.10980, arXiv.org.
    35. Mauricio Junca & Rafael Serrano, 2014. "Utility maximization in pure-jump models driven by marked point processes and nonlinear wealth dynamics," Papers 1411.1103, arXiv.org, revised Sep 2015.
    36. Katarzyna Bień-Barkowska, 2012. "A Bivariate Copula-based Model for a Mixed Binary-Continuous Distribution: A Time Series Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(2), pages 117-142, June.
    37. Liu, Jingzhen & Kemp, Alexander, 2019. "Forecasting the sign of U.S. oil and gas industry stock index excess returns employing macroeconomic variables," Energy Economics, Elsevier, vol. 81(C), pages 672-686.
    38. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    39. Amilon, Henrik, 2003. "GARCH estimation and discrete stock prices: an application to low-priced Australian stocks," Economics Letters, Elsevier, vol. 81(2), pages 215-222, November.
    40. HAFNER, Christian H., 2005. "Durations, volume and the prediction of financial returns in transaction time," LIDAM Reprints CORE 1784, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    41. Christoffersen, Peter F. & Diebold, Francis X., 2003. "Financial asset returns, direction-of-change forecasting, and volatility dynamics," CFS Working Paper Series 2004/08, Center for Financial Studies (CFS).
    42. Pohlmeier, Winfried & Liesenfeld, Roman, 2003. "A Dynamic Integer Count Data Model for Financial Transaction Prices," CoFE Discussion Papers 03/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    43. Istvan Barra & Siem Jan Koopman & Agnieszka Borowska, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute, revised 16 Feb 2018.
    44. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    45. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    46. Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
    47. Bien, Katarzyna & Nolte, Ingmar & Pohlmeier, Winfried, 2006. "Estimating liquidity using information on the multivariate trading process," CoFE Discussion Papers 06/04, University of Konstanz, Center of Finance and Econometrics (CoFE).
    48. Ovielt Baltodano Lopez & Federico Bassetti & Giulia Carallo & Roberto Casarin, 2022. "First-order integer-valued autoregressive processes with Generalized Katz innovations," Papers 2202.02029, arXiv.org, revised Dec 2024.
    49. Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Confidence Bands and Out-of-Sample Forecast Bands for Time-Varying Parameters in Observation Driven Models," Tinbergen Institute Discussion Papers 15-083/III, Tinbergen Institute.
    50. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    51. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "Predicting bid-ask spreads using long memory autoregressive conditional poisson models," SFB 649 Discussion Papers 2011-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    52. Igor Kheifets & Carlos Velasco, 2013. "New Goodness-of-fit Diagnostics for Conditional Discrete Response Models," Cowles Foundation Discussion Papers 1924, Cowles Foundation for Research in Economics, Yale University.
    53. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
    54. Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.
    55. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    56. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
    57. Algieri, Bernardina & Leccadito, Arturo, 2019. "Ask CARL: Forecasting tail probabilities for energy commodities," Energy Economics, Elsevier, vol. 84(C).
    58. Henri Nyberg, 2018. "Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(1), pages 1-15, January.
    59. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    60. Georges Dionne & Xiaozhou Zhou, 2020. "The dynamics of ex-ante weighted spread: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 593-617, April.
    61. Gu, Wentao & Peng, Yiqing, 2019. "Forecasting the market return direction based on a time-varying probability density model," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    62. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2013. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121, December.
    63. Nyberg, Henri, 2010. "QR-GARCH-M Model for Risk-Return Tradeoff in U.S. Stock Returns and Business Cycles," MPRA Paper 23724, University Library of Munich, Germany.
    64. Igor Kheifets & Carlos Velasco, 2012. "Model Adequacy Checks for Discrete Choice Dynamic Models," Working Papers w0170, New Economic School (NES).
    65. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    66. Liu, Jiadong & Papailias, Fotis & Quinn, Barry, 2021. "Direction-of-change forecasting in commodity futures markets," International Review of Financial Analysis, Elsevier, vol. 74(C).
    67. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    68. Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    69. Henri Nyberg, 2010. "Testing an autoregressive structure in binary time series models," Economics Bulletin, AccessEcon, vol. 30(2), pages 1460-1473.
    70. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    71. Harvey, Andrew & Ito, Ryoko, 2020. "Modeling time series when some observations are zero," Journal of Econometrics, Elsevier, vol. 214(1), pages 33-45.
    72. Ito, R., 2016. "Spline-DCS for Forecasting Trade Volume in High-Frequency Finance," Cambridge Working Papers in Economics 1606, Faculty of Economics, University of Cambridge.
    73. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
    74. Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
    75. Riza Erdugan & Nada Kulendran & Riccardo Natoli, 2019. "Incorporating financial market volatility to improve forecasts of directional changes in Australian share market returns," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(4), pages 417-445, December.
    76. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    77. Kömm, Holger & Küsters, Ulrich, 2015. "Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 598-608.
    78. Henrik Amilon, 2002. "A Score Test for Discreteness in GARCH Models," Research Paper Series 76, Quantitative Finance Research Centre, University of Technology, Sydney.
    79. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    80. Wing Lon Ng, 2010. "Dynamic Order Submission And Herding Behavior In Electronic Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 27-43, March.
    81. Luis H. R. Alvarez E. & Paavo Salminen, 2017. "Timing in the presence of directional predictability: optimal stopping of skew Brownian motion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.
    82. Stanislav Anatolyev, 2013. "Objects of nonstructural time series modeling (in Russian)," Quantile, Quantile, issue 11, pages 1-12, December.
    83. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.

  43. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Power Variation and Time Change," Economics Papers 2002-W24, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    3. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Pawel Kliber, 2011. "Jumps Activity and Singularity Spectra for Instruments in the Polish Financial Market," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 171-184.
    5. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," OFRC Working Papers Series 2004fe20, Oxford Financial Research Centre.
    6. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.

  44. Siddhartha Chib & Neil Shephard, 2001. "Comment on Garland B. Durham and A. Ronald Gallant's "Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes"," Economics Papers 2001-W26, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations," Stan Hurn Discussion Papers 2006, School of Economics and Finance, Queensland University of Technology.
    2. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.

  45. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. S. Z. Levendorskiǐ, 2004. "Pricing Of The American Put Under Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 303-335.
    2. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    3. Ole E. Barndorff-Nielsen & David G. Pollard & Neil Shephard, 2010. "Integer-valued Lévy processes and low latency financial econometrics," CREATES Research Papers 2010-66, Department of Economics and Business Economics, Aarhus University.
    4. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    5. Yuhao Liu & Petar M. Djurić & Young Shin Kim & Svetlozar T. Rachev & James Glimm, 2021. "Systemic Risk Modeling with Lévy Copulas," JRFM, MDPI, vol. 14(6), pages 1-20, June.
    6. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    7. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Papers 2006.07669, arXiv.org, revised Aug 2020.
    8. Farouk Mselmi, 2022. "Generalized linear model for subordinated Lévy processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 772-801, June.
    9. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    10. Karen J. Palmer & Martin S. Ridout & Byron J. T. Morgan, 2008. "Modelling cell generation times by using the tempered stable distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 379-397, September.
    11. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    12. Young Shin Kim, 2018. "First Passage Time for Tempered Stable Process and Its Application to Perpetual American Option and Barrier Option Pricing," Papers 1801.09362, arXiv.org.
    13. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.
    14. Gajda, J. & Kumar, A. & Wyłomańska, A., 2019. "Stable Lévy process delayed by tempered stable subordinator," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 284-292.
    15. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    16. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    17. Scott, David J & Würtz, Diethelm & Dong, Christine & Tran, Thanh Tam, 2009. "Moments of the generalized hyperbolic distribution," MPRA Paper 19081, University Library of Munich, Germany.
    18. Roberto Baviera & Pietro Manzoni, 2024. "Fast and General Simulation of L\'evy-driven OU processes for Energy Derivatives," Papers 2401.15483, arXiv.org, revised Sep 2024.
    19. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    20. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    21. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    22. Matthias Fischer & Kevin Jakob, 2016. "pTAS distributions with application to risk management," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-18, December.
    23. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    24. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    25. Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.
    26. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    27. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    28. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    29. Holger Fink & Stefan Mittnik, 2021. "Quanto Pricing beyond Black–Scholes," JRFM, MDPI, vol. 14(3), pages 1-27, March.
    30. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    31. Hasan A. Fallahgoul & David Veredas & Frank J. Fabozzi, 2019. "Quantile-Based Inference for Tempered Stable Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 51-83, January.
    32. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    33. H. Fink & S. Geissel & J. Sass & F. T. Seifried, 2019. "Implied risk aversion: an alternative rating system for retail structured products," Review of Derivatives Research, Springer, vol. 22(3), pages 357-387, October.
    34. Jouchi Nakajima, 2017. "Bayesian analysis of multivariate stochastic volatility with skew return distribution," Econometric Reviews, Taylor & Francis Journals, vol. 36(5), pages 546-562, May.
    35. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    36. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    37. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    38. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    39. Sung Ik Kim & Young Shin Kim, 2018. "Tempered stable structural model in pricing credit spread and credit default swap," Review of Derivatives Research, Springer, vol. 21(1), pages 119-148, April.
    40. Cerquetti, Annalisa, 2007. "A note on Bayesian nonparametric priors derived from exponentially tilted Poisson-Kingman models," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1705-1711, December.
    41. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.

  46. Anders Rahbek & Neil Shephard, 2001. "Autoregressive conditional root model," Economics Papers 2002-W7, Economics Group, Nuffield College, University of Oxford, revised 01 Feb 2002.

    Cited by:

    1. Angelos Kanas, 2009. "Real exchange rate, stationarity, and economic fundamentals," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(4), pages 393-409, October.
    2. Arie Preminger & Uri Ben-zion & David Wettstein, 2007. "The extended switching regression model: allowing for multiple latent state variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 457-473.
    3. Angelos Kanas, 2009. "Real exchange rates and developing countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 14(3), pages 280-299.
    4. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    5. Frédérique Bec & Anders Rahbek, 2004. "Vector equilibrium correction models with non-linear discontinuous adjustments," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 628-651, December.
    6. Kanas, Angelos, 2006. "Purchasing Power Parity and Markov Regime Switching," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(6), pages 1669-1687, September.
    7. Frédérique Bec & Alain Guay & Emmanuel Guerre, 2002. "Adaptive Consistent Unit Root Tests Based on Autoregressive Threshold Model," Working Papers 2002-46, Center for Research in Economics and Statistics.
    8. Sarno, Lucio & Daniel l Thornton & Giorgio Valente, 2003. "Federal Funds Rate Prediction," Royal Economic Society Annual Conference 2003 183, Royal Economic Society.
    9. Kaliva, Kasimir & Koskinen, Lasse, 2008. "Stock market bubbles, inflation and investment risk," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 592-603, June.
    10. Saikkonen, Pentti, 2005. "Stability results for nonlinear error correction models," Journal of Econometrics, Elsevier, vol. 127(1), pages 69-81, July.
    11. Gary Koop & Simon M. Potter, 2007. "A flexible approach to parametric inference in nonlinear time series models," Staff Reports 285, Federal Reserve Bank of New York.
    12. Rezitis, A.N. & Ahammad, S.M., 2015. "Investigating Agricultural Production Relations across Bangladesh, India and Pakistan Using Vector Error Correction and Markov-Switching Models," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 28(1).

  47. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    2. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou, 2016. "Jumps and stochastic volatility in crude oil prices and advances in average option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1859-1873, December.
    3. Chari, Anusha & Garcés, Felipe & Martínez, Juan Francisco & Valenzuela, Patricio, 2024. "Sovereign credit spreads, banking fragility, and global factors," Journal of Financial Stability, Elsevier, vol. 72(C).
    4. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    5. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    6. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    7. Shu Ling Chiang & Ming Shann Tsai, 2019. "Valuation of an option using non-parametric methods," Review of Derivatives Research, Springer, vol. 22(3), pages 419-447, October.
    8. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    9. Farshid Mehrdoust & Idin Noorani, 2023. "Valuation of Spark-Spread Option Written on Electricity and Gas Forward Contracts Under Two-Factor Models with Non-Gaussian Lévy Processes," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 807-853, February.
    10. S. T. Tse & Justin W. L. Wan, 2013. "Low-bias simulation scheme for the Heston model by Inverse Gaussian approximation," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 919-937, May.
    11. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    12. Alexander Bade & Gabriel Frahm & Uwe Jaekel, 2009. "A general approach to Bayesian portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 337-356, October.
    13. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    14. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    15. Degiannakis, Stavros & Livada, Alexandra & Panas, Epaminondas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," MPRA Paper 80464, University Library of Munich, Germany.
    16. Di Nunno, Giulia & Sjursen, Steffen, 2014. "BSDEs driven by time-changed Lévy noises and optimal control," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1679-1709.
    17. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    18. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    19. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Power Variation and Time Change," Economics Papers 2002-W24, Economics Group, Nuffield College, University of Oxford.
    20. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    21. Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
    22. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    23. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
    24. Hautsch, Nikolaus & Scheuch, Christoph & Voigt, Stefan, 2018. "Limits to arbitrage in markets with stochastic settlement latency," CFS Working Paper Series 616, Center for Financial Studies (CFS).
    25. Nikolaus Hautsch & Christoph Scheu & Stefan Voigt, 2024. "Building trust takes time: limits to arbitrage for blockchain-based assets," Review of Finance, European Finance Association, vol. 28(4), pages 1345-1381.
    26. Fasen, Vicky, 2013. "Statistical estimation of multivariate Ornstein–Uhlenbeck processes and applications to co-integration," Journal of Econometrics, Elsevier, vol. 172(2), pages 325-337.
    27. Sergei Levendorskii, 2002. "Pseudo-diffusions and Quadratic term structure models," Papers cond-mat/0212249, arXiv.org, revised Apr 2004.
    28. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    29. Himadri Ghosh & Bishal Gurung & Prajneshu, 2015. "Kalman filter-based modelling and forecasting of stochastic volatility with threshold," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 492-507, March.
    30. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    31. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    32. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    33. Lim, Kian Guan & Chen, Ying & Yap, Nelson K.L., 2019. "Intraday information from S&P 500 Index futures options," Journal of Financial Markets, Elsevier, vol. 42(C), pages 29-55.
    34. Tomáš Tichý, 2006. "Model Dependency of the Digital Option Replication – Replication under an Incomplete Model (in English)," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(7-8), pages 361-379, July.
    35. Yanhui Mi, 2016. "A modified stochastic volatility model based on Gamma Ornstein–Uhlenbeck process and option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-16, June.
    36. Ole E. Barndorff-Nielsen & Makoto Maejima & Ken-iti Sato, 2006. "Infinite Divisibility for Stochastic Processes and Time Change," Journal of Theoretical Probability, Springer, vol. 19(2), pages 411-446, June.
    37. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.

  48. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.

    Cited by:

    1. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    2. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    3. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    4. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    5. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    6. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    7. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    8. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
    9. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    10. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
    11. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
    12. Michael C. Munnix & Rudi Schafer & Thomas Guhr, 2009. "Compensating asynchrony effects in the calculation of financial correlations," Papers 0910.2909, arXiv.org, revised Jul 2010.
    13. Michael C. Münnix & Rudi Schäfer & Thomas Guhr, 2011. "Statistical Causes For The Epps Effect In Microstructure Noise," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1231-1246.
    14. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
    15. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    16. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    17. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Power Variation and Time Change," Economics Papers 2002-W24, Economics Group, Nuffield College, University of Oxford.
    18. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.
    19. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    20. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    21. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    22. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    23. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    24. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.

  49. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Integrated OU Processes," Economics Papers 2001-W1, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Wim Schoutens & Stijn Symens, 2003. "The Pricing Of Exotic Options By Monte–Carlo Simulations In A Lévy Market With Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(08), pages 839-864.
    2. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Higher order variation and stochastic volatility models," Economics Papers 2001-W8, Economics Group, Nuffield College, University of Oxford.
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.

  50. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.
    2. Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    4. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    5. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    6. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    7. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.
    8. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    9. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    10. Benjamin Y. Zhang & Hao Zhou & Haibin Zhu, 2005. "Explaining credit default swap spreads with the equity volatility and jump risks of individual firms," Finance and Economics Discussion Series 2005-63, Board of Governors of the Federal Reserve System (U.S.).
    11. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    12. Nour Meddahi, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilities," CIRANO Working Papers 2001s-71, CIRANO.
    13. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    14. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    15. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    16. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    17. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Power Variation and Time Change," Economics Papers 2002-W24, Economics Group, Nuffield College, University of Oxford.
    18. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    19. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    20. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.

  51. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    2. Dimitrios Thomakos & Michail Koubouros, 2008. "The Role of Realized Volatility in the Athens Stock Exchange," Working Papers 0020, University of Peloponnese, Department of Economics.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    4. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    5. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.
    6. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    7. Helmut Herwartz, 2006. "Econometric analysis of high frequency data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 89-104, March.
    8. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    9. ANDERSEN, Torben G. & BOLLERSLEV, Tim & MEDDAHI, Nour, 2002. "Correcting the Errors : A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities," Cahiers de recherche 2002-21, Universite de Montreal, Departement de sciences economiques.
    10. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    11. Peter C.B. Phillips & Jun Yu, 2007. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Cowles Foundation Discussion Papers 1597, Cowles Foundation for Research in Economics, Yale University.
    12. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    13. Dimitrios D. Thomakos & Michail S. Koubouros, 2005. "Realized Volatility and Asymmetries in the A.S.E. Returns," Finance 0507012, University Library of Munich, Germany, revised 17 Jan 2006.
    14. Damien Lynch & Nikolaos Panigirtzoglou, 2004. "Option Implied and Realised Measures of Variance," Money Macro and Finance (MMF) Research Group Conference 2004 94, Money Macro and Finance Research Group.
    15. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    16. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    17. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.
    18. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    19. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.
    20. Peter C.B. Phillips & Jun Yu, 2005. "A Two-Stage Realized Volatility Approach to the Estimation for Diffusion Processes from Discrete Observations," Cowles Foundation Discussion Papers 1523, Cowles Foundation for Research in Economics, Yale University.
    21. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    22. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    23. Jeffrey R. Russell & Federico M. Bandi, 2004. "Microstructure noise, realized volatility, and optimal sampling," Econometric Society 2004 Latin American Meetings 220, Econometric Society.

  52. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.

    Cited by:

    1. MEDDAHI, Nour, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Universite de Montreal, Departement de sciences economiques.
    2. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the best volatility models: the model confidence set approach," FRB Atlanta Working Paper 2003-28, Federal Reserve Bank of Atlanta.

  53. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.

    Cited by:

    1. Eric Hillebrand & Gunther Schnabl & Yasemin Ulu, 2006. "Japanese Foreign Exchange Intervention and the Yen/Dollar Exchange Rate: A Simultaneous Equations Approach Using Realized Volatility," CESifo Working Paper Series 1766, CESifo.
    2. Jieun Lee & Doojin Ryu, 2019. "The impacts of public news announcements on intraday implied volatility dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 656-685, June.
    3. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    4. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2012. "A nonparametric test of the leverage hypothesis," CeMMAP working papers CWP24/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Mario Bonino & Matteo Camelia & Paolo Pigato, 2016. "A multivariate model for financial indices and an algorithm for detection of jumps in the volatility," Working Papers hal-01408495, HAL.
    6. Viktor Todorov & Yang Zhang, 2022. "Information gains from using short‐dated options for measuring and forecasting volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 368-391, March.
    7. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    8. Toru Yano, 2024. "State Space Model of Realized Volatility under the Existence of Dependent Market Microstructure Noise," Papers 2408.17187, arXiv.org.
    9. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    10. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    11. Brian Sing Fan Chan & Andy Cheuk Hin Cheng & Alfred Ka Chun Ma, 2018. "Stock Market Volatility and Trading Volume: A Special Case in Hong Kong With Stock Connect Turnover," JRFM, MDPI, vol. 11(4), pages 1-17, October.
    12. Adam Clements & Yin Liao, 2014. "The role in index jumps and cojumps in forecasting stock index volatility: Evidence from the Dow Jones index," NCER Working Paper Series 101, National Centre for Econometric Research.
    13. Yoann Potiron & Per Mykland, 2015. "Estimation of integrated quadratic covariation with endogenous sampling times," Papers 1507.01033, arXiv.org, revised Nov 2016.
    14. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    15. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    16. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    17. Pawel Janus & Siem Jan Koopman & André Lucas, 2011. "Long Memory Dynamics for Multivariate Dependence under Heavy Tails," Tinbergen Institute Discussion Papers 11-175/2/DSF28, Tinbergen Institute.
    18. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    19. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    20. Chen, Richard Y. & Mykland, Per A., 2017. "Model-free approaches to discern non-stationary microstructure noise and time-varying liquidity in high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 79-103.
    21. Anisha Ghosh & Oliver Linton, 2019. "Estimation with Mixed Data Frequencies: A Bias-Correction Approach," CeMMAP working papers CWP65/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    22. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    23. Beyer, Deborah B. & Fan, Zaifeng S., 2023. "The calming effects of conflict: The impact of partisan conflict on market volatility," International Review of Financial Analysis, Elsevier, vol. 85(C).
    24. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    25. Hung Do & Rabindra Nepal & Tooraj Jamasb, 2020. "Electricity market integration, decarbonisation and security of supply: Dynamic volatility connectedness in the Irish and Great Britain markets," CAMA Working Papers 2020-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    26. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
    27. Jui-Cheng Hung & Tien-Wei Lou & Yi-Hsien Wang & Jun-De Lee, 2013. "Evaluating and improving GARCH-based volatility forecasts with range-based estimators," Applied Economics, Taylor & Francis Journals, vol. 45(28), pages 4041-4049, October.
    28. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2010. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," Working Papers 10-06, Duke University, Department of Economics.
    29. Ole E. Barndorff-Nielsen & David G. Pollard & Neil Shephard, 2010. "Integer-valued Lévy processes and low latency financial econometrics," CREATES Research Papers 2010-66, Department of Economics and Business Economics, Aarhus University.
    30. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    31. Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
    32. Bakas, Dimitrios & Triantafyllou, Athanasios, 2018. "The impact of uncertainty shocks on the volatility of commodity prices," Journal of International Money and Finance, Elsevier, vol. 87(C), pages 96-111.
    33. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    34. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
    35. Beine, Michel & Laurent, Sébastien & Palm, Franz C., 2009. "Central bank FOREX interventions assessed using realized moments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 112-127, February.
    36. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    37. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    38. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    39. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    40. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    41. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    42. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    43. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
    44. Christian Wolff & Thorsten Lehnert & Yuehao Lin, 2014. "Skewness Risk Premium: Theory and Empirical Evidence," LSF Research Working Paper Series 14-05, Luxembourg School of Finance, University of Luxembourg.
    45. Pratish Patel & Andrew Raquel & Savannah Chadwick, 2024. "The cash-secured put-write strategy and the variance risk premium," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 31-50, February.
    46. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    47. Sankar, Ganesh & Ramachandran, Shankar & Lukose P J, Jijo, 2020. "Dynamics of variance risk premium: Evidence from India," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 321-334.
    48. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    49. Degiannakis, Stavros & Filis, George & Kizys, Renatas, 2014. "The effects of oil price shocks on stock market volatility: Evidence from European data," MPRA Paper 96296, University Library of Munich, Germany.
    50. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    51. Katerina Papagiannouli, 2022. "A Lepskiĭ-type stopping rule for the covariance estimation of multi-dimensional Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 505-535, October.
    52. Minchul Shin & Molin Zhong, 2015. "Does Realized Volatility Help Bond Yield Density Prediction?," Finance and Economics Discussion Series 2015-115, Board of Governors of the Federal Reserve System (U.S.).
    53. Fabrizio Cipollini & Giampiero M. Gallo & Edoardo Otranto, 2019. "Realized Volatility Forecasting: Robustness to Measurement Errors," Econometrics Working Papers Archive 2019_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    54. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    55. Bastidon, Cécile & Jawadi, Fredj, 2024. "Trade fragmentation and volatility-of-volatility networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    56. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    57. Vit Bubak, 2010. "Forecasting the Quantiles of Daily Equity Returns Using Realized Volatility: Evidence from the Czech Stock Market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00650666, HAL.
    58. Alessandro Rossi & Giampiero M. Gallo, 2002. "Volatility Estimation via Hidden Markov Models," Econometrics Working Papers Archive wp2002_14, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    59. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.
    60. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    61. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    62. Nicholas Apergis & Christina Christou & Stephen M. Miller, 2011. "Country and Industry Convergence of Equity Markets: International Evidence from Club Convergence and Clustering," Working Papers 1105, University of Nevada, Las Vegas , Department of Economics.
    63. Tim Bollerslev & Hao Zhou, 2006. "Expected stock returns and variance risk premia," Finance and Economics Discussion Series 2007-11, Board of Governors of the Federal Reserve System (U.S.).
    64. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    65. Robinson Kruse & Christian Leschinski & Michael Will, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," CREATES Research Papers 2016-17, Department of Economics and Business Economics, Aarhus University.
    66. Ryan Shackleton & Sonali Das & Rangan Gupta, 2023. "Comparing Risk Profiles of International Stock Markets as Functional Data: COVID-19 versus the Global Financial Crisis," Working Papers 202328, University of Pretoria, Department of Economics.
    67. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    68. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    69. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    70. Peter Christoffersen & Bruno Feunou & Yoontae Jeon, 2014. "Option Valuation with Observable Volatility and Jump Dynamics," CREATES Research Papers 2015-07, Department of Economics and Business Economics, Aarhus University.
    71. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    72. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    73. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2017. "On the gains of using high frequency data and higher moments in Portfolio Selection," CeBER Working Papers 2017-02, Centre for Business and Economics Research (CeBER), University of Coimbra.
    74. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    75. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    76. Basel M. A. Awartani, 2008. "Forecasting volatility with noisy jumps: an application to the Dow Jones Industrial Average stocks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 267-278.
    77. Bent Jesper Christensen & Morten Ø. Nielsen, "undated". "Semiparametric Analysis of Stationary Fractional Cointegration and the Implied-Realized Volatility Relation in High-Frequency Options Data," Economics Working Papers 2001-4, Department of Economics and Business Economics, Aarhus University.
    78. Kalnina, Ilze & Linton, Oliver, 2007. "Inference about realized volatility using infill subsampling," LSE Research Online Documents on Economics 4411, London School of Economics and Political Science, LSE Library.
    79. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Nonparametric Density Estimation for Positive Time Series," Cahiers de recherche 06-09, HEC Montréal, Institut d'économie appliquée.
    80. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    81. Bahram Pesaran & M. Hashem Pesaran, 2010. "Conditional Volatility and Correlations of Weekly Returns and the VaR Analysis of 2008 Stock Market Crash," CESifo Working Paper Series 3023, CESifo.
    82. Eric Hillebrand & Marcelo Cunha Medeiros, 2007. "Forecasting realized volatility models:the benefits of bagging and nonlinear specifications," Textos para discussão 547, Department of Economics PUC-Rio (Brazil).
    83. Massimiliano Caporin & Gabriel G. Velo, 2011. "Modeling and forecasting realized range volatility," "Marco Fanno" Working Papers 0128, Dipartimento di Scienze Economiche "Marco Fanno".
    84. Cassola, Nuno & Morana, Claudio, 2010. "Comovements in volatility in the euro money market," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 525-539, April.
    85. Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
    86. Almeida e Santos Nogueira, R.J. & Basturk, N. & Kaymak, U. & Costa Sousa, J.M., 2013. "Estimation of flexible fuzzy GARCH models for conditional density estimation," ERIM Report Series Research in Management ERS-2013-013-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    87. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    88. Bertrand Maillet & Jean-Philippe Médecin & Thierry Michel, 2009. "High Watermarks of Market Risks," Post-Print halshs-00425585, HAL.
    89. Podolskij, Mark & Vetter, Mathias, 2008. "Bipower-type estimation in a noisy diffusion setting," Technical Reports 2008,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    90. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    91. O’Sullivan, Conall & Papavassiliou, Vassilios G., 2020. "On the term structure of liquidity in the European sovereign bond market," Journal of Banking & Finance, Elsevier, vol. 114(C).
    92. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    93. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    94. Julien Chevallier, 2010. "Modelling the convenience yield in carbon prices using daily and realized measures," Working Papers halshs-00463921, HAL.
    95. Jozef Baruník & Evžen Kocenda & Lukáš Vácha, 2015. "Asymmetric Connectedness on the U.S. Stock Market: Bad and Good Volatility Spillover," CESifo Working Paper Series 5305, CESifo.
    96. Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
    97. Kanaya, Shin, 2016. "Convergence rates of sums of α-mixing triangular arrays : with an application to non-parametric drift function estimation of continuous-time processes," Discussion Paper Series 646, Institute of Economic Research, Hitotsubashi University.
    98. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    99. Peter C. B. Phillips & Jun Yu, 2006. "A Two-Stage Realized Volatility Approach to Estimation of Diffusion Processes with Discrete," Macroeconomics Working Papers 22472, East Asian Bureau of Economic Research.
    100. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    101. Elder, John & Miao, Hong & Ramchander, Sanjay, 2012. "Impact of macroeconomic news on metal futures," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 51-65.
    102. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    103. Kim Christensen & Charlotte Christiansen & Anders M. Posselt, 2019. "The Economic Value of VIX ETPs," CREATES Research Papers 2019-14, Department of Economics and Business Economics, Aarhus University.
    104. Pan, Zhiyuan & Shuai, Jiangyu & Liang, Zhilei & Sun, Xianchao, 2022. "Jump dynamics, spillover effect and option valuation," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    105. Bollerslev, Tim & Medeiros, Marcelo C. & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "From zero to hero: Realized partial (co)variances," Journal of Econometrics, Elsevier, vol. 231(2), pages 348-360.
    106. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized Volatility or Price Range: Evidence from a discrete simulation of the continuous time diffusion process," MPRA Paper 80489, University Library of Munich, Germany.
    107. H. Peter Boswijk & Jun Yu & Yang Zu, 2024. "Testing for an Explosive Bubble using High-Frequency Volatility," Papers 2405.02087, arXiv.org.
    108. Richard Y. Chen & Per A. Mykland, 2015. "Model-Free Approaches to Discern Non-Stationary Microstructure Noise and Time-Varying Liquidity in High-Frequency Data," Papers 1512.06159, arXiv.org, revised Oct 2018.
    109. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "High-Frequency Jump Tests: Which Test Should We Use?," Papers 1708.09520, arXiv.org, revised Jan 2020.
    110. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.
    111. Turan Bali, 2007. "Modeling the dynamics of interest rate volatility with skewed fat-tailed distributions," Annals of Operations Research, Springer, vol. 151(1), pages 151-178, April.
    112. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    113. Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2020. "Volatility Forecasting in European Government Bond Markets," Essex Finance Centre Working Papers 27362, University of Essex, Essex Business School.
    114. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    115. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
    116. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2015. "Volatility transmission in global financial markets," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 3-18.
    117. Antonio Naimoli & Giuseppe Storti, 2021. "Forecasting Volatility and Tail Risk in Electricity Markets," JRFM, MDPI, vol. 14(7), pages 1-17, June.
    118. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    119. Peter C. B. Phillips & Jun Yu, 2009. "Information Loss in Volatility Measurement with Flat Price Trading," Global COE Hi-Stat Discussion Paper Series gd08-039, Institute of Economic Research, Hitotsubashi University.
    120. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    121. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    122. Mehmet Balcilar & Zeynel Abidin Ozdemir & Huseyin Ozdemir, 2021. "Dynamic return and volatility spillovers among S&P 500, crude oil, and gold," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 153-170, January.
    123. Park, Sujin & Linton, Oliver, 2012. "Estimating the quadratic covariation matrix for an asynchronously observed continuous time signal masked by additive noise," LSE Research Online Documents on Economics 119050, London School of Economics and Political Science, LSE Library.
    124. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    125. Michel Beine & Jerome Lahaye & Sebastien Laurent & Christopher J. Neely & Franz C. Palm, 2007. "Central bank intervention and exchange rate volatility, its continuous and jump components," Working Papers 2006-031, Federal Reserve Bank of St. Louis.
    126. Ahrens, Maximilian & Erdemlioglu, Deniz & Mcmahon, Michael & Neely, Christopher J & Yang, Xiye, 2023. "Mind Your Language: Market Responses to Central Bank Speeches," CEPR Discussion Papers 18191, C.E.P.R. Discussion Papers.
    127. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
    128. Yingying Li & Per A. Mykland, 2007. "Are volatility estimators robust with respect to modeling assumptions?," Papers 0709.0440, arXiv.org.
    129. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    130. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    131. David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
    132. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    133. Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
    134. Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
    135. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
    136. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    137. Alexander Schnurr, 2014. "An ordinal pattern approach to detect and to model leverage effects and dependence structures between financial time series," Statistical Papers, Springer, vol. 55(4), pages 919-931, November.
    138. Almut E. D. Veraart & Luitgard A. M. Veraart, 2013. "Risk premia in energy markets," CREATES Research Papers 2013-02, Department of Economics and Business Economics, Aarhus University.
    139. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    140. Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
    141. Geon Ho Choe & Kyungsub Lee, 2013. "High moment variations and their application," Papers 1311.4973, arXiv.org.
    142. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
    143. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2021. "The impact of hedging on risk-averse agents’ output decisions," Economic Modelling, Elsevier, vol. 104(C).
    144. Maria Elvira Mancino & Simona Sanfelici, 2011. "Estimation of Quarticity with High Frequency Data," Working Papers - Mathematical Economics 2011-06, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa, revised Jan 2012.
    145. Lee, Hyunchul & Cho, Seung Mo, 2017. "What drives dynamic comovements of stock markets in the Pacific Basin region?: A quantile regression approach," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 314-327.
    146. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    147. Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
    148. Zhiyuan Liu & M. Dashti Moghaddam & R. A. Serota, 2017. "Distributions of Historic Market Data - Stock Returns," Papers 1711.11003, arXiv.org, revised Dec 2017.
    149. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
    150. Majewski, A. A. & Bormetti, G. & Corsi, F., 2013. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Working Papers 13/11, Department of Economics, City University London.
    151. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    152. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
    153. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
    154. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
    155. Vetter, Mathias, 2010. "Limit theorems for bipower variation of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 22-38, January.
    156. Warusawitharana, Missaka, 2018. "Time-varying volatility and the power law distribution of stock returns," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 123-141.
    157. Ghysels, Eric & Sinko, Arthur, 2011. "Volatility forecasting and microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 257-271, January.
    158. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    159. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    160. Pérez-Rodríguez, Jorge V. & Andrada-Félix, Julián & Rachinger, Heiko, 2021. "Testing the forward volatility unbiasedness hypothesis in exchange rates under long-range dependence," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    161. Chow, Ying-Foon & Lam, James T.K. & Yeung, Hinson S., 2009. "Realized volatility of index constituent stocks in Hong Kong," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2809-2818.
    162. Abel Rodriguez & Henryk Gzyl & German Molina & Enrique ter Horst, 2009. "Stochastic Volatility Models Including Open, Close, High and Low Prices," Papers 0901.1315, arXiv.org.
    163. Carl Lindberg, 2008. "The estimation of the Barndorff‐Nielsen and Shephard model from daily data based on measures of trading intensity," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 277-289, July.
    164. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers 25/12, Institute for Fiscal Studies.
    165. Jianqing Fan & Fang Han & Han Liu & Byron Vickers, 2015. "Robust Inference of Risks of Large Portfolios," Papers 1501.02382, arXiv.org.
    166. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2018. "Distributions of Historic Market Data -- Implied and Realized Volatility," Papers 1804.05279, arXiv.org.
    167. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
    168. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    169. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    170. Renault, Eric & Werker, Bas J.M., 2011. "Causality effects in return volatility measures with random times," Journal of Econometrics, Elsevier, vol. 160(1), pages 272-279, January.
    171. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    172. Haselmann, Rainer & Herwartz, Helmut, 2010. "The introduction of the Euro and its effects on portfolio decisions," Journal of International Money and Finance, Elsevier, vol. 29(1), pages 94-110, February.
    173. Yu‐Sheng Lai, 2018. "Estimation of the optimal futures hedge ratio for equity index portfolios using a realized beta generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1370-1390, November.
    174. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    175. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    176. Evžen Kočenda, 2017. "Survey of volatility and spillovers on financial markets," Working Papers 363, Leibniz Institut für Ost- und Südosteuropaforschung (Institute for East and Southeast European Studies).
    177. Michel Beine & Charles S. Bos & Sébastien Laurent, 2007. "The Impact of Central Bank FX Interventions on Currency Components," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 154-183.
    178. Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
    179. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
    180. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    181. Jeremy Large, 2007. "Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment," Economics Series Working Papers 340, University of Oxford, Department of Economics.
    182. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2012. "Parametric Inference and Dynamic State Recovery from Option Panels," Global COE Hi-Stat Discussion Paper Series gd12-266, Institute of Economic Research, Hitotsubashi University.
    183. MEDDAHI, Nour, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Universite de Montreal, Departement de sciences economiques.
    184. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    185. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    186. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Value-at-Risk Using High Frequency Information," Working Papers 201409, University of California at Riverside, Department of Economics.
    187. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    188. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    189. Dutta, Anupam & Knif, Johan & Kolari, James W. & Pynnonen, Seppo, 2018. "A robust and powerful test of abnormal stock returns in long-horizon event studies," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 1-24.
    190. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
    191. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    192. Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.
    193. Diebold, Francis X. & Strasser, Georg H., 2008. "On the correlation structure of microstructure noise in theory and practice," CFS Working Paper Series 2008/32, Center for Financial Studies (CFS).
    194. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Realized Volatility Using Subsample Averaging," Working Papers 201410, University of California at Riverside, Department of Economics.
    195. Turan G. Bali & Hao Zhou, 2013. "Risk, Uncertainty, and Expected Returns," Koç University-TUSIAD Economic Research Forum Working Papers 1306, Koc University-TUSIAD Economic Research Forum.
    196. Sébastien Laurent & Shuping Shi, 2018. "Volatility Estimation and Jump Detection for drift-diffusion Processes," Working Papers halshs-01944449, HAL.
    197. François-Éric Racicot & Raymond Théoret & Alain Coën, 2008. "Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 14(1), pages 112-124, February.
    198. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    199. Ole E. Barndorff-Nielsen & Neil Shephard, 2008. "Modelling and measuring volatility," OFRC Working Papers Series 2008fe31, Oxford Financial Research Centre.
    200. Helmut Herwartz, 2006. "Econometric analysis of high frequency data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 89-104, March.
    201. Masato Ubukata & Toshiaki Watanabe, 2014. "Market variance risk premiums in Japan for asset predictability," Empirical Economics, Springer, vol. 47(1), pages 169-198, August.
    202. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    203. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
    204. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    205. Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
    206. Nonejad, Nima, 2017. "Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 131-154.
    207. He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
    208. Yang-Ho Park, 2013. "Volatility of volatility and tail risk premiums," Finance and Economics Discussion Series 2013-54, Board of Governors of the Federal Reserve System (U.S.).
    209. Ben Ammar, Imen & Hellara, Slaheddine, 2022. "High-frequency trading, stock volatility, and intraday crashes," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 337-344.
    210. Matthieu Garcin & Martino Grasselli, 2022. "Long versus short time scales: the rough dilemma and beyond," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 257-278, June.
    211. Banerjee, Ameet Kumar & Dionisio, Andreia & Sensoy, Ahmet & Goodell, John W., 2024. "Extant linkages between Shanghai crude oil and US energy futures: Insights from spillovers of higher-order moments," Energy Economics, Elsevier, vol. 136(C).
    212. Nima Nonejad, 2022. "New Findings Regarding the Out-of-Sample Predictive Impact of the Price of Crude Oil on the United States Industrial Production," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 1-35, March.
    213. Carol Alexander & Emese Lazar, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336, April.
    214. Zhenxiong Li & Marwan Izzeldin & Xingzhi Yao, 2020. "Return predictability of variance differences: A fractionally cointegrated approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1072-1089, July.
    215. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    216. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    217. Peter C. B. Phillips & Jun Yu, 2005. "Comments on “A selective overview of nonparametric methods in financial econometricsâ€Â," Finance Working Papers 22469, East Asian Bureau of Economic Research.
    218. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    219. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    220. Nicole Abruzzo & Yang-Ho Park, 2014. "An Empirical Analysis of Futures Margin Changes: Determinants and Policy Implications," Finance and Economics Discussion Series 2014-86, Board of Governors of the Federal Reserve System (U.S.).
    221. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    222. Maria Elvira Mancino & Simone Scotti & Giacomo Toscano, 2020. "Is the variance swap rate affine in the spot variance? Evidence from S&P500 data," Papers 2004.04015, arXiv.org.
    223. Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CIRJE F-Series CIRJE-F-686, CIRJE, Faculty of Economics, University of Tokyo.
    224. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    225. Dinghai Xu, 2010. "A Threshold Stochastic Volatility Model with Realized Volatility," Working Papers 1003, University of Waterloo, Department of Economics, revised May 2010.
    226. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    227. Maghyereh, Aktham & Awartani, Basel & Virk, Nader S., 2022. "Asymmetric risk transmissions between oil, gold and US equities: Recent evidence from the realized variance of the futures prices," Resources Policy, Elsevier, vol. 79(C).
    228. Bekierman Jeremias & Gribisch Bastian, 2016. "Estimating stochastic volatility models using realized measures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 279-300, June.
    229. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    230. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    231. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2013. "A nonparametric test of a strong leverage hypothesis," CeMMAP working papers 28/13, Institute for Fiscal Studies.
    232. George M. Constantinides & Anisha Ghosh, 2008. "Asset Pricing Tests with Long Run Risks in Consumption Growth," NBER Working Papers 14543, National Bureau of Economic Research, Inc.
    233. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    234. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    235. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
    236. Sean D. Campbell & Canlin Li, 2004. "Alternative estimates of the presidential premium," Finance and Economics Discussion Series 2004-69, Board of Governors of the Federal Reserve System (U.S.).
    237. Yunting Liu, 2022. "The Short-Run and Long-Run Components of Idiosyncratic Volatility and Stock Returns," Management Science, INFORMS, vol. 68(2), pages 1573-1589, February.
    238. Rasmus Tangsgaard Varneskov & Pierre Perron, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," CREATES Research Papers 2011-26, Department of Economics and Business Economics, Aarhus University.
    239. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    240. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    241. Hachmi Ben Ameur & Zied Ftiti & Waël Louhichi, 2024. "Interconnectedness of cryptocurrency markets: an intraday analysis of volatility spillovers based on realized volatility decomposition," Annals of Operations Research, Springer, vol. 341(2), pages 757-779, October.
    242. Jozef Baruník, Evzen Kocenda and Lukáa Vácha, 2015. "Volatility Spillovers Across Petroleum Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    243. Aït-Sahalia, Yacine & Mancini, Loriano, 2008. "Out of sample forecasts of quadratic variation," Journal of Econometrics, Elsevier, vol. 147(1), pages 17-33, November.
    244. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    245. Lee Kyungsub, 2016. "Probabilistic and statistical properties of moment variations and their use in inference and estimation based on high frequency return data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 19-36, February.
    246. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
    247. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    248. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, Department of Economics and Business Economics, Aarhus University.
    249. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
    250. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    251. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
    252. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    253. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    254. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    255. Klaus Grobys, 2024. "Science or scientism? On the momentum illusion," Annals of Finance, Springer, vol. 20(4), pages 479-519, December.
    256. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    257. Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
    258. Clements, Adam & Vasnev, Andrey, 2021. "Forecast combination puzzle in the HAR model," Working Papers BAWP-2021-01, University of Sydney Business School, Discipline of Business Analytics.
    259. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    260. Louzis, Dimitrios & Vouldis, Angelos, 2013. "A financial systemic stress index for Greece," Working Paper Series 1563, European Central Bank.
    261. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    262. Vassilios G. Papavassiliou, 2016. "Allowing For Jump Measurements In Volatility: A High-Frequency Financial Data Analysis Of Individual Stocks," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 124-132, April.
    263. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    264. Nikolaus Hautsch & Mark Podolskij, 2010. "Pre-Averaging Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," CREATES Research Papers 2010-29, Department of Economics and Business Economics, Aarhus University.
    265. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    266. Aganin, Artem & Peresetsky, Anatoly, 2018. "Volatility of ruble exchange rate: Oil and sanctions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 52, pages 5-21.
    267. Yu‐Sheng Lai, 2022. "High‐frequency data and stock–bond investing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1623-1638, December.
    268. Marcelo C. Carvalho & Marco Aurélio S. Freire & Marcelo Cunha Medeiros & Leonardo R. Souza, 2006. "Modeling and Forecasting the Volatility of Brazilian Asset Returns: a Realized Variance Approach," Brazilian Review of Finance, Brazilian Society of Finance, vol. 4(1), pages 55-77.
    269. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    270. Peter C.B. Phillips & Jun Yu, 2007. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Cowles Foundation Discussion Papers 1597, Cowles Foundation for Research in Economics, Yale University.
    271. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    272. Davies, Paul Lyndon, 2006. "Long range financial data and model choice," Technical Reports 2006,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    273. Rafael Reisenhofer & Xandro Bayer & Nikolaus Hautsch, 2022. "HARNet: A Convolutional Neural Network for Realized Volatility Forecasting," Papers 2205.07719, arXiv.org.
    274. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    275. Nicolas Himounet, 2021. "Searching for the Nature of Uncertainty: Macroeconomic VS Financial," Working Papers 2021.05, International Network for Economic Research - INFER.
    276. Xie, Haibin & Qi, Nan & Wang, Shouyang, 2019. "A new variant of RealGARCH for volatility modeling," Finance Research Letters, Elsevier, vol. 28(C), pages 438-443.
    277. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    278. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2005. "A Framework for Exploring the Macroeconomic Determinants of Systematic Risk," American Economic Review, American Economic Association, vol. 95(2), pages 398-404, May.
    279. Daisuke Nagakura & Toshiaki Watanabe, 2011. "A State Space Approach to Estimating the Integrated Variance under the Existence of Market Microstructure Noise," Global COE Hi-Stat Discussion Paper Series gd11-200, Institute of Economic Research, Hitotsubashi University.
    280. Chuong Luong & Nikolai Dokuchaev, 2018. "Forecasting of Realised Volatility with the Random Forests Algorithm," JRFM, MDPI, vol. 11(4), pages 1-15, October.
    281. F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
    282. Peters, R. & van der Weide, R., 2012. "Volatility: Expectations and Realizations," CeNDEF Working Papers 12-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    283. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    284. Ruobing Liu & Jianhui Yang & Chuan-Yang Ruan, 2019. "The Impact of Macroeconomic News on Chinese Futures," IJFS, MDPI, vol. 7(4), pages 1-14, October.
    285. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    286. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    287. Gael M. Martin & Andrew Reidy & Jill Wright, 2006. "Assessing the Impact of Market Microstructure Noise and Random Jumps on the Relative Forecasting Performance of Option-Implied and Returns-Based Volatility," Monash Econometrics and Business Statistics Working Papers 10/06, Monash University, Department of Econometrics and Business Statistics.
    288. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    289. Filip Zikes, 2017. "Measuring Transaction Costs in the Absence of Timestamps," Finance and Economics Discussion Series 2017-045, Board of Governors of the Federal Reserve System (U.S.).
    290. Al Guindy, Mohamed, 2021. "Cryptocurrency price volatility and investor attention," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 556-570.
    291. Turan G. Bali & Lin Peng, 2006. "Is there a risk–return trade‐off? Evidence from high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198, December.
    292. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    293. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    294. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    295. Paolo Gorgi & Siem Jan Koopman, 2020. "Beta observation-driven models with exogenous regressors: a joint analysis of realized correlation and leverage effects," Tinbergen Institute Discussion Papers 20-004/III, Tinbergen Institute.
    296. Liu, Guangqiang & Wang, Yan & Chen, Xiaodan & Zhang, Yifeng & Shang, Yue, 2020. "Forecasting volatility of the Chinese stock markets using TVP HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    297. Benth, Fred Espen & Schroers, Dennis & Veraart, Almut E.D., 2022. "A weak law of large numbers for realised covariation in a Hilbert space setting," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 241-268.
    298. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    299. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    300. Hautsch, Nikolaus & Kyj, Lada M. & Oomen, Roel C.A., 2009. "A blocking and regularization approach to high dimensional realized covariance estimation," SFB 649 Discussion Papers 2009-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    301. Audrino, Francesco & Trojani, Fabio, 2011. "A General Multivariate Threshold GARCH Model With Dynamic Conditional Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 138-149.
    302. Eric Hillebrand & Marcelo C. Medeiros, 2012. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," CREATES Research Papers 2012-30, Department of Economics and Business Economics, Aarhus University.
    303. Josh Stillwagon, 2013. "Does the Consumption CAPM Help in Accounting for Expected Currency Returns?," Working Papers 1317, Trinity College, Department of Economics.
    304. Ghosh, Anisha & Linton, Oliver, 2007. "Consistent estimation of the risk-return tradeoff in the presence of measurement error," LSE Research Online Documents on Economics 24506, London School of Economics and Political Science, LSE Library.
    305. Torben G. Andersen & Rasmus T. Varneskov, 2021. "Consistent Inference for Predictive Regressions in Persistent Economic Systems," NBER Working Papers 28568, National Bureau of Economic Research, Inc.
    306. Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
    307. MArcelo Carvalho & MArco Aurelio Freire & Marcelo Cunha Medeiros & Leonardo Souza, 2006. "Modeling and forecasting the volatility of Brazilian asset returns," Textos para discussão 530, Department of Economics PUC-Rio (Brazil).
    308. Apergis, Nicholas & Baruník, Jozef & Lau, Marco Chi Keung, 2017. "Good volatility, bad volatility: What drives the asymmetric connectedness of Australian electricity markets?," Energy Economics, Elsevier, vol. 66(C), pages 108-115.
    309. Phillips, Peter C.B. & Yu, Jun, 2009. "A two-stage realized volatility approach to estimation of diffusion processes with discrete data," Journal of Econometrics, Elsevier, vol. 150(2), pages 139-150, June.
    310. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    311. Jun Yu, 2009. "Bias in the Estimation of the Mean Reversion Parameter in Continuous Time Models," Microeconomics Working Papers 23045, East Asian Bureau of Economic Research.
    312. Visser, Marcel P., 2008. "Garch Parameter Estimation Using High-Frequency Data," MPRA Paper 9076, University Library of Munich, Germany.
    313. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
    314. Kyungsub Lee & Byoung Ki Seo, 2017. "Performance of Tail Hedged Portfolio with Third Moment Variation Swap," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 447-471, October.
    315. Sven Karbach, 2024. "Heat modulated affine stochastic volatility models for forward curve dynamics," Papers 2409.13070, arXiv.org.
    316. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    317. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.
    318. Chen, Ying & Härdle, Wolfgang Karl & Pigorsch, Uta, 2010. "Localized Realized Volatility Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1376-1393.
    319. A Clements & D Preve, 2019. "A Practical Guide to Harnessing the HAR Volatility Model," NCER Working Paper Series 120, National Centre for Econometric Research.
    320. Andersen, Torben G. & Todorov, Viktor & Ubukata, Masato, 2021. "Tail risk and return predictability for the Japanese equity market," Journal of Econometrics, Elsevier, vol. 222(1), pages 344-363.
    321. Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
    322. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    323. David Heath & Eckhard Platen, 2004. "Understanding the Implied Volatility Surface for Options on a Diversified Index," Research Paper Series 128, Quantitative Finance Research Centre, University of Technology, Sydney.
    324. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    325. Ilze Kalnina & Oliver Linton, 2006. "Estimating Quadratic VariationConsistently in thePresence of Correlated MeasurementError," STICERD - Econometrics Paper Series 509, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    326. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    327. Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2022. "Volatility forecasting with machine learning and intraday commonality," Papers 2202.08962, arXiv.org, revised Feb 2023.
    328. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    329. Stavros Degiannakis & Alexandra Livada, 2016. "Evaluation of realized volatility predictions from models with leptokurtically and asymmetrically distributed forecast errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 871-892, April.
    330. Gianluca Cubadda & Alain Hecq & Antonio Riccardo, 2018. "Forecasting Realized Volatility Measures with Multivariate and Univariate Models: The Case of The US Banking Sector," CEIS Research Paper 445, Tor Vergata University, CEIS, revised 30 Oct 2018.
    331. Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.
    332. Horpestad, Jone B. & Lyócsa, Štefan & Molnár, Peter & Olsen, Torbjørn B., 2019. "Asymmetric volatility in equity markets around the world," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 540-554.
    333. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.
    334. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    335. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta & Riza Demirer, 2018. "Forecasting Stock Market (Realized) Volatility in the United Kingdom: Is There a Role for Economic Inequality?," Working Papers 201880, University of Pretoria, Department of Economics.
    336. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
    337. Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    338. Bibinger, Markus & Winkelmann, Lars, 2014. "Common price and volatility jumps in noisy high-frequency data," SFB 649 Discussion Papers 2014-037, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    339. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    340. Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
    341. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    342. Malik, S. & Pitt, M. K., 2011. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Working papers 318, Banque de France.
    343. Ysusi Carla, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
    344. Taras Bodnar & Nikolaus Hautsch & Yarema Okhrin & Nestor Parolya, 2024. "Consistent Estimation of the High-Dimensional Efficient Frontier," Papers 2409.15103, arXiv.org.
    345. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    346. Nonejad, Nima, 2019. "Forecasting aggregate equity return volatility using crude oil price volatility: The role of nonlinearities and asymmetries," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    347. Anh, V.V. & Leonenko, N.N. & Sakhno, L.M., 2007. "Statistical inference using higher-order information," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 706-742, April.
    348. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    349. Ma, Chaoqun & Mi, Xianhua & Cai, Zongwu, 2020. "Nonlinear and time-varying risk premia," China Economic Review, Elsevier, vol. 62(C).
    350. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
    351. Kim Christensen & Alexei Kolokolov, 2024. "An unbounded intensity model for point processes," Papers 2408.06519, arXiv.org.
    352. Katsuyuki Takahashi & Isao Shoji, 2011. "An empirical analysis of the volatility of the Japanese stock price index: a non-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1381-1394, June.
    353. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    354. Park, Yang-Ho, 2015. "Volatility-of-volatility and tail risk hedging returns," Journal of Financial Markets, Elsevier, vol. 26(C), pages 38-63.
    355. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    356. Bahman Angoshtari & Thaleia Zariphopoulou & Xun Yu Zhou, 2016. "Predictable Forward Performance Processes: The Binomial Case," Papers 1611.04494, arXiv.org, revised Mar 2019.
    357. Bent Jesper Christensen & Mads Markvart Kjær & Bezirgen Veliyev, 2021. "The incremental information in the yield curve about future interest rate risk," CREATES Research Papers 2021-11, Department of Economics and Business Economics, Aarhus University.
    358. Yu, Qian & Bajja, Salwa, 2020. "Volatility estimation of general Gaussian Ornstein–Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 163(C).
    359. Onno Kleen, 2024. "Scaling and measurement error sensitivity of scoring rules for distribution forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 833-849, August.
    360. Mykland, Per A. & Zhang, Lan & Chen, Dachuan, 2019. "The algebra of two scales estimation, and the S-TSRV: High frequency estimation that is robust to sampling times," Journal of Econometrics, Elsevier, vol. 208(1), pages 101-119.
    361. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    362. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    363. David Heath & Eckhard Platen, 2003. "Pricing of index options under a minimal market model with log-normal scaling," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 442-450.
    364. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    365. Francesco Audrino & Simon D. Knaus, 2016. "Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
    366. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
    367. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    368. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    369. Offer Lieberman & Peter Phillips, 2008. "Refined Inference on Long Memory in Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
    370. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
    371. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
    372. Mike So & Rui Xu, 2013. "Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(1), pages 83-111, March.
    373. Cherif Guermat & Richard D. F. Harris, 2006. "Bias in the estimation of non-linear transformations of the integrated variance of returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 481-494.
    374. Worapree Maneesoonthorn & David T. Frazier & Gael M. Martin, 2024. "Probabilistic Predictions of Option Prices Using Multiple Sources of Data," Papers 2412.00658, arXiv.org.
    375. Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
    376. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
    377. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2020. "Economic indicators and stock market volatility in an emerging economy," Economic Systems, Elsevier, vol. 44(2).
    378. Neil Shephard & David G. Pollard & Ole E. Barndorff-Nielsen, 2010. "Discrete-valued Levy processes and low latency financial econometrics," Economics Series Working Papers 490, University of Oxford, Department of Economics.
    379. Yin Liao & Heather Anderson & Farshid Vahid, 2010. "Do Jumps Matter? Forecasting Multivariate Realized Volatility Allowing for Common Jumps," ANU Working Papers in Economics and Econometrics 2010-520, Australian National University, College of Business and Economics, School of Economics.
    380. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    381. Qi Wang & Zerong Wang, 2021. "VIX futures and its closed‐form pricing through an affine GARCH model with realized variance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 135-156, January.
    382. Jianlei Han & Martina Linnenluecke & Zhangxin Liu & Zheyao Pan & Tom Smith, 2019. "A general equilibrium approach to pricing volatility risk," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    383. Robert Azencott & Peng Ren & Ilya Timofeyev, 2020. "Realised volatility and parametric estimation of Heston SDEs," Finance and Stochastics, Springer, vol. 24(3), pages 723-755, July.
    384. Bertille Antoine & Eric Renault, 2017. "On the relevance of weaker instruments," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 928-945, October.
    385. Alemany, Nuria & Aragó, Vicent & Salvador, Enrique, 2020. "The distribution of index futures realised volatility under seasonality and microstructure noise," Economic Modelling, Elsevier, vol. 93(C), pages 398-414.
    386. Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
    387. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    388. Jui‐Cheng Hung & Hung‐Chun Liu & J. Jimmy Yang, 2023. "Does the tail risk index matter in forecasting downside risk?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3451-3466, July.
    389. Andrea Bucci & Giulio Palomba & Eduardo Rossi, 2019. "Does macroeconomics help in predicting stock markets volatility comovements? A nonlinear approach," Working Papers 440, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    390. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    391. Uppal, Raman & DeMiguel, Victor & Plyakha, Yuliya & Vilkov, Grigory, 2010. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," CEPR Discussion Papers 7686, C.E.P.R. Discussion Papers.
    392. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    393. Bucci, Andrea & Ciciretti, Vito, 2022. "Market regime detection via realized covariances," Economic Modelling, Elsevier, vol. 111(C).
    394. Gerlach, Richard & Naimoli, Antonio & Storti, Giuseppe, 2018. "Time Varying Heteroskedastic Realized GARCH models for tracking measurement error bias in volatility forecasting," MPRA Paper 83893, University Library of Munich, Germany.
    395. Marcel Scharth & Marcelo Cunha Medeiros, 2006. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," Textos para discussão 532, Department of Economics PUC-Rio (Brazil).
    396. Mazzarisi, Piero & Zaoli, Silvia & Campajola, Carlo & Lillo, Fabrizio, 2020. "Tail Granger causalities and where to find them: Extreme risk spillovers vs spurious linkages," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
    397. Li, Shaoyu & Zheng, Tingguo, 2017. "Modeling spot rate using a realized stochastic volatility model with level effect and dynamic drift☆," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 200-221.
    398. Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
    399. Taesuk Lee & Mico Loretan & Werner Ploberger, 2013. "Rate-optimal tests for jumps in diffusion processes," Statistical Papers, Springer, vol. 54(4), pages 1009-1041, November.
    400. Damien Lynch & Nikolaos Panigirtzoglou, 2004. "Option Implied and Realised Measures of Variance," Money Macro and Finance (MMF) Research Group Conference 2004 94, Money Macro and Finance Research Group.
    401. Bissoondoyal-Bheenick, Emawtee & Do, Hung & Hu, Xiaolu & Zhong, Angel, 2022. "Sentiment and stock market connectedness: Evidence from the U.S. – China trade war," International Review of Financial Analysis, Elsevier, vol. 80(C).
    402. Adam Clements & Yin Liao, "undated". "News and network structures in equity market volatility," NCER Working Paper Series 110, National Centre for Econometric Research.
    403. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    404. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    405. Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
    406. Gkillas Konstantinos & Gupta Rangan & Vortelinos Dimitrios I., 2023. "Uncertainty and realized jumps in the pound-dollar exchange rate: evidence from over one century of data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(1), pages 25-47, February.
    407. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    408. Song, Shijia & Li, Handong, 2023. "A method for predicting VaR by aggregating generalized distributions driven by the dynamic conditional score," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 203-214.
    409. Jeong, Daehee & Kim, Hwagyun & Park, Joon Y., 2015. "Does ambiguity matter? Estimating asset pricing models with a multiple-priors recursive utility," Journal of Financial Economics, Elsevier, vol. 115(2), pages 361-382.
    410. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    411. Sina J. Ogede & Emmanuel O. George & Ibrahim A. Adekunle, 2020. "Exploring the Inflationary Effect of Oil Price Volatility in Africa's Oil Exporting Countries," Research Africa Network Working Papers 20/020, Research Africa Network (RAN).
    412. Julien Chevallier, 2011. "Detecting Instability in the Volatility of Carbon Prices," Post-Print hal-00991957, HAL.
    413. Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
    414. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    415. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    416. Claudio Morana, 2008. "Realized Betas and the Cross-Section of Expected Returns," ICER Working Papers - Applied Mathematics Series 15-2008, ICER - International Centre for Economic Research.
    417. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    418. Bollerslev, Tim & Li, Jia & Li, Qiyuan, 2024. "Optimal nonparametric range-based volatility estimation," Journal of Econometrics, Elsevier, vol. 238(1).
    419. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org, revised Sep 2020.
    420. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    421. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    422. Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Estimation of long memory in integrated variance," CREATES Research Papers 2011-11, Department of Economics and Business Economics, Aarhus University.
    423. Mohamed Doukali & Xiaojun Song & Abderrahim Taamouti, 2022. "Value-at Risk under Measurement Error," Working Papers 202209, University of Liverpool, Department of Economics.
    424. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    425. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    426. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
    427. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, Department of Economics and Business Economics, Aarhus University.
    428. Michael Weylandt & Yu Han & Katherine B. Ensor, 2019. "Multivariate Modeling of Natural Gas Spot Trading Hubs Incorporating Futures Market Realized Volatility," Papers 1907.10152, arXiv.org.
    429. Bannouh, K. & van Dijk, D.J.C. & Martens, M.P.E., 2008. "Range-based covariance estimation using high-frequency data: The realized co-range," Econometric Institute Research Papers EI 2007-53, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    430. Benoît Sévi, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Post-Print hal-01500860, HAL.
    431. Yuta yamauchi & Yasuhiro Omori, 2019. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," CIRJE F-Series CIRJE-F-1117, CIRJE, Faculty of Economics, University of Tokyo.
    432. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
    433. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    434. Wang, Hao & Zhou, Hao & Zhou, Yi, 2013. "Credit default swap spreads and variance risk premia," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3733-3746.
    435. Andrea Beltratti & Claudio Morana, 2006. "Comovements in International Stock Markets," ICER Working Papers 3-2006, ICER - International Centre for Economic Research.
    436. Healy, J.V. & Gregoriou, A. & Hudson, R., 2018. "Test of recent advances in extracting information from option prices," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 292-302.
    437. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
    438. Imma Valentina Curato & Simona Sanfelici, 2019. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Papers 1910.06660, arXiv.org, revised Mar 2021.
    439. Matthieu Garcin & Martino Grasselli, 2020. "Long vs Short Time Scales: the Rough Dilemma and Beyond," Papers 2008.07822, arXiv.org, revised Nov 2021.
    440. Flavia Barsotti & Simona Sanfelici, 2012. "Microstructure effect on firm’s volatility risk," Working Papers - Mathematical Economics 2012-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    441. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    442. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
    443. Zheng, Biao & Zhang, Yuquan W. & Yin, Haitao & Geng, Yong, 2021. "The limited role of stock market in financing new energy development in China: An investigation using firms’ high-frequency data," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 651-667.
    444. Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," JRFM, MDPI, vol. 8(3), pages 1-26, August.
    445. Vaclav Broz & Evzen Kocenda, 2019. "Mortgage-Related Bank Penalties and Systemic Risk Among U.S. Banks," Working Papers IES 2019/25, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2019.
    446. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    447. Virk, Nader & Javed, Farrukh & Awartani, Basel, 2021. "A reality check on the GARCH-MIDAS volatility models," Working Papers 2021:2, Örebro University, School of Business.
    448. Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Documentos de Trabajo del ICAE 2016-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    449. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    450. Diego Amaya & Peter Christoffersen & Kris Jacobs & Aurelio Vasquez, 2013. "Does Realized Skewness Predict the Cross-Section of Equity Returns?," CREATES Research Papers 2013-41, Department of Economics and Business Economics, Aarhus University.
    451. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
    452. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.
    453. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
    454. Josh Stillwagon, 2013. "The Excess Returns Puzzle in Currency Markets: Clues on Moving Forward," Working Papers 1313, Trinity College, Department of Economics.
    455. Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013. "Market skewness risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
    456. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    457. Dong, Yingjie & Tse, Yiu-Kuen, 2017. "On estimating market microstructure noise variance," Economics Letters, Elsevier, vol. 150(C), pages 59-62.
    458. Elisa Alòs & Jorge A. León & Josep Vives, 2006. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Economics Working Papers 968, Department of Economics and Business, Universitat Pompeu Fabra.
    459. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    460. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    461. Qiu, Yue & Wang, Zongrun & Xie, Tian & Zhang, Xinyu, 2021. "Forecasting Bitcoin realized volatility by exploiting measurement error under model uncertainty," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 179-201.
    462. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    463. Chaker, Selma, 2017. "On high frequency estimation of the frictionless price: The use of observed liquidity variables," Journal of Econometrics, Elsevier, vol. 201(1), pages 127-143.
    464. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    465. Lee Jihyun & Kim Tong S & Lee Hoe Kyung, 2010. "Return-Volatility Relationship in High Frequency Data: Multiscale Horizon Dependency," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-43, December.
    466. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    467. Xingzhi Yao & Marwan Izzeldin, 2018. "Forecasting using alternative measures of model‐free option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 199-218, February.
    468. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    469. A E Clements & A S Hurn & K A Lindsay & V Volkov, 2023. "Estimating a Non-parametric Memory Kernel for Mutually Exciting Point Processes," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1759-1790.
    470. Sancetta, Alessio, 2009. "Nearest neighbor conditional estimation for Harris recurrent Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2224-2236, November.
    471. Xin Zhang & Donggyu Kim & Yazhen Wang, 2016. "Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets," Econometrics, MDPI, vol. 4(3), pages 1-26, August.
    472. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    473. Harald Kinateder & Vassilios G. Papavassiliou, 2019. "Sovereign bond return prediction with realized higher moments," Open Access publications 10197/11286, Research Repository, University College Dublin.
    474. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    475. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    476. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    477. Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
    478. Fang, Libing & Qian, Yichuo & Chen, Ying & Yu, Honghai, 2018. "How does stock market volatility react to NVIX? Evidence from developed countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 490-499.
    479. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    480. Shabir A.A. Saleem & Peter N. Smith & Abdullah Yalaman, 2020. "Analysis of Systematic Risk around Firm-specific News in an Emerging Market using High Frequency Data," Discussion Papers 20/09, Department of Economics, University of York.
    481. Wei‐Shao Wu & Sandy Suardi, 2021. "Economic Uncertainty and Bank Lending," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(8), pages 2037-2069, December.
    482. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    483. Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
    484. Lin, Tiantian & Liu, Dehong & Zhang, Lili & Lung, Peter, 2019. "The information content of realized volatility of sector indices in China’s stock market," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 625-640.
    485. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    486. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers halshs-00387286, HAL.
    487. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    488. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    489. Ranaldo, Angelo & de Magistris, Paolo Santucci, 2022. "Liquidity in the global currency market," Journal of Financial Economics, Elsevier, vol. 146(3), pages 859-883.
    490. Piyachart Phiromswad & Pattanaporn Chatjuthamard & Sirimon Treepongkaruna & Sabin Srivannaboon, 2021. "Jumps and Cojumps analyses of major and minor cryptocurrencies," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-9, February.
    491. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    492. Imma Valentina Curato, 2013. "Fourier estimation of stochastic leverage using high frequency data," Working Papers - Mathematical Economics 2013-04, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    493. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
    494. Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2021. "High-dimensional estimation of quadratic variation based on penalized realized variance," Papers 2103.03237, arXiv.org.
    495. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    496. Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    497. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers hal-04140871, HAL.
    498. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    499. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    500. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    501. Lee Kai Ming & Koopman Siem Jan, 2004. "Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-17, May.
    502. Liu, Yifan & Popova, Ivilina, 2023. "Threats to central bank independence and exchange rate volatility: High-frequency identification with Trump’s Fed tweets," Finance Research Letters, Elsevier, vol. 53(C).
    503. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    504. Michael Schröder, 2015. "Discrete-Time Approximation of Functionals in Models of Ornstein–Uhlenbeck Type, with Applications to Finance," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 285-313, June.
    505. Ji, Qiang & Bouri, Elie & Kristoufek, Ladislav & Lucey, Brian, 2021. "Realised volatility connectedness among Bitcoin exchange markets," Finance Research Letters, Elsevier, vol. 38(C).
    506. Haselmann, Rainer & Herwartz, Helmut, 2008. "Portfolio performance and the Euro: Prospects for new potential EMU members," Journal of International Money and Finance, Elsevier, vol. 27(2), pages 314-330, March.
    507. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    508. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
    509. Wink Junior, Marcos Vinício & Pereira, Pedro Luiz Valls, 2011. "Modeling and Forecasting of Realized Volatility: Evidence from Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(2), December.
    510. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
    511. Jian Chen & Xiaoquan Liu, 2010. "The model-free measures and the volatility spread," Applied Economics Letters, Taylor & Francis Journals, vol. 17(18), pages 1829-1833.
    512. Kim Christensen & Martin Thyrsgaard & Bezirgen Veliyev, 2018. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," CREATES Research Papers 2018-19, Department of Economics and Business Economics, Aarhus University.
    513. M. Karanasos & S. Yfanti & A. Christopoulos, 2021. "The long memory HEAVY process: modeling and forecasting financial volatility," Annals of Operations Research, Springer, vol. 306(1), pages 111-130, November.
    514. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    515. T. Bazhenov & D. Fantazzini, 2019. "Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility," Russian Journal of Industrial Economics, MISIS, vol. 12(1).
    516. Sibel ?EL?K, 2013. "New Evidence on the Relation between Trading Volume and Volatility," Business and Economic Research, Macrothink Institute, vol. 3(1), pages 176-186, June.
    517. Hiroki Masuda & Takayuki Morimoto, 2009. "An Optimal Weight for Realized Variance Based on Intermittent High-Frequency Data," Global COE Hi-Stat Discussion Paper Series gd08-033, Institute of Economic Research, Hitotsubashi University.
    518. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    519. Abramov, Vyacheslav & Klebaner, Fima, 2006. "Forecasting and testing a non-constant volatility," MPRA Paper 207, University Library of Munich, Germany.
    520. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
    521. Zhang, Hanyu & Dufour, Alfonso, 2019. "Modeling intraday volatility of European bond markets: A data filtering application," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 131-146.
    522. Tim Leung & Theodore Zhao, 2024. "A Noisy Fractional Brownian Motion Model for Multiscale Correlation Analysis of High-Frequency Prices," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    523. Thomas C. Chiang & Zhuo Qiao & Wing-Keung Wong, 2010. "New evidence on the relation between return volatility and trading volume," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 502-515.
    524. Brian Basvi, 2024. "Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 674-695, May.
    525. Marcel Prokopczuk & Yingying Wu, 2013. "Estimating term structure models with the Kalman filter," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 4, pages 97-113, Edward Elgar Publishing.
    526. Brockman, Paul & Guo, Tao & Vivero, Maria Gabriela & Yu, Wayne, 2022. "Is idiosyncratic risk priced? The international evidence," Journal of Empirical Finance, Elsevier, vol. 66(C), pages 121-136.
    527. Viktor Bezborodov & Luca Persio & Yuliya Mishura, 2019. "Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 331-366, March.
    528. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2012. "International market links and volatility transmission," Journal of Econometrics, Elsevier, vol. 170(1), pages 117-141.
    529. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    530. Stan Hurn & Peter C. B. Phillips & Shu-Ping Shi, 2016. ""Change Detection and the Causal Impact of the Yield Curve," Cowles Foundation Discussion Papers 2058, Cowles Foundation for Research in Economics, Yale University.
    531. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.
    532. Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2015. "Nonparametric likelihood for volatility under high frequency data," STICERD - Econometrics Paper Series /2015/581, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    533. Wu, Xinyu & Hou, Xinmeng, 2020. "Forecasting volatility with component conditional autoregressive range model," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    534. Bo Young Chang & Bruno Feunou, 2013. "Measuring Uncertainty in Monetary Policy Using Implied Volatility and Realized Volatility," Staff Working Papers 13-37, Bank of Canada.
    535. Jong Jun Park & Kyungsub Lee, 2019. "Computational method for probability distribution on recursive relationships in financial applications," Papers 1908.04959, arXiv.org.
    536. Per Mykland, 2012. "A Gaussian calculus for inference from high frequency data," Annals of Finance, Springer, vol. 8(2), pages 235-258, May.
    537. Eleonora Iachini & Stefano Nobili, 2014. "An indicator of systemic liquidity risk in the Italian financial markets," Questioni di Economia e Finanza (Occasional Papers) 217, Bank of Italy, Economic Research and International Relations Area.
    538. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Power Variation and Time Change," Economics Papers 2002-W24, Economics Group, Nuffield College, University of Oxford.
    539. Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," SFB 649 Discussion Papers 2011-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    540. Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
    541. Rafiq, Shuddhasawtta & Salim, Ruhul & Bloch, Harry, 2009. "Impact of crude oil price volatility on economic activities: An empirical investigation in the Thai economy," Resources Policy, Elsevier, vol. 34(3), pages 121-132, September.
    542. Li, Zhenxiong & Yao, Xingzhi & Izzeldin, Marwan, 2023. "On the right jump tail inferred from the VIX market," International Review of Financial Analysis, Elsevier, vol. 86(C).
    543. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.
    544. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    545. Claudio Morana, 2008. "Realized portfolio selection in the euro area," ICER Working Papers - Applied Mathematics Series 10-2008, ICER - International Centre for Economic Research.
    546. Lin, Lu & Li, Feng & Zhu, Lixing & Härdle, Wolfgang Karl, 2010. "Mean volatility regressions," SFB 649 Discussion Papers 2011-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    547. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    548. Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Dynamics of variance risk premia: A new model for disentangling the price of risk," Journal of Econometrics, Elsevier, vol. 217(2), pages 312-334.
    549. Yabei Zhu & Xingguo Luo & Qi Xu, 2023. "Industry variance risk premium, cross‐industry correlation, and expected returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(1), pages 3-32, January.
    550. Gordon R. Richards, 2004. "A fractal forecasting model for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 586-601.
    551. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    552. Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013. "Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
    553. Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
    554. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Spillover effects in oil-related CDS markets during and after the sub-prime crisis," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    555. Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
    556. Chen, Dachuan & Mykland, Per A. & Zhang, Lan, 2024. "Realized regression with asynchronous and noisy high frequency and high dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
    557. Qianqiu Liu, 2009. "On portfolio optimization: How and when do we benefit from high-frequency data?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 560-582.
    558. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    559. Fukasawa, Masaaki, 2010. "Realized volatility with stochastic sampling," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 829-852, June.
    560. David E. Allen & Michael McAleer, 2020. "Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE," Risks, MDPI, vol. 8(1), pages 1-20, February.
    561. Helmut Herwartz & Konstantin A. Kholodilin, 2011. "In-Sample and Out-of-Sample Prediction of Stock Market Bubbles: Cross-Sectional Evidence," Discussion Papers of DIW Berlin 1173, DIW Berlin, German Institute for Economic Research.
    562. Adam E Clements & Christopher A Coleman-Fenn & Daniel R Smith, 2011. "Forecasting Equicorrelation," NCER Working Paper Series 72, National Centre for Econometric Research, revised 29 Aug 2011.
    563. Yin Liao, 2012. "Does Modeling Jumps Help? A Comparison of Realized Volatility Models for Risk Prediction," CAMA Working Papers 2012-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    564. Haselmann, Rainer & Helmut, Herwartz, 2005. "The Introduction of the Euro and its Effects on Investment Decisions," Economics Working Papers 2005-15, Christian-Albrechts-University of Kiel, Department of Economics.
    565. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    566. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
    567. Lidan Grossmass, 2014. "Obtaining and Predicting the Bounds of Realized Correlations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 191-226, September.
    568. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    569. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    570. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    571. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    572. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    573. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    574. Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
    575. Mustafayeva, Konul & Wang, Weining, 2020. "Non-Parametric Estimation of Spot Covariance Matrix with High-Frequency Data," IRTG 1792 Discussion Papers 2020-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    576. Yeh, Jin-Huei & Wang, Jying-Nan, 2010. "Correcting microstructure comovement biases for integrated covariance," Finance Research Letters, Elsevier, vol. 7(3), pages 184-191, September.
    577. Kalnina, Ilze & Linton, Oliver, 2008. "Estimating quadratic variation consistently in the presence of endogenous and diurnal measurement error," Journal of Econometrics, Elsevier, vol. 147(1), pages 47-59, November.
    578. Rama Cont & Purba Das, 2022. "Rough volatility: fact or artefact?," Papers 2203.13820, arXiv.org, revised Jul 2023.
    579. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
    580. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    581. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    582. Chao Zhang & Xingyue Pu & Mihai Cucuringu & Xiaowen Dong, 2023. "Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects," Papers 2308.01419, arXiv.org.
    583. Selma Chaker & Nour Meddahi, 2013. "A Distributional Approach to Realized Volatility," Staff Working Papers 13-49, Bank of Canada.
    584. Martin Keller-Ressel & Johannes Muhle-Karbe, 2013. "Asymptotic and exact pricing of options on variance," Finance and Stochastics, Springer, vol. 17(1), pages 107-133, January.
    585. Robert Azencott & Peng Ren & Ilya Timofeyev, 2017. "Realized volatility and parametric estimation of Heston SDEs," Papers 1706.04566, arXiv.org, revised Mar 2020.
    586. Taylor, Nicholas, 2007. "A note on the importance of overnight information in risk management models," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 161-180, January.
    587. Anne Brix & Asger Lunde, 2015. "Prediction-based estimating functions for stochastic volatility models with noisy data: comparison with a GMM alternative," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 433-465, October.
    588. Clément, Emmanuelle & Gloter, Arnaud, 2011. "Limit theorems in the Fourier transform method for the estimation of multivariate volatility," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1097-1124, May.
    589. Malec, Peter & Schienle, Melanie, 2012. "Nonparametric Kernel density estimation near the boundary," SFB 649 Discussion Papers 2012-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    590. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
    591. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    592. Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
    593. Yingying Li & Zhiyuan Zhang & Xinghua Zheng, 2013. "Volatility Inference in the Presence of Both Endogenous Time and Microstructure Noise," Papers 1303.5809, arXiv.org.
    594. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    595. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
    596. John Elder, Hong Miao, and Sanjay Ramchander, 2013. "Jumps in Oil Prices: The Role of Economic News," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    597. Alexander Alvarez & Fabien Panloup & Monique Pontier & Nicolas Savy, 2012. "Estimation of the instantaneous volatility," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 27-59, April.
    598. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    599. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2006. "The Information Content Of Treasury Bond Options Concerning Future Volatility And Price Jumps," Working Paper 1188, Economics Department, Queen's University.
    600. Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2013. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 28/13, Monash University, Department of Econometrics and Business Statistics.
    601. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    602. Jun Yu, 2009. "Econometric Analysis of Continuous Time Models : A Survey of Peter Phillips’ Work and Some New Results," Microeconomics Working Papers 23046, East Asian Bureau of Economic Research.
    603. Prateek Sharma & Swati Sharma, 2015. "Forecasting gains of robust realized variance estimators: evidence from European stock markets," Economics Bulletin, AccessEcon, vol. 35(1), pages 61-69.
    604. Shrestha, Prabal & Arslan-Ayaydin, Özgür & Thewissen, James & Torsin, Wouter, 2021. "Institutions, regulations and initial coin offerings: An international perspective," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 102-120.
    605. Qiankun Zhou & Jun Yu, 2012. "Asymptotic Distributions of the Least Squares Estimator for Diffusion Processes," Working Papers 11-2012, Singapore Management University, School of Economics.
    606. Torben G. Andersen & Rasmus T. Varneskov, 2018. "Consistent Inference for Predictive Regressions in Persistent VAR Economies," CREATES Research Papers 2018-09, Department of Economics and Business Economics, Aarhus University.
    607. Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.
    608. Badshah, Ihsan & Bekiros, Stelios & Lucey, Brian M. & Uddin, Gazi Salah, 2018. "Asymmetric linkages among the fear index and emerging market volatility indices," Emerging Markets Review, Elsevier, vol. 37(C), pages 17-31.
    609. Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Do, Hung Xuan & Smyth, Russell, 2020. "Exploiting the heteroskedasticity in measurement error to improve volatility predictions in oil and biofuel feedstock markets," Energy Economics, Elsevier, vol. 86(C).
    610. Yacine Ait-Sahalia & Jialin Yu, 2009. "High frequency market microstructure noise estimates and liquidity measures," Papers 0906.1444, arXiv.org.
    611. Jullavut Kittiakaraskun & Yiuman Tse & George H.K. Wang, 2011. "The Impact of Trading Activity by Trader Types on Asymmetric Volatility in Nasdaq-100 Index Futures," Working Papers 0021, College of Business, University of Texas at San Antonio.
    612. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    613. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
    614. Liu, Yuntong & Wei, Yu & Wang, Qian & Liu, Yi, 2022. "International stock market risk contagion during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 45(C).
    615. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    616. Jianqing Fan & Jingjin Zhang & Ke Yu, 2008. "Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios," Papers 0812.2604, arXiv.org.
    617. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    618. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011-11, Christian-Albrechts-University of Kiel, Department of Economics.
    619. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    620. A. Amendola & V. Candila, 2016. "Evaluation of volatility predictions in a VaR framework," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 695-709, May.
    621. Cem Cakmakli & Verda Ozturk, 2021. "Economic Value of Modeling the Joint Distribution of Returns and Volatility: Leverage Timing," Koç University-TUSIAD Economic Research Forum Working Papers 2110, Koc University-TUSIAD Economic Research Forum.
    622. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    623. Qianjie Geng & Xianfeng Hao & Yudong Wang, 2024. "Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 309-325, March.
    624. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    625. Henker, Thomas & Husodo, Zaäfri A., 2010. "Noise and efficient variance in the Indonesia Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 199-216, April.
    626. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
    627. Fleming, Jeff & Kirby, Chris, 2011. "Long memory in volatility and trading volume," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1714-1726, July.
    628. Guangying Liu & Ziyan Zhuang & Min Wang, 2024. "Forecasting the high‐frequency volatility based on the LSTM‐HIT model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1356-1373, August.
    629. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2005. "Edgeworth Expansions for Realized Volatility and Related Estimators," NBER Technical Working Papers 0319, National Bureau of Economic Research, Inc.
    630. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    631. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    632. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    633. Li, Jia & Todorov, Viktor & Tauchen, George, 2016. "Inference theory for volatility functional dependencies," Journal of Econometrics, Elsevier, vol. 193(1), pages 17-34.
    634. Lee, O. & Shin, D.W., 2008. "Geometric ergodicity and [beta]-mixing property for a multivariate CARR model," Economics Letters, Elsevier, vol. 100(1), pages 111-114, July.
    635. Juan M. Londono, 2011. "The variance risk premium around the world," International Finance Discussion Papers 1035, Board of Governors of the Federal Reserve System (U.S.).
    636. Wang, Ziwei & Li, Youwei & He, Feng, 2020. "Asymmetric volatility spillovers between economic policy uncertainty and stock markets: Evidence from China," Research in International Business and Finance, Elsevier, vol. 53(C).
    637. David Edmund Allen, 2020. "Stochastic Volatility and GARCH: Do Squared End-of-Day Returns Provide Similar Information?," JRFM, MDPI, vol. 13(9), pages 1-25, September.
    638. Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
    639. Peter Feldhütter & Christian Heyerdahl-Larsen & Philipp Illeditsch, 2018. "Risk Premia and Volatilities in a Nonlinear Term Structure Model [Quadratic term structure models: theory and evidence]," Review of Finance, European Finance Association, vol. 22(1), pages 337-380.
    640. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    641. Frowin Schulz & Karl Mosler, 2011. "The effect of infrequent trading on detecting price jumps," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 27-58, March.
    642. Gustavo Fruet Dias & Cristina M. Scherrer & Fotis Papailias, 2016. "Volatility Discovery," CREATES Research Papers 2016-07, Department of Economics and Business Economics, Aarhus University.
    643. Liu, Guangying & Zhang, Xinsheng, 2011. "Power variation of fractional integral processes with jumps," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 962-972, August.
    644. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    645. Michel Beine & Sébastien Laurent & Franz Palm, 2007. "Central bank intervention in the foreign exchange markets assessed using realized moments," ULB Institutional Repository 2013/10407, ULB -- Universite Libre de Bruxelles.
    646. Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
    647. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    648. Grossmass Lidan & Poon Ser-Huang, 2015. "Estimating dynamic copula dependence using intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 501-529, September.
    649. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    650. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    651. Elisa Al`os & David Garc'ia-Lorite & Aitor Muguruza, 2018. "On smile properties of volatility derivatives and exotic products: understanding the VIX skew," Papers 1808.03610, arXiv.org.
    652. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    653. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    654. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
    655. Arnerić Josip & Poklepović Tea & Teai Juin Wen, 2018. "Neural Network Approach in Forecasting Realized Variance Using High-Frequency Data," Business Systems Research, Sciendo, vol. 9(2), pages 18-34, July.
    656. Wu, Peng & Muzy, Jean-François & Bacry, Emmanuel, 2022. "From rough to multifractal volatility: The log S-fBM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    657. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    658. Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2023. "Latent Factor Analysis in Short Panels," Papers 2306.14004, arXiv.org, revised May 2024.
    659. D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
    660. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    661. Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
    662. Sergey S. Stepanov, 2009. "Resilience of Volatility," Papers 0911.5048, arXiv.org.
    663. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    664. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    665. Müller, Christian, 2015. "Radical uncertainty: Sources, manifestations and implications," Economics Discussion Papers 2015-41, Kiel Institute for the World Economy (IfW Kiel).
    666. Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
    667. Dinghai Xu & Yuying Li, 2010. "Empirical Evidence of the Leverage Effect in a Stochastic Volatility Model: A Realized Volatility Approach," Working Papers 1002, University of Waterloo, Department of Economics, revised May 2010.
    668. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    669. Shafiullah, Muhammad & Senthilkumar, Arunachalam & Lucey, Brian M. & Naeem, Muhammad Abubakr, 2024. "Deciphering asymmetric spillovers in US industries: Insights from higher-order moments," Research in International Business and Finance, Elsevier, vol. 70(PA).
    670. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    671. Yacine Ait-Sahalia & Per A. Mykland, 2003. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," NBER Working Papers 9611, National Bureau of Economic Research, Inc.
    672. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    673. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    674. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    675. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," NBER Working Papers 13449, National Bureau of Economic Research, Inc.
    676. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    677. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    678. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    679. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
    680. Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de Estadística.
    681. Basel Awartani & Valentina Corradi, 2004. "Testing and Modelling Market Microstructure Effects with an Application to the Dow Jones Industrial Average," Econometric Society 2004 North American Summer Meetings 487, Econometric Society.
    682. Aitor Ciarreta & Peru Muniainy & Ainhoa Zarraga, 2017. "Modelling Realized Volatility in Electricity Spot Prices: New insights and Application to the Japanese Electricity Market," ISER Discussion Paper 0991, Institute of Social and Economic Research, Osaka University.
    683. Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
    684. M. Hashem Pesaran & Bahram Pesaran, 2007. "Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," CESifo Working Paper Series 2056, CESifo.
    685. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    686. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    687. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
    688. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    689. Lan Zhang, 2012. "Implied and realized volatility: empirical model selection," Annals of Finance, Springer, vol. 8(2), pages 259-275, May.
    690. Silja Kinnebrock & Mark Podolskij, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," OFRC Working Papers Series 2007fe03, Oxford Financial Research Centre.
    691. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    692. Zhiyuan Pan & Jun Zhang & Yudong Wang & Juan Huang, 2024. "Modeling and forecasting stock return volatility using the HARGARCH model with VIX information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1383-1403, August.
    693. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.
    694. Nima Nonejad, 2013. "Long Memory and Structural Breaks in Realized Volatility: An Irreversible Markov Switching Approach," CREATES Research Papers 2013-26, Department of Economics and Business Economics, Aarhus University.
    695. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    696. Fig-Talamanca, Gianna, 2009. "Testing volatility autocorrelation in the constant elasticity of variance stochastic volatility model," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2201-2218, April.
    697. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    698. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    699. Xinwei Feng & Lidan He & Zhi Liu, 2022. "Large Deviation Principles of Realized Laplace Transform of Volatility," Journal of Theoretical Probability, Springer, vol. 35(1), pages 186-208, March.
    700. Dooyeon Cho & Seunghwa Rho, 2022. "On asymmetric volatility effects in currency markets," Empirical Economics, Springer, vol. 62(5), pages 2149-2177, May.
    701. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    702. Jacod, Jean & Mykland, Per A., 2015. "Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2910-2936.
    703. Werner, Thomas & Stapf, Jelena, 2003. "How wacky is the DAX? The changing structure of German stock market volatility," Discussion Paper Series 1: Economic Studies 2003,18, Deutsche Bundesbank.
    704. Adam E Clements & Yin Liao, 2013. "Modeling and forecasting realized volatility: getting the most out of the jump component," NCER Working Paper Series 93, National Centre for Econometric Research.
    705. Izzeldin, Marwan & Muradoğlu, Yaz Gülnur & Pappas, Vasileios & Sivaprasad, Sheeja, 2021. "The impact of Covid-19 on G7 stock markets volatility: Evidence from a ST-HAR model," International Review of Financial Analysis, Elsevier, vol. 74(C).
    706. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    707. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    708. B. Jungbacker & S.J. Koopman, 2005. "Model-based Measurement of Actual Volatility in High-Frequency Data," Tinbergen Institute Discussion Papers 05-002/4, Tinbergen Institute.
    709. Piero Mazzarisi & Silvia Zaoli & Carlo Campajola & Fabrizio Lillo, 2020. "Tail Granger causalities and where to find them: extreme risk spillovers vs. spurious linkages," Papers 2005.01160, arXiv.org, revised May 2021.
    710. Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.
    711. Seema REHMAN & Saqib SHARIF & Wali ULLAH, 2021. "Higher Realized Moments and Stock Return Predictability," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 48-70, December.
    712. Chan, Choon Chat & Fong, Wai Mun, 2006. "Realized volatility and transactions," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2063-2085, July.
    713. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    714. Marwan Izzeldin, 2007. "Trading volume and the number of trades," Working Papers 584864, Lancaster University Management School, Economics Department.
    715. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
    716. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
    717. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    718. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    719. Nonejad, Nima, 2018. "Déjà vol oil? Predicting S&P 500 equity premium using crude oil price volatility: Evidence from old and recent time-series data," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 260-270.
    720. Stavros Degiannakis & Andreas Andrikopoulos & Timotheos Angelidis & Christos Floros, 2013. "Return dispersion, stock market liquidity and aggregate economic activity," Working Papers 166, Bank of Greece.
    721. Olivier Damette & Beum-Jo Park, 2015. "Tobin Tax and Volatility: A Threshold Quantile Autoregressive Regression Framework," Review of International Economics, Wiley Blackwell, vol. 23(5), pages 996-1022, November.
    722. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    723. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    724. Mingmian Cheng & Norman R. Swanson, 2019. "Fixed and Long Time Span Jump Tests: New Monte Carlo and Empirical Evidence," Econometrics, MDPI, vol. 7(1), pages 1-32, March.
    725. Lin Peng & Turan G. Bali, 2006. "Is there a risk-return trade-off? Evidence from high-frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198.
    726. Tian, Xiao & Duong, Huu Nhan & Kalev, Petko S., 2019. "Information content of the limit order book for crude oil futures price volatility," Energy Economics, Elsevier, vol. 81(C), pages 584-597.
    727. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    728. Yuta Yamauchi & Yasuhiro Omori, 2016. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations ," CIRJE F-Series CIRJE-F-1029, CIRJE, Faculty of Economics, University of Tokyo.
    729. Ho‐Chuan (River) Huang & Chien‐Chung Nieh, 2004. "Realize the Realized Stock Index Volatility," Asian Economic Journal, East Asian Economic Association, vol. 18(1), pages 59-80, March.
    730. Yang Gao & Henry Leung & Stephen Satchell, 2018. "A critique of momentum strategies," Journal of Asset Management, Palgrave Macmillan, vol. 19(5), pages 341-350, September.
    731. Fang Liang & Lingshan Du, 2024. "Option pricing with dynamic conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1154-1188, July.
    732. Horta, Eduardo & Ziegelmann, Flavio, 2018. "Dynamics of financial returns densities: A functional approach applied to the Bovespa intraday index," International Journal of Forecasting, Elsevier, vol. 34(1), pages 75-88.
    733. Yudong Wang & Zhiyuan Pan & Chongfeng Wu, 2017. "Time‐Varying Parameter Realized Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 566-580, August.
    734. Manabu Asai, 2023. "Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter," Econometrics, MDPI, vol. 11(3), pages 1-14, July.
    735. Pelger, Markus, 2019. "Large-dimensional factor modeling based on high-frequency observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 23-42.
    736. Qi Xu & Ying Wang, 2021. "Managing volatility in commodity momentum," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 758-782, May.
    737. Fang, Yan & Ielpo, Florian & Sévi, Benoît, 2012. "Empirical bias in intraday volatility measures," Finance Research Letters, Elsevier, vol. 9(4), pages 231-237.
    738. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    739. Li, Wenqi, 2021. "COVID-19 and asymmetric volatility spillovers across global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    740. Asger Lunde & Anne Floor Brix, 2013. "Estimating Stochastic Volatility Models using Prediction-based Estimating Functions," CREATES Research Papers 2013-23, Department of Economics and Business Economics, Aarhus University.
    741. Wu, Feng & Myers, Robert J. & Guan, Zhengfei & Wang, Zhiguang, 2015. "Risk-adjusted implied volatility and its performance in forecasting realized volatility in corn futures prices," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 260-274.
    742. Oomen, Roel C. A., 2004. "Modelling realized variance when returns are serially correlated [Modellierung realisierter Varianz bei autokorrelierten Erträgen]," Discussion Papers, Research Unit: Market Processes and Governance SP II 2004-11, WZB Berlin Social Science Center.
    743. Bibinger, Markus & Jirak, Moritz & Vetter, Mathias, 2015. "Nonparametric change-point analysis of volatility," SFB 649 Discussion Papers 2015-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    744. Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
    745. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    746. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    747. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    748. Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2023. "High-dimensional estimation of quadratic variation based on penalized realized variance," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 331-359, July.
    749. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    750. Dimitrios Dadakas & Christos Karpetis & Athanasios Fassas & Erotokritos Varelas, 2016. "Sectoral Differences in the Choice of the Time Horizon during Estimation of the Unconditional Stock Beta," IJFS, MDPI, vol. 4(4), pages 1-13, December.
    751. Dey, Asim K. & Hoque, G.M. Toufiqul & Das, Kumer P. & Panovska, Irina, 2022. "Impacts of COVID-19 local spread and Google search trend on the US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    752. Wu, Xinyu & Hou, Xinmeng, 2019. "Forecasting realized variance using asymmetric HAR model with time-varying coefficients," Finance Research Letters, Elsevier, vol. 30(C), pages 89-95.
    753. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    754. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
    755. Massimiliano Caporin & C. Vladimir Rodríguez-Caballero & Esther Ruiz, 2024. "The factor structure of exchange rates volatility: global and intermittent factors," Empirical Economics, Springer, vol. 67(1), pages 31-45, July.
    756. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta & Riza Demirer, 2022. "Forecasting stock market (realized) volatility in the United Kingdom: Is there a role of inequality?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2146-2152, April.
    757. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    758. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility Regressions with Fat Tails," TSE Working Papers 20-1097, Toulouse School of Economics (TSE).
    759. He, Feng & Wang, Ziwei & Yin, Libo, 2020. "Asymmetric volatility spillovers between international economic policy uncertainty and the U.S. stock market," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    760. Goddard, John & Kita, Arben & Wang, Qingwei, 2015. "Investor attention and FX market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 79-96.
    761. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    762. Richard Hawkes & Paresh Date, 2007. "Medium‐term horizon volatility forecasting: A comparative study," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(6), pages 465-481, November.
    763. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    764. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
    765. Tingguo Zheng & Han Xiao & Rong Chen, 2021. "Generalized Autoregressive Moving Average Models with GARCH Errors," Papers 2105.05532, arXiv.org.
    766. Chen, Yufeng & Li, Wenqi & Qu, Fang, 2019. "Dynamic asymmetric spillovers and volatility interdependence on China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 825-838.
    767. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
    768. M. Dashti Moghaddam & Jiong Liu & R. A. Serota, 2021. "Implied and realized volatility: A study of distributions and the distribution of difference," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2581-2594, April.
    769. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.
    770. Stelzer Robert & Tosstorff Thomas & Wittlinger Marc, 2015. "Moment based estimation of supOU processes and a related stochastic volatility model," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 1-24, April.
    771. Michael Creel, 2021. "Inference Using Simulated Neural Moments," Econometrics, MDPI, vol. 9(4), pages 1-15, September.
    772. Donggyu Kim, 2016. "Statistical Inference for Unified Garch–Itô Models with High-Frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 513-532, July.
    773. Wu, Ruirui & Qin, Zhongfeng, 2024. "Asymmetric volatility spillovers among new energy, ESG, green bond and carbon markets," Energy, Elsevier, vol. 292(C).
    774. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    775. Stavroula Yfanti & Georgios Chortareas & Menelaos Karanasos & Emmanouil Noikokyris, 2022. "A three‐dimensional asymmetric power HEAVY model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 2737-2761, July.
    776. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    777. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).
    778. Kooli, Maher & Zhou, Xiaozhou, 2020. "IPO flipping activity in China and its implications," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    779. Julien Chevallier & Benoît Sévi, 2011. "On the volatility-volume relationship in energy futures markets using intraday data," Working Papers hal-04140997, HAL.
    780. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    781. Tingguo Zheng & Han Xiao & Rong Chen, 2022. "Generalized autoregressive moving average models with GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 125-146, January.
    782. Du, Du, 2011. "General equilibrium pricing of options with habit formation and event risks," Journal of Financial Economics, Elsevier, vol. 99(2), pages 400-426, February.
    783. Tong Fang & Deyu Miao & Zhi Su & Libo Yin, 2023. "Uncertainty‐driven oil volatility risk premium and international stock market volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 872-904, July.
    784. Reckling, Dennis, 2016. "Variance risk premia in CO2 markets: A political perspective," Energy Policy, Elsevier, vol. 94(C), pages 345-354.
    785. Ke Yang & Nan Hu & Fengping Tian, 2024. "Forecasting Crude Oil Volatility Using the Deep Learning‐Based Hybrid Models With Common Factors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1429-1446, August.
    786. Nima Nonejad, 2013. "A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory," CREATES Research Papers 2013-24, Department of Economics and Business Economics, Aarhus University.
    787. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    788. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    789. Masato Ubukata, 2019. "Jump tail risk premium and predicting US and Japanese credit spreads," Empirical Economics, Springer, vol. 57(1), pages 79-104, July.
    790. Díaz, Fernando & Henríquez, Pablo A. & Winkelried, Diego, 2022. "Stock market volatility and the COVID-19 reproductive number," Research in International Business and Finance, Elsevier, vol. 59(C).
    791. Diop, Assane & Jacod, Jean & Todorov, Viktor, 2013. "Central Limit Theorems for approximate quadratic variations of pure jump Itô semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 839-886.
    792. Huang, Chuangxia & Zhao, Xian & Deng, Yunke & Yang, Xiaoguang & Yang, Xin, 2022. "Evaluating influential nodes for the Chinese energy stocks based on jump volatility spillover network," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 81-94.
    793. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    794. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    795. Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
    796. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," OFRC Working Papers Series 2004fe20, Oxford Financial Research Centre.
    797. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    798. Yoontae Jeon & Thomas H. McCurdy, 2017. "Time-Varying Window Length for Correlation Forecasts," Econometrics, MDPI, vol. 5(4), pages 1-29, December.
    799. Qiang Liu & Zhi Liu, 2022. "Estimating spot volatility under infinite variation jumps with dependent market microstructure noise," Papers 2205.15738, arXiv.org, revised Feb 2023.
    800. Umberto Triacca & Fulvia Focker, 2014. "Estimating overnight volatility of asset returns by using the generalized dynamic factor model approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 235-254, October.
    801. Malgorzata Doman, 2010. "Liquidity and Market Microstructure Noise: Evidence from the Pekao Data," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 10, pages 5-14.
    802. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    803. Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
    804. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    805. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    806. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach," Papers 1708.02073, arXiv.org.
    807. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    808. Kalnina, Ilze & Linton, Oliver, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.
    809. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Papers 1712.08329, arXiv.org, revised Feb 2019.
    810. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    811. Liu, Zhenya & Lu, Shanglin & Li, Bo & Wang, Shixuan, 2023. "Time series momentum and reversal: Intraday information from realized semivariance," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 54-77.
    812. Louzis, Dimitrios P. & Vouldis, Angelos T., 2012. "A methodology for constructing a financial systemic stress index: An application to Greece," Economic Modelling, Elsevier, vol. 29(4), pages 1228-1241.
    813. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    814. Xie, Haibin & Yu, Chengtan, 2020. "Realized GARCH models: Simpler is better," Finance Research Letters, Elsevier, vol. 33(C).
    815. Bibinger, Markus & Vetter, Mathias, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers 2013-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    816. Wu, Xinyu & Zhao, An & Wang, Yuyao & Han, Yang, 2024. "Forecasting Chinese stock market volatility with high-frequency intraday and current return information," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
    817. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    818. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    819. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    820. Emiliano Pagnotta, 2016. "Chasing Private Information," 2016 Meeting Papers 1673, Society for Economic Dynamics.
    821. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    822. Hao Wang & Hao Zhou & Yi Zhou, 2011. "Credit default swap spreads and variance risk premia," Finance and Economics Discussion Series 2011-02, Board of Governors of the Federal Reserve System (U.S.).
    823. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    824. Ulrich Hounyo & Rasmus T. Varneskov, 2015. "A Local Stable Bootstrap for Power Variations of Pure-Jump Semimartingales and Activity Index Estimation," CREATES Research Papers 2015-26, Department of Economics and Business Economics, Aarhus University.
    825. Stavros Degiannakis & George Filis & Renatas Kizys, 2013. "Oil price shocks and stock market volatility: evidence from European data," Working Papers 161, Bank of Greece.
    826. Xin-Bing Kong, 2017. "On the number of common factors with high-frequency data," Biometrika, Biometrika Trust, vol. 104(2), pages 397-410.
    827. Yushu Li & Hyunjoo Kim Karlsson, 2023. "Investigating the Asymmetric Behavior of Oil Price Volatility Using Support Vector Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1765-1790, April.
    828. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
    829. Curato, Imma Valentina, 2019. "Estimation of the stochastic leverage effect using the Fourier transform method," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3207-3238.
    830. Pogorelova, Polina & Peresetsky, Anatoly, 2020. "Extracting the global stochastic trend from non-synchronous data on the volatility of financial indices," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 53-71.
    831. Richard Y. Chen, 2019. "The Fourier Transform Method for Volatility Functional Inference by Asynchronous Observations," Papers 1911.02205, arXiv.org.
    832. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    833. Peter C.B. Phillips & Jun Yu, 2005. "A Two-Stage Realized Volatility Approach to the Estimation for Diffusion Processes from Discrete Observations," Cowles Foundation Discussion Papers 1523, Cowles Foundation for Research in Economics, Yale University.
    834. Jihyun Kim & Nour Meddahi, 2020. "Volatility Regressions with Fat Tails," Post-Print hal-03142647, HAL.
    835. Bibinger, Markus, 2011. "Asymptotics of asynchronicity," SFB 649 Discussion Papers 2011-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    836. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    837. Bibinger, Markus, 2011. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," SFB 649 Discussion Papers 2011-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    838. Atak, Alev & Kapetanios, George, 2013. "A factor approach to realized volatility forecasting in the presence of finite jumps and cross-sectional correlation in pricing errors," Economics Letters, Elsevier, vol. 120(2), pages 224-228.
    839. Reschenhofer, Erhard & Mangat, Manveer Kaur & Stark, Thomas, 2020. "Volatility forecasts, proxies and loss functions," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 133-153.
    840. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    841. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    842. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    843. Markus Pelger, 2020. "Understanding Systematic Risk: A High‐Frequency Approach," Journal of Finance, American Finance Association, vol. 75(4), pages 2179-2220, August.
    844. Daniel J Lewis, 2021. "Identifying Shocks via Time-Varying Volatility [First Order Autoregressive Processes and Strong Mixing]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 3086-3124.
    845. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    846. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    847. Bollerslev, Tim & Todorov, Viktor, 2014. "Time-varying jump tails," Journal of Econometrics, Elsevier, vol. 183(2), pages 168-180.
    848. Peter C. B. Phillips & Jun Yu, 2005. "Comments on “A Selective Overview of Nonparametric Methods in Financial Econometrics” by Jianqing Fan," Working Papers 08-2005, Singapore Management University, School of Economics.
    849. Didit Budi Nugroho & Takayuki Morimoto, 2019. "Incorporating Realized Quarticity into a Realized Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 495-528, December.
    850. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    851. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
    852. Huang, Wenqian & Ranaldo, Angelo & Schrimpf, Andreas & Somogyi, Fabricius, 2022. "Constrained Dealers and Market Efficiency," VfS Annual Conference 2022 (Basel): Big Data in Economics 264054, Verein für Socialpolitik / German Economic Association.
    853. Flavia Barsotti & Simona Sanfelici, 2016. "Market Microstructure Effects on Firm Default Risk Evaluation," Econometrics, MDPI, vol. 4(3), pages 1-31, July.
    854. Liu, Guangqiang & Wei, Yu & Chen, Yongfei & Yu, Jiang & Hu, Yang, 2018. "Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 288-297.
    855. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    856. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    857. Pesaran, B. & Pesaran, M.H., 2007. "Modelling Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," Cambridge Working Papers in Economics 0734, Faculty of Economics, University of Cambridge.
    858. J. Piplack & M. Beine & B. Candelon, 2009. "Comovements of Returns and Volatility in International Stock Markets: A High-Frequency Approach," Working Papers 09-10, Utrecht School of Economics.
    859. Feng, Jiabao & Wang, Yudong & Yin, Libo, 2017. "Oil volatility risk and stock market volatility predictability: Evidence from G7 countries," Energy Economics, Elsevier, vol. 68(C), pages 240-254.
    860. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay & Villupuram, Sriram, 2014. "Currency jumps, cojumps and the role of macro news," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 42-62.
    861. Clements, A.E. & Liao, Y., 2020. "Firm-specific information and systemic risk," Economic Modelling, Elsevier, vol. 90(C), pages 480-493.
    862. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    863. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    864. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2023. "Forecasting extreme financial risk: A score-driven approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 720-735.
    865. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    866. Amirreza Attarzadeh & Mehmet Balcilar, 2022. "On the Dynamic Connectedness of the Stock, Oil, Clean Energy, and Technology Markets," Energies, MDPI, vol. 15(5), pages 1-18, March.
    867. Chevallier, Julien, 2013. "Variance risk-premia in CO2 markets," Economic Modelling, Elsevier, vol. 31(C), pages 598-605.
    868. Fruet Dias, Gustavo & Papailias, Fotis & Scherrer, Cristina, 2023. "An econometric analysis of volatility discovery," LSE Research Online Documents on Economics 121363, London School of Economics and Political Science, LSE Library.
    869. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    870. Vít Bubák & Filip Žikeš, 2009. "Distribution and Dynamics of Central-European Exchange Rates: Evidence from Intraday Data," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(4), pages 334-359, Oktober.
    871. Andrea Cipollini & Jerry Coakley & Hyunchul Lee, 2015. "The European sovereign debt market: from integration to segmentation," The European Journal of Finance, Taylor & Francis Journals, vol. 21(2), pages 111-128, January.
    872. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distribution of Historic Market Data ¨C Implied and Realized Volatility," Applied Economics and Finance, Redfame publishing, vol. 6(5), pages 104-130, September.
    873. Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
    874. Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2017. "Dynamics of Variance Risk Premia, Investors' Sentiment and Return Predictability," CREATES Research Papers 2017-10, Department of Economics and Business Economics, Aarhus University.
    875. Fernandes, Marcelo & de Sa Mota, Bernardo & Rocha, Guilherme, 2005. "A multivariate conditional autoregressive range model," Economics Letters, Elsevier, vol. 86(3), pages 435-440, March.
    876. Bachmair, K., 2023. "The Effects of the LIBOR Scandal on Volatility and Liquidity in LIBOR Futures Markets," Cambridge Working Papers in Economics 2303, Faculty of Economics, University of Cambridge.
    877. Fan, Jianqing & Fan, Yingying & Jiang, Jiancheng, 2007. "Dynamic Integration of Time- and State-Domain Methods for Volatility Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 618-631, June.
    878. Vasyl Golosnoy & Yarema Okhrin, 2015. "Using information quality for volatility model combinations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1055-1073, June.
    879. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    880. Cai, Wenwu & Lu, Jing, 2019. "Investors’ financial attention frequency and trading activity," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    881. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    882. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    883. Xianfei Hui & Baiqing Sun & Hui Jiang & Yan Zhou, 2022. "Modeling dynamic volatility under uncertain environment with fuzziness and randomness," Papers 2204.12657, arXiv.org, revised Oct 2022.
    884. Chourdakis, Kyriakos & Dotsis, George, 2011. "Maximum likelihood estimation of non-affine volatility processes," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 533-545, June.
    885. Schmidt, Anatoly B., 2009. "Detrending the realized volatility in the global FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1887-1892.
    886. Ysusi Carla, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
    887. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
    888. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    889. Jonathan R. Stroud & Michael S. Johannes, 2014. "Bayesian Modeling and Forecasting of 24-Hour High-Frequency Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1368-1384, December.
    890. Mensi, Walid & Nekhili, Ramzi & Vo, Xuan Vinh & Suleman, Tahir & Kang, Sang Hoon, 2021. "Asymmetric volatility connectedness among U.S. stock sectors," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    891. Asger Lunde & Kasper V. Olesen, 2014. "Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange," CREATES Research Papers 2013-19, Department of Economics and Business Economics, Aarhus University.
    892. Behfar, Stefan Kambiz, 2016. "Long memory behavior of returns after intraday financial jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 716-725.
    893. Asger Lunde & Peter Reinhard Hansen, 2004. "Realized Variance and IID Market Microstructure Noise," Econometric Society 2004 North American Summer Meetings 526, Econometric Society.
    894. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    895. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.
    896. Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2019. "Asymptotic results for the Fourier estimator of the integrated quarticity," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 471-502, December.
    897. Fulvio Corsi & Francesco Audrino, 2007. "Realized Correlation Tick-by-Tick," University of St. Gallen Department of Economics working paper series 2007 2007-02, Department of Economics, University of St. Gallen.
    898. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    899. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274, arXiv.org.
    900. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    901. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    902. Smile Dube, 2019. "GARCH Modelling of Conditional Correlations and Volatility of Exchange rates in BRICS Countries," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(1), pages 1-7.
    903. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    904. Taylor, James W., 2004. "Volatility forecasting with smooth transition exponential smoothing," International Journal of Forecasting, Elsevier, vol. 20(2), pages 273-286.
    905. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    906. Rotfuß, Waldemar, 2009. "Intraday price formation and volatility in the European Union emissions trading scheme: an introductory analysis," ZEW Discussion Papers 09-018, ZEW - Leibniz Centre for European Economic Research.
    907. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    908. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    909. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    910. He, Feng & Ma, Feng & Wang, Ziwei & Yang, Bohan, 2021. "Asymmetric volatility spillover between oil-importing and oil-exporting countries' economic policy uncertainty and China's energy sector," International Review of Financial Analysis, Elsevier, vol. 75(C).
    911. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
    912. Ingmar Nolte & Valeri Voev, 2011. "Least Squares Inference on Integrated Volatility and the Relationship Between Efficient Prices and Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 94-108, April.
    913. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
    914. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.
    915. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.
    916. Bouri, Elie & Iqbal, Najaf & Klein, Tony, 2022. "Climate policy uncertainty and the price dynamics of green and brown energy stocks," Finance Research Letters, Elsevier, vol. 47(PB).
    917. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    918. Fernando Baltazar-Larios & Michael Sørensen, 2010. "Maximum likelihood estimation for integrated diffusion processes," CREATES Research Papers 2010-33, Department of Economics and Business Economics, Aarhus University.
    919. Anke D. Leroux & Vance L. Martin & Kathryn A. St. John, 2022. "Modeling time varying risk of natural resource assets: Implications of climate change," Quantitative Economics, Econometric Society, vol. 13(1), pages 225-257, January.
    920. Adam D. Bull, 2015. "Semimartingale detection and goodness-of-fit tests," Papers 1506.00088, arXiv.org, revised Jun 2016.
    921. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    922. Bouri, Elie & Lau, Chi Keung Marco & Saeed, Tareq & Wang, Shixuan & Zhao, Yuqian, 2021. "On the intraday return curves of Bitcoin: Predictability and trading opportunities," International Review of Financial Analysis, Elsevier, vol. 76(C).
    923. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    924. Qianli Zhao & Chao Wang & Richard Gerlach & Giuseppe Storti & Lingxiang Zhang, 2024. "Autoencoder Enhanced Realised GARCH on Volatility Forecasting," Papers 2411.17136, arXiv.org.
    925. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.
    926. Chen, Haiqiang & Gu, Ming & Ni, Bo, 2023. "How price limit affects the market efficiency in a short-sale constrained market? Evidence from a quasi-natural experiment," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 22-39.
    927. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
    928. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    929. Ysusi Carla, 2006. "Estimating Integrated Volatility Using Absolute High-Frequency Returns," Working Papers 2006-13, Banco de México.
    930. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    931. Caio Ibsen Rodrigues de Almeida & Samy Dana, 2005. "Stochastic Volatility and Option Pricing in the Brazilian Stock Marke," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(2), pages 169-206, August.
    932. Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
    933. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    934. Jeffrey R. Russell & Federico M. Bandi, 2004. "Microstructure noise, realized volatility, and optimal sampling," Econometric Society 2004 Latin American Meetings 220, Econometric Society.
    935. Avouyi-Dovi, S. & Idier, J., 2010. "Central bank liquidity and market liquidity: the role of collateral provision on the French government debt securities market," Working papers 278, Banque de France.
    936. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    937. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    938. Kyungsub Lee, 2013. "Probabilistic and statistical properties of moment variations and their use in inference and estimation based on high frequency return data," Papers 1311.5036, arXiv.org, revised Jul 2015.
    939. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    940. Peng Wu & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2022. "From Rough to Multifractal volatility: the log S-fBM model," Papers 2201.09516, arXiv.org, revised Jul 2022.
    941. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
    942. Adam Clements & Yin Liao, 2013. "The dynamics of co-jumps, volatility and correlation," NCER Working Paper Series 91, National Centre for Econometric Research.
    943. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.
    944. Loïc Maréchal, 2021. "Do economic variables forecast commodity futures volatility?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1735-1774, November.
    945. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2023. "Volatility Estimation of Gaussian Ornstein–Uhlenbeck Processes of the Second Kind," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-17, March.
    946. Lindström, Erik & Ströjby, Jonas & Brodén, Mats & Wiktorsson, Magnus & Holst, Jan, 2008. "Sequential calibration of options," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2877-2891, February.
    947. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.
    948. Claudio Morana, 2007. "Estimating, Filtering and Forecasting Realized Betas," ICER Working Papers - Applied Mathematics Series 6-2007, ICER - International Centre for Economic Research.

  54. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.

    Cited by:

    1. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Forecasting transaction counts with integer-valued GARCH models," MPRA Paper 101779, University Library of Munich, Germany, revised 11 Jul 2020.
    2. James McCulloch, 2005. "Relative Volume as a Doubly Stochastic Binomial Point Process," Research Paper Series 146, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    4. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    5. Christian H. Weiß, 2017. "On Eigenvalues of the Transition Matrix of Some Count-Data Markov Chains," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 997-1007, September.
    6. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos & Touche, Nassim, 2019. "Integer-valued stochastic volatility," MPRA Paper 91962, University Library of Munich, Germany, revised 04 Feb 2019.
    7. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    8. Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.
    9. Quoreshi, Shahiduzzaman, 2005. "Modelling High Frequency Financial Count Data," Umeå Economic Studies 656, Umeå University, Department of Economics.
    10. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    11. Anne Leucht & Michael Neumann, 2013. "Degenerate $$U$$ - and $$V$$ -statistics under ergodicity: asymptotics, bootstrap and applications in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 349-386, April.
    12. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer‐Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    13. Aknouche, Abdelhakim & Bentarzi, Wissam & Demouche, Nacer, 2017. "On periodic ergodicity of a general periodic mixed Poisson autoregression," MPRA Paper 79650, University Library of Munich, Germany.

  55. Ole Barndorff-Nielsen & Neil Shephard, 2000. "Non-Gaussian OU based models and some of their uses in financial economics," OFRC Working Papers Series 2000mf01, Oxford Financial Research Centre.

    Cited by:

    1. Nour Meddahi & Eric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
    2. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    3. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    4. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility and the GARCH forecasting performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 12(3), pages 183-200, July.
    5. Marina Resta & Davide Sciutti, "undated". "A characterization of self-affine processes in finance through the scaling function," Modeling, Computing, and Mastering Complexity 2003 13, Society for Computational Economics.
    6. Ali Alami & Eric Renault, 2001. "Risque de modèle de volatilité," CIRANO Working Papers 2001s-06, CIRANO.
    7. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Christian Bontemps & Nour Meddahi, 2002. "Testing Normality: A GMM Approach," CIRANO Working Papers 2002s-63, CIRANO.
    9. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 594-616.
    10. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Higher order variation and stochastic volatility models," Economics Papers 2001-W8, Economics Group, Nuffield College, University of Oxford.
    11. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.

  56. Elerian, O. & Chib, S. & Shephard, N., 1998. "Likelihood INference for Discretely Observed Non-linear Diffusions," Economics Papers 146, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Bauwens, Luc & Rombouts, Jeroen V.K., 2012. "On marginal likelihood computation in change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3415-3429.
    2. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
    3. Ruijun Bu & Fredj Jawadi & Yuyi Li, 2020. "A multifactor transformed diffusion model with applications to VIX and VIX futures," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 27-53, January.
    4. Lüders, Erik, 2002. "Why Are Asset Returns Predictable?," ZEW Discussion Papers 02-48, ZEW - Leibniz Centre for European Economic Research.
    5. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Kristensen, Dennis, 2004. "A semiparametric single-factor model of the term structure," LSE Research Online Documents on Economics 24741, London School of Economics and Political Science, LSE Library.
    8. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    9. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    10. Wichitaksorn, Nuttanan & Tsurumi, Hiroki, 2013. "Comparison of MCMC algorithms for the estimation of Tobit model with non-normal error: The case of asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 226-235.
    11. Peter C. B. Phillips & Jun Yu, 2006. "A Two-Stage Realized Volatility Approach to Estimation of Diffusion Processes with Discrete," Macroeconomics Working Papers 22472, East Asian Bureau of Economic Research.
    12. Kristensen, Dennis, 2010. "Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models," Journal of Econometrics, Elsevier, vol. 156(2), pages 239-259, June.
    13. Xiaohong Chen & Yanqin Fan, 2002. "Evaluating Density Forecasts via the Copula Approach," Vanderbilt University Department of Economics Working Papers 0225, Vanderbilt University Department of Economics, revised Sep 2003.
    14. Altissimo, Filippo & Mele, Antonio, 2005. "Simulated nonparametric estimation of dynamic models with applications to finance," LSE Research Online Documents on Economics 24658, London School of Economics and Political Science, LSE Library.
    15. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.
    16. Sourav Majumdar & Arnab Kumar Laha, 2024. "Diffusion on the circle and a stochastic correlation model," Papers 2412.06343, arXiv.org.
    17. Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
    18. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    19. Philip Gray, 2005. "Bayesian Estimation of Short-Rate Models," Australian Journal of Management, Australian School of Business, vol. 30(1), pages 1-22, June.
    20. Eric Ghysels & Jean-Pierre Florens & Mikhail Chernov & Marine Carrasco, 2003. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," CIRANO Working Papers 2003s-02, CIRANO.
    21. Seungmoon Choi, 2011. "Closed-Form Likelihood Expansions for Multivariate Time-Inhomogeneous Diffusions," School of Economics and Public Policy Working Papers 2011-26, University of Adelaide, School of Economics and Public Policy.
    22. Sanford, Andrew D. & Martin, Gael M., 2005. "Simulation-based Bayesian estimation of an affine term structure model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 527-554, April.
    23. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
    24. John Stachurski, 2005. "Computing the Distributions of Economic Models Via Simulation," Department of Economics - Working Papers Series 949, The University of Melbourne.
    25. A. Hurn & J. Jeisman & K. Lindsay, 2007. "Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation," NCER Working Paper Series 9, National Centre for Econometric Research.
    26. Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2010. "Inference for stochastic volatility models using time change transformations," LSE Research Online Documents on Economics 31421, London School of Economics and Political Science, LSE Library.
    27. Kam Fong Chan, 2005. "Modelling conditional heteroscedasticity and jumps in Australian short‐term interest rates," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 45(4), pages 537-551, December.
    28. Nour Meddahi & Eric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
    29. Peter C. B. Phillips & Jun Yu, 2005. "Comments on “A selective overview of nonparametric methods in financial econometricsâ€Â," Finance Working Papers 22469, East Asian Bureau of Economic Research.
    30. Choi, Seungmoon, 2013. "Closed-form likelihood expansions for multivariate time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 174(2), pages 45-65.
    31. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "Stochastic Gradient Descent in Continuous Time: A Central Limit Theorem," Papers 1710.04273, arXiv.org, revised Jun 2019.
    32. Wilfling Bernd, 2003. "Interest Rate Volatility Prior to Monetary Union under Alternative Pre-Switch Regimes," German Economic Review, De Gruyter, vol. 4(4), pages 433-457, December.
    33. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2001. "An Empirical Investigation of Continuous-Time Equity Return Models," NBER Working Papers 8510, National Bureau of Economic Research, Inc.
    34. Nils Bertschinger & Oliver Pfante, 2015. "Inferring Volatility in the Heston Model and its Relatives -- an Information Theoretical Approach," Papers 1512.08381, arXiv.org.
    35. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    36. Franke, Günter & Lüders, Erik, 2004. "Why Do Asset Prices Not Follow Random Walks?," CoFE Discussion Papers 04/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    37. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    38. Peter C.B. Phillips & Jun Yu, 2007. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Cowles Foundation Discussion Papers 1597, Cowles Foundation for Research in Economics, Yale University.
    39. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
    40. Wilfling, Bernd & Trede, Mark, 2004. "Estimating Exchange Rate Dynamics with Diffusion Processes: An Application to Greek EMU Data," HWWA Discussion Papers 267, Hamburg Institute of International Economics (HWWA).
    41. Ruijun Bu & Jie Cheng & Kaddour Hadri, 2014. "Reducible Diffusions with Time-Varying Transformations with Application to Short-Term Interest Rates," Economics Working Papers 14-01, Queen's Management School, Queen's University Belfast.
    42. Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
    43. Jun Yu, 2009. "Bias in the Estimation of the Mean Reversion Parameter in Continuous Time Models," Microeconomics Working Papers 23045, East Asian Bureau of Economic Research.
    44. Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
    45. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    46. Dennis Kristensen & Young Jun Lee & Antonio Mele, 2023. "Closed-form approximations of moments and densities of continuous-time Markov models," Papers 2308.09009, arXiv.org.
    47. Federico M. Bandi & Peter C.B. Phillips, 2005. "A Simple Approach to the Parametric Estimation of Potentially Nonstationary Diffusions," Cowles Foundation Discussion Papers 1522, Cowles Foundation for Research in Economics, Yale University.
    48. Laurent-Emmanuel Calvet & Adlai J. Fisher & Samuel B. Thompson, 2006. "Volatility Comovement: a multifrequency approach," Post-Print hal-00459667, HAL.
    49. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    50. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2005. "Indirect Robust Estimation of the Short-term Interest Rate Process," Working Paper Series 2005-4, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    51. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    52. Siddhartha Chib & Neil Shephard, 2001. "Comment on Garland B. Durham and A. Ronald Gallant's "Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes"," Economics Papers 2001-W26, Economics Group, Nuffield College, University of Oxford.
    53. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    54. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    55. Yuan Shen & Dan Cornford & Manfred Opper & Cedric Archambeau, 2012. "Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions," Computational Statistics, Springer, vol. 27(1), pages 149-176, March.
    56. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    57. Antonio Mele & Filippo Altissimo, 2004. "Simulated Nonparametric Estimation of Continuous Time Models of Asset Prices and Returns," FMG Discussion Papers dp476, Financial Markets Group.
    58. Marcos M. Abe & Eui J. Chang & Benjamin M. Tabak, 2007. "Forecasting Exchange Rate Density using Parametric Models: The Case of Brazil," Working Papers Series 138, Central Bank of Brazil, Research Department.
    59. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    60. Zhao-Hua Lu & Sy-Miin Chow & Nilam Ram & Pamela M. Cole, 2019. "Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 611-645, June.
    61. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
    62. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    63. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.
    64. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    65. James Hamilton, 2000. "Book review," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 135-137.
    66. Catherine S. Forbes & Gael M. Martin & Jill Wright, 2007. "Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 387-418.
    67. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    68. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    69. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    70. Carl Chiarella & Hing Hung & Thuy-Duong To, 2005. "The Volatility Structure of the Fixed Income Market under the HJM Framework: A Nonlinear Filtering Approach," Research Paper Series 151, Quantitative Finance Research Centre, University of Technology, Sydney.
    71. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    72. Dennis Kristensen, 2004. "Estimation in Two Classes of Semiparametric Diffusion Models," FMG Discussion Papers dp500, Financial Markets Group.
    73. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
    74. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    75. Denitsa Stefanova, 2012. "Stock Market Asymmetries: A Copula Diffusion," Tinbergen Institute Discussion Papers 12-125/IV/DSF45, Tinbergen Institute.
    76. Damir Filipovi'c & Eberhard Mayerhofer & Paul Schneider, 2011. "Density Approximations for Multivariate Affine Jump-Diffusion Processes," Papers 1104.5326, arXiv.org, revised Oct 2011.
    77. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    78. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    79. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, October.
    80. Matthew M. Graham & Alexandre H. Thiery & Alexandros Beskos, 2022. "Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1229-1256, September.
    81. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    82. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    83. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    84. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    85. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    86. Jun Yu, 2009. "Econometric Analysis of Continuous Time Models : A Survey of Peter Phillips’ Work and Some New Results," Microeconomics Working Papers 23046, East Asian Bureau of Economic Research.
    87. Mikkelsen, Peter, 2003. "Estimating intractable non-linear term structure models," Finance Working Papers 02-7, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    88. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    89. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    90. Monica Gentile & Roberto Renò, 2005. "Specification Analysis of Diffusion Models for the Italian Short Rate," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(1), pages 51-83, February.
    91. Théo Michelot & Richard Glennie & Catriona Harris & Len Thomas, 2021. "Varying-Coefficient Stochastic Differential Equations with Applications in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 446-463, September.
    92. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    93. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    94. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    95. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2004, January-A.
    96. Vinicius P. Israel & H�lio S. Migon, 2012. "Stochastic models for greenhouse gas emission rate estimation from hydroelectric reservoirs: a Bayesian hierarchical approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1069-1086, October.
    97. Michael W. Brandt & Pedro Santa-Clara, 2001. "Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets," NBER Technical Working Papers 0274, National Bureau of Economic Research, Inc.
    98. Erik Lindström, 2007. "Estimating parameters in diffusion processes using an approximate maximum likelihood approach," Annals of Operations Research, Springer, vol. 151(1), pages 269-288, April.
    99. Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
    100. Hong, Yongmiao & Li, Haitao, 2002. "Nonparametric specification testing for continuous-time models with application to spot interest rates," SFB 373 Discussion Papers 2002,32, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    101. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    102. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
    103. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    104. Suk Kim, Myung & Wang, Suojin, 2006. "On the applicability of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2210-2217, December.
    105. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    106. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    107. Kristensen, Dennis, 2004. "Estimation of partial differential equations with applications in finance," LSE Research Online Documents on Economics 24738, London School of Economics and Political Science, LSE Library.
    108. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, January.
    109. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," Economics Papers 2004-W20, Economics Group, Nuffield College, University of Oxford.
    110. esposito, francesco paolo & cummins, mark, 2015. "Filtering and likelihood estimation of latent factor jump-diffusions with an application to stochastic volatility models," MPRA Paper 64987, University Library of Munich, Germany.
    111. João Nicolau, 2002. "A new technique for simulating the likelihood of stochastic differential equations," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 91-103, June.
    112. Shota Gugushvili & Frank van der Meulen & Moritz Schauer & Peter Spreij, 2018. "Nonparametric Bayesian volatility estimation," Papers 1801.09956, arXiv.org, revised Mar 2019.
    113. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    114. Helle Sørensen, 2002. "Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey," Discussion Papers 02-08, University of Copenhagen. Department of Economics.
    115. Alejandra López-Pérez & Manuel Febrero-Bande & Wencesalo González-Manteiga, 2021. "Parametric Estimation of Diffusion Processes: A Review and Comparative Study," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    116. A. S. Hurn & K. A. Lindsay, 2002. "On the Specification of the Drift and Diffusion Functions for Continuous‐time Models of the Spot Interest Rate," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(5), pages 547-564, December.
    117. Peter C.B. Phillips & Jun Yu, 2005. "A Two-Stage Realized Volatility Approach to the Estimation for Diffusion Processes from Discrete Observations," Cowles Foundation Discussion Papers 1523, Cowles Foundation for Research in Economics, Yale University.
    118. Marcel Rindisbacher & Jérôme Detemple & René Garcia, 2004. "Asymptotic Properties of Monte Carlo Estimators of Diffusion Processes," Econometric Society 2004 North American Winter Meetings 483, Econometric Society.
    119. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    120. Andrew D. Sanford & Gael M. Martin, 2006. "Bayesian comparison of several continuous time models of the Australian short rate," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(2), pages 309-326, June.
    121. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations," Stan Hurn Discussion Papers 2006, School of Economics and Finance, Queensland University of Technology.
    122. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    123. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.
    124. Giet, Ludovic & Lubrano, Michel, 2008. "A minimum Hellinger distance estimator for stochastic differential equations: An application to statistical inference for continuous time interest rate models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2945-2965, February.
    125. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    126. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    127. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274, arXiv.org.
    128. Tang, Sanyi & Heron, Elizabeth A., 2008. "Bayesian inference for a stochastic logistic model with switching points," Ecological Modelling, Elsevier, vol. 219(1), pages 153-169.
    129. Y. K. Tse & Xibin Zhang & Jun Yu, 2004. "Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 158-169.
    130. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.
    131. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    132. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2009. "Modelling Multivariate Interest Rates using Time-Varying Copulas and Reducible Non-Linear Stochastic Differential," Economics Working Papers 09-02, Queen's Management School, Queen's University Belfast.

  57. Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Discussion Paper 1998-141, Tilburg University, Center for Economic Research.

    Cited by:

    1. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    2. Hautsch, Nikolaus & Yang, Fuyu, 2010. "Bayesian inference in a stochastic volatility Nelson-Siegel Model," SFB 649 Discussion Papers 2010-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Siem Jan Koopman & André Lucas & André Monteiro, 2005. "The Multi-State Latent Factor Intensity Model for Credit Rating Transitions," Tinbergen Institute Discussion Papers 05-071/4, Tinbergen Institute, revised 04 Jul 2005.
    4. Siem Jan Koopman & Kai Ming Lee, 0000. "Seasonality with Trend and Cycle Interactions in Unobserved Components Models," Tinbergen Institute Discussion Papers 08-028/4, Tinbergen Institute.
    5. Kum Hwa Oh & Eric Zivot & Drew Creal, 2006. "The Relationship between the Beveridge-Nelson Decomposition andUnobserved Component Models with Correlated Shocks," Working Papers UWEC-2006-16-FC, University of Washington, Department of Economics.
    6. Max Bruche, 2006. "Estimating Structural Models of Corporate Bond Prices," Working Papers wp2006_0610, CEMFI.
    7. Jeyhun I. Mikayilov & Shahriyar Mukhtarov & Jeyhun Mammadov, 2020. "Gasoline Demand Elasticities at the Backdrop of Lower Oil Prices: Fuel-Subsidizing Country Case," Energies, MDPI, vol. 13(24), pages 1-18, December.
    8. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
    9. Anastasios Koukoumelis, 2008. "On the measurement of convergence as an ongoing process," Applied Economics Letters, Taylor & Francis Journals, vol. 15(5), pages 363-365.
    10. Rob Luginbuhl & Adam Elbourne, 2019. "Accounting for the business cycle reduces the estimated losses from systemic banking crises," Empirical Economics, Springer, vol. 56(6), pages 1967-1978, June.
    11. Beechey, Meredith & Österholm, Pär, 2007. "The Rise and Fall of U.S. Inflation Persistence," Working Paper Series 2007:18, Uppsala University, Department of Economics.
    12. Verdugo-Yepes, Concepción & Pedroni, Peter & Hu, Xingwei, 2015. "Crime and the Economy in Mexican States : Heterogeneous Panel Estimates (1993-2012)," MPRA Paper 64930, University Library of Munich, Germany.
    13. Peter Prazmowski, 2002. "Endogenous credibility and stabilization programmes: evidence from the Dominican Republic," Applied Economics Letters, Taylor & Francis Journals, vol. 9(14), pages 933-937.
    14. Gerson Javier Pérez-Valbuena & Diana Ricciulli-Marín & Jaime Bonet-Morón & Paula Barrios, 2021. "Reglas fiscales subnacionales en Colombia: desde su concepción hasta los resultados frente al COVID-19," Documentos de trabajo sobre Economía Regional y Urbana 297, Banco de la Republica de Colombia.
    15. Tommaso Proietti & Alberto Musso, 2012. "Growth accounting for the euro area," Empirical Economics, Springer, vol. 43(1), pages 219-244, August.
    16. Wojciech Maliszewski, 2010. "Vietnam: Bayesian Estimation of Output Gap," IMF Working Papers 2010/149, International Monetary Fund.
    17. Pappalardo, Carmine & Cesaroni, Tatiana, 2008. "Long Run and Short Run Dynamics in Italian Manufacturing Labour Productivity," CEPR Discussion Papers 6795, C.E.P.R. Discussion Papers.
    18. Christian Brinch, 2012. "Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling," Computational Statistics, Springer, vol. 27(1), pages 13-28, March.
    19. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    20. Hayette Gatfaoui, 2010. "Deviation from normality and Sharpe ratio behavior: a brief simulation study," Post-Print hal-00568613, HAL.
    21. Dethlefsen, Claus & Lundbye-Christensen, Søren, 2006. "Formulating State Space Models in R with Focus on Longitudinal Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i01).
    22. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Dating Business Cycles: A Methodological Contribution with an Application to the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(4), pages 537-565, September.
    23. Trimbur, Thomas M., 2010. "Stochastic level shifts and outliers and the dynamics of oil price movements," International Journal of Forecasting, Elsevier, vol. 26(1), pages 162-179, January.
    24. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    25. Andrew Harvey & Siem Jan Koopman, 2000. "Signal extraction and the formulation of unobserved components models," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 84-107.
    26. Nikolaus Hautsch & Fuyu Yang, 2014. "Bayesian Stochastic Search for the Best Predictors: Nowcasting GDP Growth," University of East Anglia Applied and Financial Economics Working Paper Series 056, School of Economics, University of East Anglia, Norwich, UK..
    27. Matallin-Saez Juan Carlos, 2008. "The Dynamics of Mutual Funds and Market Timing Measurement," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(4), pages 1-37, December.
    28. Costas Anyfantakis & Guglielmo Maria Caporale & Nikitas Pittis, 2008. "Parameter instability and forecasting performance: a Monte Carlo study," International Journal of Business Forecasting and Marketing Intelligence, Inderscience Enterprises Ltd, vol. 1(1), pages 1-20.
    29. Carvalho, Vasco M. & Harvey, Andrew C., 2005. "Growth, cycles and convergence in US regional time series," International Journal of Forecasting, Elsevier, vol. 21(4), pages 667-686.
    30. Koopman, Siem Jan & Lucas, Andre & Klaassen, Pieter, 2005. "Empirical credit cycles and capital buffer formation," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 3159-3179, December.
    31. Julien Garnier & Bjørn-Roger Wilhelmsen, 2005. "The natural real interest rate and the output gap in the euro area: A joint estimation," Working Paper 2005/14, Norges Bank.
    32. Jaromír Baxa & Roman Horváth & Borek Vasícek, 2010. "How Does Monetary Policy Change? Evidence on Inflation Targeting Countries," Working Papers wpdea1007, Department of Applied Economics at Universitat Autonoma of Barcelona.
    33. Clive G. Bowsher & Roland Meeks, 2008. "The dynamics of economics functions: modelling and forecasting the yield curve," Working Papers 0804, Federal Reserve Bank of Dallas.
    34. Tommaso PROIETTI, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Economics Working Papers ECO2002/23, European University Institute.
    35. McElroy, Tucker & Sutcliffe, Andrew, 2006. "An iterated parametric approach to nonstationary signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2206-2231, May.
    36. Roberto Iannaccone & Edoardo Otranto, 2003. "Signal Extraction in Continuous Time and the Generalized Hodrick- Prescott Filter," Econometrics 0311002, University Library of Munich, Germany.
    37. Tommaso Proietti, 2009. "On the Model-Based Interpretation of Filters and the Reliability of Trend-Cycle Estimates," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 186-208.
    38. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    39. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    40. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    41. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    42. De Rossi, Giuliano, 2004. "Kalman filtering of consistent forward rate curves: a tool to estimate and model dynamically the term structure," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 277-308, March.
    43. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    44. Georgios Bampinas & Theodore Panagiotidis & Panagiotis Politsidis, 2023. "Sovereign bond and CDS market contagion: A story from the Eurozone crisis," Post-Print hal-04164277, HAL.
    45. Bernardi, Mauro & Della Corte, Giuseppe & Proietti, Tommaso, 2008. "Extracting the Cyclical Component in Hours Worked: a Bayesian Approach," MPRA Paper 8967, University Library of Munich, Germany.
    46. Siem Jan Koopman & Philip Hans Franses, 2002. "Constructing Seasonally Adjusted Data with Time‐varying Confidence Intervals," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(5), pages 509-526, December.
    47. A. C. Harvey & Siem Jan Koopman, 2000. "Computing Observation Weights for Signal Extraction and Filtering," Econometric Society World Congress 2000 Contributed Papers 0888, Econometric Society.
    48. Michel Beine & Charles S. Bos & Sébastien Laurent, 2007. "The Impact of Central Bank FX Interventions on Currency Components," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 154-183.
    49. Tommaso Proietti, 2005. "Forecasting and signal extraction with misspecified models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 539-556.
    50. Jurgen A. Doornik & Neil Shephard & David F. Hendry, 2004. "Parallel Computation in Econometrics: A Simplified Approach," Economics Papers 2004-W16, Economics Group, Nuffield College, University of Oxford.
    51. Philippe Moës, 2006. "The production function approach to the Belgian output gap, estimation of a multivariate structural time series model," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 49(1), pages 59-91.
    52. Philip Kostov & John Lingard, 2005. "Seasonally specific model analysis of UK cereals prices," Econometrics 0507014, University Library of Munich, Germany.
    53. Ooms, M., 2008. "Trends in Applied Econometrics Software Development 1985-2008, an analysis of Journal of Applied Econometrics research articles, software reviews, data and code," Serie Research Memoranda 0021, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    54. Swinkels, L.A.P. & van der Sluis, P.J. & Verbeek, M.J.C.M., 2003. "Market timing: A decomposition of mutual fund returns," ERIM Report Series Research in Management ERS-2003-074-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    55. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    56. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    57. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869, July.
    58. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    59. Christian M. Dahl & Henrik Hansen & John Smidt, 2008. "The cyclical component factor model," CREATES Research Papers 2008-44, Department of Economics and Business Economics, Aarhus University.
    60. Siem Jan Koopman & Max I.P. Mallee & Michel van der Wel, 2007. "Analyzing the Term Structure of Interest Rates using the Dynamic Nelson-Siegel Model with Time-Varying Parameters," Tinbergen Institute Discussion Papers 07-095/4, Tinbergen Institute.
    61. DeRossi, G. & Harvey, A., 2007. "Quantiles, Expectiles and Splines," Cambridge Working Papers in Economics 0660, Faculty of Economics, University of Cambridge.
    62. Swinkels, L.A.P. & van der Sluis, P.J., 2001. "Return-Based Style Analysis with Time-Varying Exposures," Other publications TiSEM f2c16530-4d18-4f43-bb6d-f, Tilburg University, School of Economics and Management.
    63. Marc Francke, 2010. "Repeat Sales Index for Thin Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 41(1), pages 24-52, July.
    64. International Monetary Fund, 2002. "Macroeconomic Adjustment in a Highly Dollarized Economy: The Case of Cambodia," IMF Working Papers 2002/092, International Monetary Fund.
    65. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
    66. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    67. Boriss Siliverstovs, 2012. "Are GDP Revisions Predictable? Evidence for Switzerland," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 58(4), pages 299-326.
    68. Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201305, University of Hawaii at Manoa, Department of Economics.
    69. Christian Caamaño-Carrillo & Sergio Contreras-Espinoza & Orietta Nicolis, 2023. "Reconstructing the Quarterly Series of the Chilean Gross Domestic Product Using a State Space Approach," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    70. Toshitaka Sekine & Yuki Teranishi, 2008. "Inflation Targeting and Monetary Policy Activism," IMES Discussion Paper Series 08-E-13, Institute for Monetary and Economic Studies, Bank of Japan.
    71. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    72. Bahram Adrangi & Arjun Chatrath & Madhuparna Kolay & Kambiz Raffiee, 2021. "Dynamic Responses of Standard and Poor’s Regional Bank Index to the U.S. Fear Index, VIX," JRFM, MDPI, vol. 14(3), pages 1-18, March.
    73. Nikolaos Zirogiannis & Yorghos Tripodis, 2018. "Dynamic factor analysis for short panels: estimating performance trajectories for water utilities," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 131-150, March.
    74. Dordonnat, Virginie & Koopman, Siem Jan & Ooms, Marius, 2012. "Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3134-3152.
    75. Hashiguchi, Yoshihiro, 2009. "Bayesian Estimation of Spatial Externalities Using Regional Production Function: The Case of China and Japan," MPRA Paper 17902, University Library of Munich, Germany.
    76. Renzo Orsi & Davide Raggi & Francesco Turino, 2014. "Size, Trend, and Policy Implications of the Underground Economy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(3), pages 417-436, July.
    77. Richard Kleijn & Herman K. van Dijk, 2001. "A Bayesian Analysis of the PPP Puzzle using an Unobserved Components Model," Tinbergen Institute Discussion Papers 01-105/4, Tinbergen Institute.
    78. Berument, Hakan & Yalcin, Yeliz & Yildirim, Julide, 2009. "The effect of inflation uncertainty on inflation: Stochastic volatility in mean model within a dynamic framework," Economic Modelling, Elsevier, vol. 26(6), pages 1201-1207, November.
    79. Nazifi, Fatemeh, 2013. "Modelling the price spread between EUA and CER carbon prices," Energy Policy, Elsevier, vol. 56(C), pages 434-445.
    80. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2003. "Dating the Euro Area Business Cycle," Working Papers 237, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    81. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Characterising the Business Cycle for Accession Countries," Econometrics 0403006, University Library of Munich, Germany.
    82. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    83. Marius Ooms & Björn de Groot & Siem Jan Koopman, 1999. "Time-Series Modelling of Daily Tax Revenues," Computing in Economics and Finance 1999 312, Society for Computational Economics.
    84. García-Centeno, María del Carmen & Fernández-Avilés, Gema & Montero, José María, 2010. "Asymmetries in the Volatility of Precious Metals Returns: The TA-ARSV Modelling Strategy," The Journal of Economic Asymmetries, Elsevier, vol. 7(1), pages 23-41.
    85. Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922.
    86. Lasse Bork, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," CREATES Research Papers 2009-11, Department of Economics and Business Economics, Aarhus University.
    87. Wojciech Maliszewski, 2003. "Modeling Inflation in Georgia," IMF Working Papers 2003/212, International Monetary Fund.
    88. Gijsbert Suren & Guilherme Moura, 2012. "Heteroskedastic Dynamic Factor Models: A Monte Carlo Study," Economics Bulletin, AccessEcon, vol. 32(4), pages 2884-2898.
    89. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
    90. Siem Jan Koopman & André Lucas & Pieter Klaassen, 2002. "Pro-Cyclicality, Empirical Credit Cycles, and Capital Buffer Formation," Tinbergen Institute Discussion Papers 02-107/2, Tinbergen Institute.
    91. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    92. Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
    93. Matthieu Lemoine & Florian Pelgrin, 2003. "Introduction aux modèles espace-état et au filtre de Kalman," Revue de l'OFCE, Presses de Sciences-Po, vol. 86(3), pages 203-229.
    94. Haroon Mumtaz & Nitin Kumar, 2012. "An application of data-rich environment for policy analysis of the Indian economy," Joint Research Papers 2, Centre for Central Banking Studies, Bank of England.
    95. Proietti Tommaso, 2004. "Seasonal Specific Structural Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-22, May.
    96. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    97. El-Shazly, Alaa, 2016. "Structural breaks and monetary dynamics: A time series analysis," Economic Modelling, Elsevier, vol. 53(C), pages 133-143.
    98. F. Pancotto & G. Pignataro & D. Raggi, 2014. "Higher order beliefs and the dynamics of exchange rates," Working Papers wp957, Dipartimento Scienze Economiche, Universita' di Bologna.
    99. Vasco M. Carvalho & Andrew C. Harvey, 2005. "Convergence in the trends and cycles of Euro‐zone income," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 275-289.
    100. Dungey, Mardi & Jacobs, Jan & Tian, Jing & Norden, Simon van, 2012. "On trend-cycle decomposition and data revision," Research Report 12009-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    101. Lauren Stagnol, 2019. "Extracting global factors from local yield curves," Journal of Asset Management, Palgrave Macmillan, vol. 20(5), pages 341-350, September.
    102. Lauren Stagnol, 2017. "Introducing global term structure in a risk parity framework," EconomiX Working Papers 2017-23, University of Paris Nanterre, EconomiX.
    103. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    104. Nahum, Ruth-Aïda, 2005. "Income Inequality and Growth: A Panel Study of Swedish Counties 1960-2000," Working Paper Series 2005:8, Uppsala University, Department of Economics.
    105. Bruche, Max, 2005. "Estimating structural bond pricing models via simulated maximum likelihood," LSE Research Online Documents on Economics 24647, London School of Economics and Political Science, LSE Library.
    106. Yasutomo Murasawa, 2016. "The Beveridge–Nelson decomposition of mixed-frequency series," Empirical Economics, Springer, vol. 51(4), pages 1415-1441, December.
    107. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    108. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
    109. Sait Ozturk & Michel van der Wel, 2014. "Intraday Price Discovery in Fragmented Markets," Tinbergen Institute Discussion Papers 14-027/III, Tinbergen Institute.
    110. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2014. "Dynamic Factor Analysis for Short Panels: Estimating Performance Trajectories for Water Utilities," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170592, Agricultural and Applied Economics Association.
    111. V. Dordonnat & S.J. Koopman & M. Ooms & A. Dessertaine & J. Collet, 2008. "An Hourly Periodic State Space Model for Modelling French National Electricity Load," Tinbergen Institute Discussion Papers 08-008/4, Tinbergen Institute.
    112. Andrew C. Harvey, 2002. "Trends, Cycles, and Convergence," Central Banking, Analysis, and Economic Policies Book Series, in: Norman Loayza & Raimundo Soto & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series Editor) (ed.),Economic Growth: Sources, Trends, and Cycles, edition 1, volume 6, chapter 8, pages 221-250, Central Bank of Chile.
    113. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    114. Hendershott, Terrence & Menkveld, Albert J., 2014. "Price pressures," Journal of Financial Economics, Elsevier, vol. 114(3), pages 405-423.
    115. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    116. Charles S. Bos & Ronald J. Mahieu & Herman K. van Dijk, 2000. "Daily Exchange Rate Behaviour and Hedging of Currency Risk," Econometric Society World Congress 2000 Contributed Papers 0504, Econometric Society.
    117. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the best volatility models: the model confidence set approach," FRB Atlanta Working Paper 2003-28, Federal Reserve Bank of Atlanta.
    118. Siem Jan Koopman & Marius Ooms & André Lucas & Kees van Montfort & Victor Van Der Geest, 2008. "Estimating systematic continuous‐time trends in recidivism using a non‐Gaussian panel data model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 104-130, February.
    119. Siem Jan Koopman & Michel van der Wel, 2011. "Forecasting the U.S. Term Structure of Interest Rates using a Macroeconomic Smooth Dynamic Factor Model," Tinbergen Institute Discussion Papers 11-063/4, Tinbergen Institute.
    120. Simionescu Mihaela, 2015. "Kalman Filter or VAR Models to Predict Unemployment Rate in Romania?," Naše gospodarstvo/Our economy, Sciendo, vol. 61(3), pages 3-21, June.
    121. Georgios Chortareas & John Nankervis & Ying Jiang, 2007. "Forecasting Exchange Rate Volatility with High Frequency Data: Is the Euro Different?," Money Macro and Finance (MMF) Research Group Conference 2006 79, Money Macro and Finance Research Group.
    122. Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
    123. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    124. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    125. M. Berument & Yeliz Yalcin & Julide Yildirim, 2011. "The inflation and inflation uncertainty relationship for Turkey: a dynamic framework," Empirical Economics, Springer, vol. 41(2), pages 293-309, October.
    126. Busettti, F. & Harvey, A., 2007. "Tests of time-invariance," Cambridge Working Papers in Economics 0701, Faculty of Economics, University of Cambridge.
    127. Lee Kai Ming & Koopman Siem Jan, 2004. "Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-17, May.
    128. Harvey, Andrew C. & Delle Monache, Davide, 2009. "Computing the mean square error of unobserved components extracted by misspecified time series models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 283-295, February.
    129. Michel van der Wel & Albert Menkveld & Asani Sarkar, 2009. "Are Market Makers Uninformed and Passive? Signing Trades in The Absence of Quotes," Tinbergen Institute Discussion Papers 09-046/3, Tinbergen Institute.
    130. Dong Fu, 2007. "National, regional and metro-specific factors of the U.S. housing market," Working Papers 0707, Federal Reserve Bank of Dallas.
    131. Zietz, Joachim A. & Penn, David A., 2008. "An Unobserved Components Forecasting Model of Non-Farm Employment for the Nashville MSA," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 38(1), pages 1-10.
    132. Christian N. Brinch, 2008. "Simulated Maximum Likelihood using Tilted Importance Sampling," Discussion Papers 540, Statistics Norway, Research Department.
    133. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    134. Tucker S. McElroy & Thomas M. Trimbur, 2012. "Signal extraction for nonstationary multivariate time series with illustrations for trend inflation," Finance and Economics Discussion Series 2012-45, Board of Governors of the Federal Reserve System (U.S.).
    135. Helena Beltran & Albert J. Menkveld, 2004. "Understanding limit order book depth: conditioning on trade informativeness," Econometric Society 2004 Latin American Meetings 142, Econometric Society.
    136. Harvey, Andrew C. & Trimbur, Thomas M. & Van Dijk, Herman K., 2007. "Trends and cycles in economic time series: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 618-649, October.
    137. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    138. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    139. Tusell, Fernando, 2011. "Kalman Filtering in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i02).
    140. Bos, C.S. & Mahieu, R.J. & van Dijk, H.K., 2000. "On the variation of hedging decisions in daily currency risk management," Econometric Institute Research Papers EI 2000-20/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    141. Kelly Burns, 2016. "A Reconsideration of the Meese-Rogoff Puzzle: An Alternative Approach to Model Estimation and Forecast Evaluation," Multinational Finance Journal, Multinational Finance Journal, vol. 20(1), pages 41-83, March.
    142. Thomas M. Trimbur, 2006. "Detrending economic time series: a Bayesian generalization of the Hodrick-Prescott filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 247-273.
    143. Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
    144. Clive Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," Economics Series Working Papers 2006-FE-11, University of Oxford, Department of Economics.
    145. Sy‐Miin Chow & Guangjian Zhang, 2008. "Continuous‐time modelling of irregularly spaced panel data using a cubic spline model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 131-154, February.
    146. Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
    147. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    148. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    149. Busetti, F. & Harvey, A., 2008. "When is a copula constant? A test for changing relationships," Cambridge Working Papers in Economics 0841, Faculty of Economics, University of Cambridge.
    150. Rob Luginbuhl & Siem Jan Koopman, 2003. "Convergence in European GDP Series," Tinbergen Institute Discussion Papers 03-031/4, Tinbergen Institute.
    151. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    152. DeRossi, G. & Harvey, A., 2006. "Time-Varying Quantiles," Cambridge Working Papers in Economics 0649, Faculty of Economics, University of Cambridge.
    153. Bellini, Tiziano & Riani, Marco, 2012. "Robust analysis of default intensity," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3276-3285.
    154. Francesca Pancotto & Giuseppe Pignataro & Davide Raggi, 2015. "Social Learning and Higher Order Beliefs: A Structural Model of Exchange Rates Dynamics," LEM Papers Series 2015/24, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    155. Siem Jan Koopman & Charles S. Bos, 2002. "Time Series Models with a Common Stochastic Variance for Analysing Economic Time Series," Tinbergen Institute Discussion Papers 02-113/4, Tinbergen Institute.
    156. Bikker Reinier & van den Brakel Jan & Krieg Sabine & Ouwehand Pim & van der Stegen Ronald, 2019. "Consistent Multivariate Seasonal Adjustment for Gross Domestic Product and its Breakdown in Expenditures," Journal of Official Statistics, Sciendo, vol. 35(1), pages 9-30, March.
    157. Schulz, Rainer & Werwatz, Axel, 2001. "A state space model for Berlin house prices," SFB 373 Discussion Papers 2001,58, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    158. Rob Luginbuhl & Siem Jan Koopman, 2004. "Convergence in European GDP series: a multivariate common converging trend-cycle decomposition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 611-636.
    159. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
    160. Chattopadhyay, Siddhartha & Sahu, Sohini & Jha, Saakshi, 2016. "Estimation of Unobserved Inflation Expectations in India using State-Space Model," MPRA Paper 72710, University Library of Munich, Germany.
    161. Berument, M. Hakan & Yalcin, Yeliz & Yildirim, Julide, 2012. "Inflation and inflation uncertainty: A dynamic framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4816-4826.
    162. Juergen Bierbaumer-Polly, 2012. "Regional and Sectoral Business Cycles - Key Features for the Austrian economy," EcoMod2012 4074, EcoMod.
    163. Pollock, D. S. G., 2003. "Improved frequency selective filters," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 279-297, March.
    164. Riccardo Corradini, 2005. "An Empirical Analysis of Permanent Income Hypothesis Applied to Italy using State Space Models with non zero correlation between trend and cycle," Econometrics 0509009, University Library of Munich, Germany.
    165. B. Jungbacker & S.J. Koopman, 2005. "Model-based Measurement of Actual Volatility in High-Frequency Data," Tinbergen Institute Discussion Papers 05-002/4, Tinbergen Institute.
    166. Mengheng Li & Irma Hindrayanto, 2018. "Looking for the stars: Estimating the natural rate of interest," Working Paper Series 51, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    167. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    168. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    169. Eugenie Hol & Siem Jan Koopman, 2002. "Stock Index Volatility Forecasting with High Frequency Data," Tinbergen Institute Discussion Papers 02-068/4, Tinbergen Institute.
    170. Djuranovik, Leslie, 2014. "The Indonesian macroeconomy and the yield curve: A dynamic latent factor approach," Journal of Asian Economics, Elsevier, vol. 34(C), pages 1-15.
    171. Oh, Kum Hwa & Zivot, Eric & Creal, Drew, 2008. "The relationship between the Beveridge-Nelson decomposition and other permanent-transitory decompositions that are popular in economics," Journal of Econometrics, Elsevier, vol. 146(2), pages 207-219, October.
    172. Antonio José Orozco-Gallo & Pavel Vidal-Alejandro & Johana Sanabria-Domínguez & Jaime Andrés Collazos-Rodríguez, 2021. "Indicador coincidente de actividad económica en la recesión pandémica: el caso del Caribe colombiano," Documentos de trabajo sobre Economía Regional y Urbana 298, Banco de la Republica de Colombia.
    173. Stephen Pollock, 2002. "Recursive Estimation in Econometrics," Working Papers 462, Queen Mary University of London, School of Economics and Finance.
    174. Matteo M. Pelagatti, 2005. "Business cycle and sector cycles," Econometrics 0503006, University Library of Munich, Germany.
    175. Francisco Cribari-Neto & Spyros Zarkos, 2003. "Econometric and Statistical Computing Using Ox," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 277-295, June.
    176. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    177. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    178. Bernardi Mauro & Della Corte Giuseppe & Proietti Tommaso, 2011. "Extracting the Cyclical Component in Hours Worked," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-28, May.
    179. Toru Komaki & Jeremy Penzer, 2005. "Estimation of time‐varying price elasticity in 1970–1997 Japanese raw milk supply by structural time‐series model," Agricultural Economics, International Association of Agricultural Economists, vol. 32(1), pages 1-14, January.
    180. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    181. Jan A. Brakel & Sabine Krieg, 2016. "Small area estimation with state space common factor models for rotating panels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 763-791, June.
    182. Nguyen, Trang & Chaiechi, Taha & Eagle, Lynne & Low, David, 2020. "Dynamic transmissions between main stock markets and SME stock markets: Evidence from tropical economies," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 308-324.
    183. Philip Kostov & John Lingard, 2004. "Recurrence analysis techniques for non-stationary and non-linear data," Microeconomics 0409003, University Library of Munich, Germany.
    184. Schulz, Rainer, 2002. "Real estate valuation according to standardized methods: An empirical analysis," SFB 373 Discussion Papers 2002,55, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    185. Tommaso Proietti & Filippo Moauro, 2004. "Dynamic Factor Analysis with Nonlinear Temporal Aggregation Constraints," Econometrics 0401003, University Library of Munich, Germany.
    186. Teles, Vladimir Kuhl & Cardoso, Eliana A., 2010. "A brief history of Brazil's growth," Textos para discussão 241, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    187. Martin Solberger & Erik Spånberg, 2020. "Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 875-900, March.
    188. Joao Valle e Azevedo & Siem Jan Koopman & Antonio Rua, 2003. "Tracking Growth and the Business Cycle: a Stochastic Common Cycle Model for the Euro Area," Tinbergen Institute Discussion Papers 03-069/4, Tinbergen Institute.
    189. Allin Cottrell & Riccardo (Jack) Lucchetti & Matteo Pelagatti, 2016. "Measures of variance for smoothed disturbances in linear state-space models: a clarification," gretl working papers 3, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    190. Langrock, Roland & MacDonald, Iain L. & Zucchini, Walter, 2012. "Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 147-161.
    191. Peter Dreuw, 2023. "Structural time series models and synthetic controls—assessing the impact of the euro adoption," Empirical Economics, Springer, vol. 64(2), pages 681-725, February.
    192. Siem Jan Koopman & John A. D. Aston, 2006. "A non-Gaussian generalization of the Airline model for robust seasonal adjustment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 325-349.
    193. Tommaso Proietti, 2007. "Band Spectral Estimation for Signal Extraction," CEIS Research Paper 104, Tor Vergata University, CEIS.
    194. Pignataro, Giuseppe & Raggi, Davide & Pancotto, Francesca, 2024. "On the role of fundamentals, private signals, and beauty contests to predict exchange rates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 687-705.
    195. Philippe Moës, 2008. "Multivariate structural time series models with dual cycles : implications for measurement of output gap and potential growth," Working Paper Research 136, National Bank of Belgium.
    196. Albert J. Menkveld & Siem Jan Koopman & André Lucas, 2003. "Round-the-Clock Price Discovery for Cross-Listed Stocks: US-Dutch Evidence," Tinbergen Institute Discussion Papers 03-037/2, Tinbergen Institute, revised 13 Oct 2003.
    197. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference (Revised in April 2006, subsequently published in "Journal of Econometrics", 140, 425-449, 2007. )," CARF F-Series CARF-F-011, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    198. Stephen Pollock, 2001. "Improved Frequency-selective Filters," Working Papers 449, Queen Mary University of London, School of Economics and Finance.
    199. Tommaso PROIETTI & Alberto MUSSO & Thomas WESTERMANN, 2002. "Estimating Potential Output and the Output Gap for the Euro Area: a Model-Based Production Function Approach," Economics Working Papers ECO2002/09, European University Institute.
    200. Siem Jan Koopman & Kai Ming Lee, 2005. "Measuring Asymmetric Stochastic Cycle Components in U.S. Macroeconomic Time Series," Tinbergen Institute Discussion Papers 05-081/4, Tinbergen Institute.
    201. Harvey, A.C. & Trimbur, T.M. & van Dijk, H.K., 2004. "Bayes estimates of the cyclical component in twentieth centruy US gross domestic product," Econometric Institute Research Papers EI 2004-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    202. Harm Jan Boonstra & Jan A. Van Den Brakel & Bart Buelens & Sabine Krieg & Marc Smeets, 2008. "Towards small area estimation at Statistics Netherlands," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 21-49.
    203. Mikayilov, Jeyhun I. & Darandary, Abdulelah & Alyamani, Ryan & Hasanov, Fakhri J. & Alatawi, Hatem, 2020. "Regional heterogeneous drivers of electricity demand in Saudi Arabia: Modeling regional residential electricity demand," Energy Policy, Elsevier, vol. 146(C).
    204. Julien Garnier, 2004. "UK in or UK Out? A Common Cycle Analysis Between the UK and the Euro Zone," Working Papers 2004-17, CEPII research center.
    205. Proietti, Tommaso, 2005. "New algorithms for dating the business cycle," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 477-498, April.
    206. Musso, Alberto & Proietti, Tommaso, 2007. "Growth accounting for the euro area: a structural approach," Working Paper Series 804, European Central Bank.
    207. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.
    208. María García Centeno & Román Mínguez Salido, 2009. "Estimation of Asymmetric Stochastic Volatility Models for Stock-Exchange Index Returns," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(1), pages 71-87, February.
    209. Nikolaos Zirogiannis & Kerry Krutilla & Yorghos Tripodis & Kathryn Fledderman, 2019. "Human Development Over Time: An Empirical Comparison of a Dynamic Index and the Standard HDI," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(2), pages 773-798, April.
    210. Christodoulaki, Olga & Penzer, Jeremy, 2004. "News from London: Greek government bonds on the London Stock Exchange, 1914-1929," Economic History Working Papers 22335, London School of Economics and Political Science, Department of Economic History.
    211. José‐María Montero & Gema Fernández‐Avilés & María‐Carmen García, 2010. "Estimation of Asymmetric Stochastic Volatility Models: Application to Daily Average Prices of Energy Products," International Statistical Review, International Statistical Institute, vol. 78(3), pages 330-347, December.

  58. Barndorf-Nielsen, O.E. & Shephard, N., 1998. "Aggregation and Model Construction for Volatility Models," Economics Papers 141, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," Center for Financial Institutions Working Papers 99-08, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," NBER Working Papers 7488, National Bureau of Economic Research, Inc.
    3. John M. Maheu & Thomas McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
    4. Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.
    5. Panagiotis Samartzis & Nikitas Pittis & Nikolaos Kourogenis & Phoebe Koundouri, 2013. "Factor Models of Stock Returns: GARCH Errors versus Autoregressive Betas," DEOS Working Papers 1318, Athens University of Economics and Business.
    6. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis & Panagiotis Samartzis, 2016. "Factor Models of Stock Returns: GARCH Errors versus Time‐Varying Betas," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 445-461, August.
    7. Koundouri, Phoebe & Kourogenis, Nikolaos & Pittis, Nikitas & Samartzis, Panagiotis, 2015. "Factor Models as "Explanatory UniÖers" versus "Explanatory Ideals" of Empirical Regularities of Stock Returns," MPRA Paper 122254, University Library of Munich, Germany.
    8. Yue Fang, 2000. "When Should Time be Continuous? Volatility Modeling and Estimation of High-Frequency Data," Econometric Society World Congress 2000 Contributed Papers 0843, Econometric Society.
    9. Rüdiger Frey & Wolfgang J. Runggaldier, 1999. "Risk-minimizing hedging strategies under restricted information: The case of stochastic volatility models observable only at discrete random times," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 339-350, October.
    10. Burc Kayahan & Thanasis Stengos & Burak Saltoglu, 2002. "Intra-Day Features of Realized Volatility: Evidence from an Emerging Market," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(1), pages 17-24, April.

  59. Michael K Pitt & Neil Shephard, 1996. "Analytic convergence rates and parameterisation issues for the Gibbs sampler applied to state space models," Economics Papers 20 & 113, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    2. Joshua Chan & Arnaud Doucet & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," GRIPS Discussion Papers 18-12, National Graduate Institute for Policy Studies.
    3. Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
    6. Neil Shephard & Gabriele Fiorentini & Enrique Sentana, 2003. "Likelihood-based estimation of latent generalised ARCH structures," FMG Discussion Papers dp453, Financial Markets Group.
    7. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    8. Hsun-Jung Cho & Yow-Jen Jou & Chien-Lun Lan, 2009. "Time Dependent Origin-destination Estimation from Traffic Count without Prior Information," Networks and Spatial Economics, Springer, vol. 9(2), pages 145-170, June.
    9. Vidal-Llana, Xenxo & Uribe, Jorge M. & Guillén, Montserrat, 2023. "European stock market volatility connectedness: The role of country and sector membership," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    10. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    11. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    12. Michael B. Gordy & Pawel J. Szerszen, 2015. "Bayesian Estimation of Time-Changed Default Intensity Models," Finance and Economics Discussion Series 2015-2, Board of Governors of the Federal Reserve System (U.S.).
    13. Strickland, Chris M. & Turner, Ian. W. & Denham, Robert & Mengersen, Kerrie L., 2009. "Efficient Bayesian estimation of multivariate state space models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4116-4125, October.

  60. Neil Shephard, 1995. "Generalized linear autoregressions," Economics Papers 8., Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Dionne, Georges & Zhou, Xiaozhou, 2016. "The Dynamics of Ex-ante High-Frequency Liquidity: An Empirical Analysis," Working Papers 15-5, HEC Montreal, Canada Research Chair in Risk Management.
    2. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    3. Bien, Katarzyna & Nolte, Ingmar & Pohlmeier, Winfried, 2007. "An inflated Multivariate Integer Count Hurdle model: An application to bid and ask quote dynamics," CoFE Discussion Papers 07/04, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Peng, Rong & Lu, Zudi, 2024. "Semiparametric Averaging of Nonlinear Marginal Logistic Regressions and Forecasting for Time Series Classification," Econometrics and Statistics, Elsevier, vol. 31(C), pages 19-37.
    5. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    6. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data: Modelling and Estimation," Economics Working Papers 2005-08, Christian-Albrechts-University of Kiel, Department of Economics.
    7. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    8. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2008. "A multivariate integer count hurdle model: theory and application to exchange rate dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 31-48, Springer.
    9. Katarzyna Bień-Barkowska, 2012. "A Bivariate Copula-based Model for a Mixed Binary-Continuous Distribution: A Time Series Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(2), pages 117-142, June.
    10. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
    11. Babii, Andrii & Chen, Xi & Ghysels, Eric, 2019. "Commercial and Residential Mortgage Defaults: Spatial Dependence with Frailty," Journal of Econometrics, Elsevier, vol. 212(1), pages 47-77.
    12. Marinho G. Andrade & Katiane S. Conceição & Nalini Ravishanker, 2024. "Zero-modified count time series modeling with an application to influenza cases," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 611-637, September.
    13. Russell, Jeffrey & Engle, Robert F, 1998. "Econometric Analysis of Discrete-Valued Irregularly-Spaced Financial Transactions Data Using a New Autoregressive Conditional Multinomial Model," University of California at San Diego, Economics Working Paper Series qt00m2c5hk, Department of Economics, UC San Diego.
    14. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
    15. Juan Dolado, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 442-446, September.
    16. Georges Dionne & Xiaozhou Zhou, 2020. "The dynamics of ex-ante weighted spread: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 593-617, April.
    17. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    18. Konstantinos Fokianos & Benjamin Kedem, 2004. "Partial Likelihood Inference For Time Series Following Generalized Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 173-197, March.
    19. Vurukonda Sathish & Siuli Mukhopadhyay & Rashmi Tiwari, 2022. "Autoregressive and moving average models for zero‐inflated count time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 190-218, May.

  61. Neil Shephard & Michael K Pitt, 1995. "Likelihood analysis of non-Gaussian parameter driven models," Economics Papers 15 & 108., Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Pitt, M.K. & Walker, S.G., 2001. "Construction of Stationary Time Series via the Giggs Sampler with Application to Volatility Models," The Warwick Economics Research Paper Series (TWERPS) 595, University of Warwick, Department of Economics.
    2. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    3. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    4. Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
    5. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
    6. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
    7. A. C. Harvey & Siem Jan Koopman, 2000. "Computing Observation Weights for Signal Extraction and Filtering," Econometric Society World Congress 2000 Contributed Papers 0888, Econometric Society.
    8. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data: Modelling and Estimation," Economics Working Papers 2005-08, Christian-Albrechts-University of Kiel, Department of Economics.
    9. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    10. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.
    11. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    12. Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
    13. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    14. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    15. Mark Glickman, 2001. "Dynamic paired comparison models with stochastic variances," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(6), pages 673-689.
    16. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    17. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    18. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    19. Joel Hasbrouck, 1998. "Security Bid/Ask Dynamics with Discreteness and Clustering: Simple Strategies for Modeling and Estimation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-042, New York University, Leonard N. Stern School of Business-.
    20. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.

  62. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    2. Antonio A. F. Santos, 2021. "Bayesian Estimation for High-Frequency Volatility Models in a Time Deformed Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 455-479, February.
    3. Takaishi, Tetsuya, 2018. "Bias correction in the realized stochastic volatility model for daily volatility on the Tokyo Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 139-154.
    4. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 1999. "Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting Than You Think," Center for Financial Institutions Working Papers 00-28, Wharton School Center for Financial Institutions, University of Pennsylvania.
    5. Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2016. "A Bounded Model of Time Variation in Trend Inflation, Nairu and the Phillips Curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 551-565, April.
    6. Brenda Guevara & Gabriel Rodríguez & Lorena Yamuca Salvatierra, 2024. "External Shocks and Economic Fluctuations in Peru: Empirical Evidence using Mixture Innovation TVP-VAR-SV Models," Documentos de Trabajo / Working Papers 2024-529, Departamento de Economía - Pontificia Universidad Católica del Perú.
    7. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    8. Hilde C. Bjørnland & Leif Anders Thorsrud & Ragnar Torvik, 2018. "Dutch Disease Dynamics Reconsidered," Working Papers No 4/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    9. Martin Iseringhausen & Hauke Vierke, 2018. "What Drives Output Volatility? The Role of Demographics and Government Size Revisited," European Economy - Discussion Papers 075, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    10. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Juan F. Rubio-Ramírez, 2010. "Fortune or Virtue: Time-Variant Volatilities Versus Parameter Drifting in U.S. Data," NBER Working Papers 15928, National Bureau of Economic Research, Inc.
    11. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    12. Punzi, Maria Teresa, 2016. "Financial cycles and co-movements between the real economy, finance and asset price dynamics in large-scale crises," FinMaP-Working Papers 61, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    13. Ball, Clifford A. & Torous, Walter N., 2000. "Stochastic correlation across international stock markets," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 373-388, November.
    14. Hautsch, Nikolaus & Yang, Fuyu, 2010. "Bayesian inference in a stochastic volatility Nelson-Siegel Model," SFB 649 Discussion Papers 2010-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Soojin Jo & Rodrigo Sekkel, 2019. "Macroeconomic Uncertainty Through the Lens of Professional Forecasters," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 436-446, July.
    16. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
    17. Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2011. "Bayesian Inference in the Time Varying Cointegration Model," Working Papers 1121, University of Strathclyde Business School, Department of Economics.
    18. Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2000. "A Comparison of Financial Duration Models via Density Forecasts," Econometric Society World Congress 2000 Contributed Papers 0810, Econometric Society.
    19. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    20. Blaise Gnimassoun & Marc Joëts & Tovonony Razafindrabe, 2016. "On the link between current account and oil price fluctuations in diversified economies: The case of Canada," EconomiX Working Papers 2016-35, University of Paris Nanterre, EconomiX.
    21. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    22. Khorunzhina, Natalia & Richard, Jean-Francois, 2016. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," MPRA Paper 72326, University Library of Munich, Germany.
    23. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    24. Wang, Renhe & Wang, Tong & Qian, Zhiyong & Hu, Shulan, 2023. "A Bayesian estimation approach of random switching exponential smoothing with application to credit forecast," Finance Research Letters, Elsevier, vol. 58(PC).
    25. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    26. Clive G. Bowsher, 2005. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models," Economics Papers 2005-W26, Economics Group, Nuffield College, University of Oxford.
    27. Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
    28. Salima El Kolei, 2013. "Parametric estimation of hidden stochastic model by contrast minimization and deconvolution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1031-1081, November.
    29. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2018. "Dissecting the 2007–2009 Real Estate Market Bust: Systematic Pricing Correction or Just a Housing Fad?," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 34-62.
    30. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    31. Sofia Anyfantaki & Antonis Demos, 2012. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," DEOS Working Papers 1228, Athens University of Economics and Business.
    32. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    33. Jamie L. Cross & Chenghan Hou & Bao H. Nguyen, 2018. "On the China factor in international oil markets: A regime switching approach," Working Papers No 11/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    34. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
    35. Johansson, Anders C., 2010. "Asian sovereign debt and country risk," Pacific-Basin Finance Journal, Elsevier, vol. 18(4), pages 335-350, September.
    36. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    37. Faruk Selcuk, 2005. "Asymmetric stochastic volatility in emerging stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 867-874.
    38. Haque, Qazi & Magnusson, Leandro M., 2021. "Uncertainty shocks and inflation dynamics in the U.S," Economics Letters, Elsevier, vol. 202(C).
    39. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    40. Paolo Girardello & Orietta Nicolis & Giovanni Tondini, 2003. "Comparing Conditional Variance Models: Theory and Empirical Evidence," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 177-206, September.
    41. Sylvia Kaufmann & Sylvia Frühwirth‐Schnatter, 2002. "Bayesian analysis of switching ARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(4), pages 425-458, July.
    42. Croce, Mariano & Colacito, Ric & Liu, Yang & Shaliastovich, Ivan, 2018. "Volatility Risk Pass-Through," CEPR Discussion Papers 13325, C.E.P.R. Discussion Papers.
    43. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    44. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    45. Nunzio Cappuccio & Diego Lubian & Davide Raggi, 2003. "MCMC Bayesian Estimation of a Skew-GED Stochastic Volatily Model," Working Papers 07/2003, University of Verona, Department of Economics.
    46. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    47. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    48. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    49. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    50. Yong Li & Zhongxin Ni & Jie Zhang, 2011. "An Efficient Stochastic Simulation Algorithm for Bayesian Unit Root Testing in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 37(3), pages 237-248, March.
    51. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    52. Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
    53. Mumtaz, Haroon & Theodoridis, Konstantinos, 2018. "Dynamic Effects of Monetary Policy Shocks on Macroeconomic Volatility," Cardiff Economics Working Papers E2018/21, Cardiff University, Cardiff Business School, Economics Section.
    54. Jorge Miguel Lopo Gonçalves Andraz & Nélia Maria Afonso Norte, 2013. "Output volatility in the OECD: Are the member states becoming less vulnerable to exogenous shocks?," CEFAGE-UE Working Papers 2013_17, University of Evora, CEFAGE-UE (Portugal).
    55. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian inference in large Vector Autoregressions with hierarchical shrinkage," CAMA Working Papers 2019-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    56. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
    57. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    58. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    59. Guanyu Hu & Ming-Hui Chen & Nalini Ravishanker, 2023. "Bayesian analysis of spherically parameterized dynamic multivariate stochastic volatility models," Computational Statistics, Springer, vol. 38(2), pages 845-869, June.
    60. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    61. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in dairy markets," Papers 2104.12707, arXiv.org.
    62. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    63. David T. Frazier & Gael M. Martin & Ruben Loaiza-Maya, 2022. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Monash Econometrics and Business Statistics Working Papers 1/22, Monash University, Department of Econometrics and Business Statistics.
    64. Qazi Haque & Leandro M. Magnusson & Kazuki Tomioka, 2019. "Empirical evidence on the dynamics of investment under uncertainty in the U.S," Economics Discussion / Working Papers 19-18, The University of Western Australia, Department of Economics.
    65. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    66. Miazhynskaia, Tatiana & Fruhwirth-Schnatter, Sylvia & Dorffner, Georg, 2006. "Bayesian testing for non-linearity in volatility modeling," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2029-2042, December.
    67. Gerdie Everaert & Martin Iseringhausen, 2017. "Measuring The International Dimension Of Output Volatility," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 17/928, Ghent University, Faculty of Economics and Business Administration.
    68. Minchul Shin & Molin Zhong, 2015. "Does Realized Volatility Help Bond Yield Density Prediction?," Finance and Economics Discussion Series 2015-115, Board of Governors of the Federal Reserve System (U.S.).
    69. Lombardi, Marco J. & Sgherri, Silvia, 2007. "(Un)naturally low? Sequential Monte Carlo tracking of the US natural interest rate," Working Paper Series 794, European Central Bank.
    70. Cross, Jamie L. & Hou, Chenghan & Koop, Gary & Poon, Aubrey, 2023. "Large stochastic volatility in mean VARs," Journal of Econometrics, Elsevier, vol. 236(1).
    71. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    72. Jiang, George J., 1998. "Jump-diffusion model of exchange rate dynamics : estimation via indirect inference," Research Report 98A40, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    73. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    74. Luca Rossi, 2020. "Indicators of uncertainty: a brief user’s guide," Questioni di Economia e Finanza (Occasional Papers) 564, Bank of Italy, Economic Research and International Relations Area.
    75. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    76. Potjagailo, Galina & Wolters, Maik H., 2019. "Global financial cycles since 1880," IMFS Working Paper Series 132, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    77. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
    78. Beyer, Robert & Milivojevic, Lazar, 2021. "Dynamics and synchronization of global equilibrium interest rates," IMFS Working Paper Series 146, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    79. Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
    80. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    81. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    82. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    83. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    84. Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
    85. Massimo Guidolin & Francesco Ravazzolo & Andrea Tortora, 2014. "Myths and Facts about the Alleged Over-Pricing of U.S. Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 49(4), pages 477-523, November.
    86. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pinter, Gabor, 2016. "VAR models with non-Gaussian shocks," LSE Research Online Documents on Economics 86238, London School of Economics and Political Science, LSE Library.
    87. Joshua C.C. Chan & Rodney Strachan, 2014. "The Zero Lower Bound: Implications for Modelling the Interest Rate," Working Paper series 42_14, Rimini Centre for Economic Analysis.
    88. Simon Beyeler, 2019. "Streamlining Time-varying VAR with a Factor Structure in the Parameters," Working Papers 19.03, Swiss National Bank, Study Center Gerzensee.
    89. Lin, Yi Chun, 2021. "Business cycle fluctuations in Taiwan — A Bayesian DSGE analysis," Journal of Macroeconomics, Elsevier, vol. 70(C).
    90. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
    91. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    92. Almeida, Thiago Ramos, 2024. "Estimating time-varying factors’ variance in the string-term structure model with stochastic volatility," Research in International Business and Finance, Elsevier, vol. 70(PA).
    93. Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea, 2021. "Nowcasting Tail Risk to Economic Activity at a Weekly Frequency," CEPR Discussion Papers 16496, C.E.P.R. Discussion Papers.
    94. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    95. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    96. Paras Sachdeva & Wasim Ahmad & N. R. Bhanumurthy, 2023. "Uncovering time variation in public expenditure multipliers: new evidence," Indian Economic Review, Springer, vol. 58(2), pages 445-483, September.
    97. Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Working Paper 2018/10, Norges Bank.
    98. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously," CIRJE F-Series CIRJE-F-515, CIRJE, Faculty of Economics, University of Tokyo.
    99. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    100. Karlsson, Sune & Österholm, Pär, 2018. "Is the US Phillips Curve Stable? Evidence from Bayesian VARs," Working Papers 2018:5, Örebro University, School of Business.
    101. Giorgio Primiceri & Alejandro Justiniano, 2006. "The Time Varying Volatility of Macroeconomic Fluctuations," 2006 Meeting Papers 353, Society for Economic Dynamics.
    102. Yakup ARI & Alexandros PAPADOPOULOS, 2016. "Bayesian Estimation Of The Parameters Of The Arch Model With Normal Innovations Using Lindley’S Approximation," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(4), pages 217-234.
    103. Hernández Juan R., 2020. "Covered Interest Parity: A Stochastic Volatility Approach to Estimate the Neutral Band," Working Papers 2020-02, Banco de México.
    104. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
    105. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2024. "Constructing fan charts from the ragged edge of SPF forecasts," Working Papers 2429, Banco de España.
    106. Márcio Laurini, 2012. "Dynamic Functional Data Analysis with Nonparametric State Space Models," IBMEC RJ Economics Discussion Papers 2012-01, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    107. Roman V. Ivanov, 2023. "On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model," Risks, MDPI, vol. 11(6), pages 1-23, June.
    108. Haakon Kavli & Kevin Kotzé, 2014. "Spillovers in Exchange Rates and the Effects of Global Shocks on Emerging Market Currencies," South African Journal of Economics, Economic Society of South Africa, vol. 82(2), pages 209-238, June.
    109. Lo Duca, Marco & Adam, Tomáš, 2017. "Modeling euro area bond yields using a time-varying factor model," Working Paper Series 2012, European Central Bank.
    110. Zhao, Zhibiao, 2011. "Nonparametric model validations for hidden Markov models with applications in financial econometrics," Journal of Econometrics, Elsevier, vol. 162(2), pages 225-239, June.
    111. Abanto-Valle, Carlos A. & Dey, Dipak K., 2014. "State space mixed models for binary responses with scale mixture of normal distributions links," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 274-287.
    112. Gupta, Rangan & Ma, Jun & Theodoridis, Konstantinos & Wohar, Mark E., 2023. "Is there a national housing market bubble brewing in the United States?," Macroeconomic Dynamics, Cambridge University Press, vol. 27(8), pages 2191-2228, December.
    113. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    114. Tino Berger & Gerdie Everaert & Hauke Vierke, 2015. "Testing for time variation in an unobserved components model for the U.S. economy," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/903, Ghent University, Faculty of Economics and Business Administration.
    115. Knüppel, Malte & Krüger, Fabian, 2017. "Forecast Uncertainty, Disagreement, and Linear Pools of Density Forecasts," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168294, Verein für Socialpolitik / German Economic Association.
    116. Wei Zhou, 2017. "Dynamic and Asymmetric Contagion Reactions of Financial Markets During the Last Subprime Crisis," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 207-230, August.
    117. Anders Johansson, 2009. "Stochastic volatility and time-varying country risk in emerging markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 337-363.
    118. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar, 2022. "Dynamic Spatiotemporal ARCH Models," Papers 2202.13856, arXiv.org.
    119. Rangan Gupta & Hardik A. Marfatia & Christian Pierdzioch & Afees A. Salisu, 2020. "Machine Learning Predictions of Housing Market Synchronization across US States: The Role of Uncertainty," Working Papers 202077, University of Pretoria, Department of Economics.
    120. Wang, Nianling & Yin, Jiyuan & Li, Yong, 2024. "Economic policy uncertainty and stock market volatility in China: Evidence from SV-MIDAS-t model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    121. Valeria V. Lakshina, 2014. "The Fluke Of Stochastic Volatility Versus Garch Inevitability : Which Model Creates Better Forecasts?," HSE Working papers WP BRP 37/FE/2014, National Research University Higher School of Economics.
    122. Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75, Brandeis University, Department of Economics and International Business School.
    123. Süleyman Taşpınar & Osman DoĞan & Jiyoung Chae & Anil K. Bera, 2021. "Bayesian Inference in Spatial Stochastic Volatility Models: An Application to House Price Returns in Chicago," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1243-1272, October.
    124. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    125. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    126. Follett, Lendie & Yu, Cindy, 2019. "Achieving parsimony in Bayesian vector autoregressions with the horseshoe prior," Econometrics and Statistics, Elsevier, vol. 11(C), pages 130-144.
    127. Eric Eisenstat & Joshua C.C. Chan & Rodney W. Strachan, 2014. "Stochastic Model Specification Search for Time-Varying Parameter VARs," CAMA Working Papers 2014-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    128. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    129. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    130. Mateus Joffily & Giorgio Coricelli, 2013. "Emotional Valence and the Free-Energy Principle," Post-Print halshs-00834063, HAL.
    131. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    132. Eo, Yunjong & Kim, Chang-Jin, 2012. "Markov-Switching Models with Evolving Regime-Specific Parameters: Are Post-War Booms or Recessions All Alike?," Working Papers 2012-04, University of Sydney, School of Economics.
    133. Rafael Nivin Valdiviezo, 2019. "Medidas alternativas de volatilidad en el mercado de valores peruano," Revista de Análisis Económico y Financiero, Universidad de San Martín de Porres, vol. 1(03), pages 07-14.
    134. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
    135. Joshua C.C. Chan & Garry Koop & Roberto Leon Gonzales & Rodney W. Strachan, 2010. "Time Varying Dimension Models," ANU Working Papers in Economics and Econometrics 2010-523, Australian National University, College of Business and Economics, School of Economics.
    136. Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Other publications TiSEM 8fe36759-6517-4c66-86fa-e, Tilburg University, School of Economics and Management.
    137. Flavio Pérez Rojo & Gabriel Rodríguez, 2023. "Jane Haldimand Marcet: Impact of Monetary Policy Shocks in the Peruvian Economy Over Time," Documentos de Trabajo / Working Papers 2023-523, Departamento de Economía - Pontificia Universidad Católica del Perú.
    138. Francis X. Diebold & Jose A. Lopez, 1995. "Measuring Volatility Dynamics," NBER Technical Working Papers 0173, National Bureau of Economic Research, Inc.
    139. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
    140. Smith, A. Lee & Valcarcel, Victor J., 2023. "The financial market effects of unwinding the Federal Reserve’s balance sheet," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    141. Marente Vlekke & Martin Mellens & Siem Jan Koopmans, 2020. "An assessment of the Phillips curve over time: evidence for the United States and the euro area," CPB Discussion Paper 416, CPB Netherlands Bureau for Economic Policy Analysis.
    142. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
    143. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    144. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
    145. Gorynin, Ivan & Derrode, Stéphane & Monfrini, Emmanuel & Pieczynski, Wojciech, 2017. "Fast smoothing in switching approximations of non-linear and non-Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 38-46.
    146. Matteo Pelagatti & Giacomo Sbrana, 2020. "Estimating high dimensional multivariate stochastic volatility models," Working Papers 428, University of Milano-Bicocca, Department of Economics, revised Jan 2020.
    147. Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.
    148. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    149. S. Bordignon & D. Raggi, 2008. "Volatility, Jumps and Predictability of Returns: a Sequential Analysis," Working Papers 636, Dipartimento Scienze Economiche, Universita' di Bologna.
    150. Ivan Mendieta-Muñoz, 2024. "Time-varying investment dynamics in the USA," Working Paper Series, Department of Economics, University of Utah 2024_01, University of Utah, Department of Economics.
    151. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    152. Márcio Poletti Laurini & Roberto Baltieri Mauad & Fernando Antonio Lucena Aiube, 2016. "Multivariate Stochastic Volatility-Double Jump Model: an application for oil assets," Working Papers Series 415, Central Bank of Brazil, Research Department.
    153. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    154. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    155. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    156. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    157. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    158. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    159. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    160. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    161. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
    162. Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2018. "High-frequency Cash Flow Dynamics," Working Papers 120, Brandeis University, Department of Economics and International Business School.
    163. Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2008. "On the Evolution of Monetary Policy," Working Paper series 24_08, Rimini Centre for Economic Analysis.
    164. Sukhmani Sidhu & Kanchan Jain & Suresh Kumar Sharma, 2018. "Bayesian estimation of generalized gamma shared frailty model," Computational Statistics, Springer, vol. 33(1), pages 277-297, March.
    165. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    166. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    167. Philip Gray, 2005. "Bayesian Estimation of Short-Rate Models," Australian Journal of Management, Australian School of Business, vol. 30(1), pages 1-22, June.
    168. Casas, Isabel, 2019. "Exploring option pricing and hedging via volatility asymmetry," DES - Working Papers. Statistics and Econometrics. WS 28234, Universidad Carlos III de Madrid. Departamento de Estadística.
    169. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
    170. Anastasios Panagiotelis & Michael S. Smith & Peter J Danaher, 2013. "From Amazon to Apple: Modeling Online Retail Sales, Purchase Incidence and Visit Behavior," Monash Econometrics and Business Statistics Working Papers 5/13, Monash University, Department of Econometrics and Business Statistics.
    171. Sylvia Frühwirth-Schnatter, 2001. "Fully Bayesian Analysis of Switching Gaussian State Space Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 31-49, March.
    172. Surico, Paolo & ,, 2011. "A Century of Inflation Forecasts," CEPR Discussion Papers 8292, C.E.P.R. Discussion Papers.
    173. Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    174. Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2017. "Tracking the slowdown in long-run GDP growth," LSE Research Online Documents on Economics 81869, London School of Economics and Political Science, LSE Library.
    175. Stefano Grassi & Tommaso Proietti, 2011. "Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search," CREATES Research Papers 2011-30, Department of Economics and Business Economics, Aarhus University.
    176. Hafner, C. & Preminger, A., 2010. "Deciding between GARCH and Stochastic Volatility via Strong Decision Rules," LIDAM Reprints ISBA 2010032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    177. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Monash Econometrics and Business Statistics Working Papers 3/10, Monash University, Department of Econometrics and Business Statistics.
    178. Hafner, Christian & Manner H., 2012. "Dynamic stochastic copula models: Estimation, inference and applications," LIDAM Reprints ISBA 2012022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    179. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    180. Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
    181. Petrova, Katerina, 2019. "A quasi-Bayesian local likelihood approach to time varying parameter VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 286-306.
    182. Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1999. "Stochastic Volatility: Univariate and Multivariate Extensions," CIRANO Working Papers 99s-26, CIRANO.
    183. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    184. Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
    185. Virbickaite, Audrone & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian Predictive Distributions of Oil Returns Using Mixed Data Sampling Volatility Models," Working Papers 2023:7, Örebro University, School of Business.
    186. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    187. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    188. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    189. Maki, Daiki, 2015. "Wild bootstrap testing for cointegration in an ESTAR error correction model," Economic Modelling, Elsevier, vol. 47(C), pages 292-298.
    190. Abel Rodriguez & Henryk Gzyl & German Molina & Enrique ter Horst, 2009. "Stochastic Volatility Models Including Open, Close, High and Low Prices," Papers 0901.1315, arXiv.org.
    191. James H. Stock & Mark W. Watson, 2015. "Core Inflation and Trend Inflation," NBER Working Papers 21282, National Bureau of Economic Research, Inc.
    192. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    193. Michele Campolieti & Deborah Gefang & Gary Koop, 2011. "Time Variation in the Dynamics of Worker Flows: Evidence from the US and Canada," Working Papers 1138, University of Strathclyde Business School, Department of Economics.
    194. Prüser, Jan, 2021. "The horseshoe prior for time-varying parameter VARs and Monetary Policy," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    195. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    196. Antonello D’Agostino & Jacopo Cimadomo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Papers 7, European Stability Mechanism.
    197. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    198. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    199. Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," CEPR Discussion Papers 17512, C.E.P.R. Discussion Papers.
    200. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2024. "A Bayesian approach for the determinants of bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 91(C).
    201. Michel Beine & Charles S. Bos & Sébastien Laurent, 2007. "The Impact of Central Bank FX Interventions on Currency Components," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 154-183.
    202. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    203. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    204. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    205. Drew D. Creal & Jing Cynthia Wu, 2017. "Monetary Policy Uncertainty And Economic Fluctuations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1317-1354, November.
    206. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    207. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
    208. Moura, Guilherme V. & Noriller, Mateus R., 2019. "Maximum likelihood estimation of a TVP-VAR," Economics Letters, Elsevier, vol. 174(C), pages 78-83.
    209. Miguel Cabello & Rafael Nivin, 2022. "Measuring Uncertainty and its effects in a Small Open Economy," IHEID Working Papers 25-2022, Economics Section, The Graduate Institute of International Studies.
    210. Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2020. "Cash Flow News and Stock Price Dynamics," Journal of Finance, American Finance Association, vol. 75(4), pages 2221-2270, August.
    211. Hernan Seoane, 2016. "Time-varying volatility, default and the sovereign risk premium," 2016 Meeting Papers 1132, Society for Economic Dynamics.
    212. Wolfgang Aussenegg & Tatiana Miazhynskaia, 2006. "Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 243-264, September.
    213. Angelos Alexopoulos & Petros Dellaportas & Omiros Papaspiliopoulos, 2019. "Bayesian prediction of jumps in large panels of time series data," Papers 1904.05312, arXiv.org, revised Apr 2021.
    214. Gary Koop & Herman K. van Dijk & Henk Hoek, 1997. "Testing for Integration using Evolving Trend and Seasonals Models: A Bayesian Approach," Tinbergen Institute Discussion Papers 97-078/4, Tinbergen Institute.
    215. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    216. Pieter J. Van Der Sluis, 1998. "Computationally attractive stability tests for the efficient method of moments," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 203-227.
    217. Greyserman, Alex & Jones, Douglas H. & Strawderman, William E., 2006. "Portfolio selection using hierarchical Bayesian analysis and MCMC methods," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 669-678, February.
    218. John Elder, 2019. "Oil price volatility and real options: 35 years of evidence," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1549-1564, December.
    219. Joshua Chan & Arnaud Doucet & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," GRIPS Discussion Papers 18-12, National Graduate Institute for Policy Studies.
    220. Hsieh, Ping-Hung & Yang, J. Jimmy, 2009. "A censored stochastic volatility approach to the estimation of price limit moves," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 337-351, March.
    221. Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
    222. John M. Fry, 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," EERI Research Paper Series EERI_RP_2009_10, Economics and Econometrics Research Institute (EERI), Brussels.
    223. Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.
    224. Ellis W. Tallman & Saeed Zaman, 2015. "Forecasting Inflation: Phillips Curve Effects on Services Price Measures," Working Papers (Old Series) 1519, Federal Reserve Bank of Cleveland.
    225. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    226. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    227. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    228. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Papers 2210.07154, arXiv.org.
    229. Fabian Kr ger & Todd E. Clark & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers No 8/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    230. Benjamin Wong, 2013. "Inflation Dynamics and The Role of Oil Shocks: How Different Were the 1970s?," CAMA Working Papers 2013-59, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    231. James H. Stock & Mark W. Watson, 2019. "Trend, Seasonal, and Sectoral Inflation in the Euro Area," Working Papers Central Bank of Chile 847, Central Bank of Chile.
    232. Hang Qian, 2014. "A Flexible State Space Model And Its Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 79-88, March.
    233. Sune Karlsson & Pär Österholm, 2020. "A note on the stability of the Swedish Phillips curve," Empirical Economics, Springer, vol. 59(6), pages 2573-2612, December.
    234. Li, Junye & Sarno, Lucio & Zinna, Gabriele, 2024. "Risks and risk premia in the US Treasury market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    235. Michael T. Belongia & Peter N. Ireland, 2016. "The Evolution of U.S. Monetary Policy: 2000 - 2007," NBER Working Papers 22693, National Bureau of Economic Research, Inc.
    236. Bai, Yu & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Macroeconomic Forecasting in a Multi-country Context," CEPR Discussion Papers 16994, C.E.P.R. Discussion Papers.
    237. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Discrete-time stochastic volatility models and MCMC-based statistical inference," SFB 649 Discussion Papers 2008-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    238. Malin Gardberg & Lorenzo Pozzi, 2022. "Aggregate consumption and wealth in the long run: The impact of financial liberalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 161-186, January.
    239. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    240. Guohua Feng & Bin Peng & Xiaohui Zhang, 2017. "Productivity and efficiency at bank holding companies in the U.S.: a time-varying heterogeneity approach," Journal of Productivity Analysis, Springer, vol. 48(2), pages 179-192, December.
    241. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    242. Kastner, Gregor, 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
    243. Saikat Saha, 2015. "Noise Robust Online Inference for Linear Dynamic Systems," Papers 1504.05723, arXiv.org.
    244. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data: Modelling and Estimation," Economics Working Papers 2005-08, Christian-Albrechts-University of Kiel, Department of Economics.
    245. Gary Koop & Simon M. Potter, 2004. "Forecasting and estimating multiple change-point models with an unknown number of change points," Staff Reports 196, Federal Reserve Bank of New York.
    246. Christian Grimme & Steffen Henzel & Elisabeth Wieland, 2014. "Inflation uncertainty revisited: a proposal for robust measurement," Empirical Economics, Springer, vol. 47(4), pages 1497-1523, December.
    247. Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
    248. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    249. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    250. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    251. Berg, Tim Oliver, 2014. "Time Varying Fiscal Multipliers in Germany," MPRA Paper 57223, University Library of Munich, Germany.
    252. Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.
    253. Schmidt, Torsten, 2018. "Inflation Expectation Uncertainty, Inflation and the Outputgap," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181575, Verein für Socialpolitik / German Economic Association.
    254. Kim, Chang-Jin & Kim, Jaeho, 2013. "Bayesian Inference in Regime-Switching ARMA Models with Absorbing States: The Dynamics of the Ex-Ante Real Interest Rate Under Structural Breaks," MPRA Paper 51117, University Library of Munich, Germany.
    255. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2001. "An Empirical Investigation of Continuous-Time Equity Return Models," NBER Working Papers 8510, National Bureau of Economic Research, Inc.
    256. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    257. Huang, Yu-Fan, 2015. "Time variation in U.S. monetary policy and credit spreads," Journal of Macroeconomics, Elsevier, vol. 43(C), pages 205-215.
    258. Ilias Tsiakas, 2004. "Analysis of the predictive ability of information accumulated over nights, weekends and holidays," Econometric Society 2004 Australasian Meetings 208, Econometric Society.
    259. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    260. Elmar Mertens, 2011. "Measuring the level and uncertainty of trend inflation," Finance and Economics Discussion Series 2011-42, Board of Governors of the Federal Reserve System (U.S.).
    261. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    262. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    263. Jong Hee Park, 2010. "Structural Change in U.S. Presidents' Use of Force," American Journal of Political Science, John Wiley & Sons, vol. 54(3), pages 766-782, July.
    264. P. de Zea Bermudez & J. Miguel Marín & Helena Veiga, 2020. "Data cloning estimation for asymmetric stochastic volatility models," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1057-1074, November.
    265. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    266. Fawcett, Nicholas & Kapetanios, George & Mitchell, James & Price, Simon, 2014. "Generalised density forecast combinations," Bank of England working papers 492, Bank of England.
    267. Arias, Jonas E. & Rubio-Ramírez, Juan F. & Shin, Minchul, 2023. "Macroeconomic forecasting and variable ordering in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1054-1086.
    268. Alexander Rathke & Samad Sarferaz, 2014. "Malthus and the Industrial Revolution: Evidence from a Time-Varying VAR," CESifo Working Paper Series 4667, CESifo.
    269. Jean-Pierre Allegret & Cécile Couharde & Valérie Mignon & Tovonony Razafindrabe, 2015. "Oil currencies in the face of oil shocks: What can be learned from time-varying specifications?," Post-Print hal-01411817, HAL.
    270. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    271. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    272. Fernández-Villaverde, Jesús & Mineyama, Tomohide & Song, Dongho, 2024. "Are We Fragmented Yet? Measuring Geopolitical Fragmentation and Its Causal Effects," CEPR Discussion Papers 19184, C.E.P.R. Discussion Papers.
    273. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    274. Luis A. Gil-Alana & Rangan Gupta & Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2015. "Time Series Analysis of Persistence in Crude Oil Price Volatility across Bull and Bear Regimes," Working Papers 201580, University of Pretoria, Department of Economics.
    275. IIBOSHI Hirokuni & MATSUMAE Tatsuyoshi & NISHIYAMA Shin-Ichi, 2014. "Sources of the Great Recession:A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks," ESRI Discussion paper series 313, Economic and Social Research Institute (ESRI).
    276. Rob L. Hyndman & Xibin Zhang & Maxwell L. King,, 2004. "Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC," Econometric Society 2004 Australasian Meetings 120, Econometric Society.
    277. Ming Liu & Harold H. Zhang, "undated". "Specification Tests in the Efficient Method of Moments Framework with Application to the Stochastic Volatility Models," Computing in Economics and Finance 1997 93, Society for Computational Economics.
    278. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    279. Huang, Shirley J. & Yu, Jun, 2010. "Bayesian analysis of structural credit risk models with microstructure noises," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2259-2272, November.
    280. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 2020_09, Business School - Economics, University of Glasgow.
    281. Chen, Yu-Lun & Chang, Yung Ting & Yang, J. Jimmy, 2023. "Cryptocurrency hacking incidents and the price dynamics of Bitcoin spot and futures," Finance Research Letters, Elsevier, vol. 55(PB).
    282. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    283. Toshitaka Sekine & Yuki Teranishi, 2008. "Inflation Targeting and Monetary Policy Activism," IMES Discussion Paper Series 08-E-13, Institute for Monetary and Economic Studies, Bank of Japan.
    284. Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
    285. Florian Huber & Katrin Rabitsch, 2019. "Exchange rate dynamics and monetary policy -- Evidence from a non-linear DSGE-VAR approach," Department of Economics Working Papers wuwp295, Vienna University of Economics and Business, Department of Economics.
    286. Pereira Manuel Coutinho & Lopes Artur Silva, 2014. "Time-varying fiscal policy in the US," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(2), pages 157-184, April.
    287. Harvey, A. & Chakravarty, T., 2008. "Beta-t-(E)GARCH," Cambridge Working Papers in Economics 0840, Faculty of Economics, University of Cambridge.
    288. Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
    289. Joshua Chan & Rodney Strachan, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," CAMA Working Papers 2012-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    290. Marcellino, Massimiliano & Aastveit, Knut Are & Carriero, Andrea & Clark, Todd, 2016. "Have Standard VARs Remained Stable Since the Crisis?," CEPR Discussion Papers 11558, C.E.P.R. Discussion Papers.
    291. Ewing, Bradley T. & Kang, Wensheng & Ratti, Ronald A., 2018. "The dynamic effects of oil supply shocks on the US stock market returns of upstream oil and gas companies," Energy Economics, Elsevier, vol. 72(C), pages 505-516.
    292. Ping Wu & Gary Koop, 2022. "Fast, Order-Invariant Bayesian Inference in VARs using the Eigendecomposition of the Error Covariance Matrix," Working Papers 2310, University of Strathclyde Business School, Department of Economics.
    293. Xiaodong Du & Cindy L. Yu & Dermot J. Hayes, 2009. "Speculation and Volatility Spillover in the Crude Oil and Agricultural Commodity Markets: A Bayesian Analysis," Center for Agricultural and Rural Development (CARD) Publications 09-wp491, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    294. Lopes, Hedibert F., 2014. "Particle learning for Bayesian non-parametric Markov Switching Stochastic Volatility model," DES - Working Papers. Statistics and Econometrics. WS ws142819, Universidad Carlos III de Madrid. Departamento de Estadística.
    295. G Sandmann & Siem Jan Koopman, 1996. "Maximum Likelihood Estimation of Stochastic Volatility Models," FMG Discussion Papers dp248, Financial Markets Group.
    296. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    297. Gerdie Everaert & Lorenzo Pozzi, 2022. "Encompassing measures of international consumption risk sharing and their link with trade and financial globalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 433-449, March.
    298. Sune Karlsson & Stepan Mazur & Hoang Nguyen, 2021. "Vector autoregression models with skewness and heavy tails," Papers 2105.11182, arXiv.org.
    299. Roberto Leon-Gonzalez, 2015. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 15-17, National Graduate Institute for Policy Studies.
    300. Czudaj, Robert L., 2019. "Dynamics between trading volume, volatility and open interest in agricultural futures markets: A Bayesian time-varying coefficient approach," Econometrics and Statistics, Elsevier, vol. 12(C), pages 78-145.
    301. Bec, F. & Bouabdallah, O. & Ferrara, L., 2011. "The possible shapes of recoveries in Markov-switching models," Working papers 321, Banque de France.
    302. Lejeune, Bernard, 2009. "A diagnostic m-test for distributional specification of parametric conditional heteroscedasticity models for financial data," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 507-523, June.
    303. Renzo Orsi & Davide Raggi & Francesco Turino, 2014. "Size, Trend, and Policy Implications of the Underground Economy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(3), pages 417-436, July.
    304. Eric Eisenstat & Joshua C.C. Chan & Rodney W. Strachan, 2018. "Reducing Dimensions in a Large TVP-VAR," Working Paper Series 43, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    305. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    306. Nalan Baştürk & Cem Çakmakli & S. Pinar Ceyhan & Herman K. Van Dijk, 2014. "Posterior‐Predictive Evidence On Us Inflation Using Extended New Keynesian Phillips Curve Models With Non‐Filtered Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1164-1182, November.
    307. BAUWENS, Luc & LUBRANO, Michel, 2007. "Bayesian inference in dynamic disequilibrium models: an application to the Polish credit market," LIDAM Reprints CORE 1918, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    308. Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2023. "Advances in Nowcasting Economic Activity: The Role of Heterogeneous Dynamics and Fat Tails," CEPR Discussion Papers 17800, C.E.P.R. Discussion Papers.
    309. Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
    310. Liesenfeld, Roman & Breitung, Jörg, 1998. "Simulation based methods of moments in empirical finance," Tübinger Diskussionsbeiträge 136, University of Tübingen, School of Business and Economics.
    311. Beckmann, Joscha & Czudaj, Robert L., 2023. "Perceived monetary policy uncertainty," Journal of International Money and Finance, Elsevier, vol. 130(C).
    312. Eddie Chi-man Hui & Xian Zheng, 2012. "The dynamic correlation and volatility of real estate price and rental: an application of MSV model," Applied Economics, Taylor & Francis Journals, vol. 44(23), pages 2985-2995, August.
    313. David F. Hendry, 2004. "Unpredictability and the Foundations of Economic Forecasting," Economics Papers 2004-W15, Economics Group, Nuffield College, University of Oxford.
    314. Hong, Hui & Bian, Zhicun & Chen, Naiwei, 2020. "Leverage effect on stochastic volatility for option pricing in Hong Kong: A simulation and empirical study," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    315. Christiane Baumeister & Eveline Durinck & Gert Peersman, 2008. "Liquidity, inflation and asset prices in a time-varying framework for the euro area," Working Paper Research 142, National Bank of Belgium.
    316. Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
    317. Gleb Kurovskiy, 2017. "Modelling terms of trade volatility impact on output dynamics in Russia," EcoMod2017 10361, EcoMod.
    318. Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
    319. Berument, Hakan & Yalcin, Yeliz & Yildirim, Julide, 2009. "The effect of inflation uncertainty on inflation: Stochastic volatility in mean model within a dynamic framework," Economic Modelling, Elsevier, vol. 26(6), pages 1201-1207, November.
    320. Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
    321. Andrews, Antony & Kumar, Nikeel Nishkar, 2024. "Decoding financial performance of US-listed entities: A sectoral exploration of input efficiency amid stochastic volatility," Finance Research Letters, Elsevier, vol. 64(C).
    322. Andreas Dibiasi & Samad Sarferaz, 2020. "Measuring Macroeconomic Uncertainty: The Labor Channel of Uncertainty from a Cross-Country Perspective," Papers 2006.09007, arXiv.org, revised Dec 2020.
    323. Lee, Eunhee & Han, Doo Bong & Ito, Shoichi & Rodolfo M. Nayga, Jr, 2015. "A common factor of stochastic volatilities between oil and commodity prices," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205771, Agricultural and Applied Economics Association.
    324. Dominik Bertsche & Robin Braun, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2018-03, Department of Economics, University of Konstanz.
    325. Niko Hauzenberger & Florian Huber & Gary Koop, 2020. "Dynamic Shrinkage Priors for Large Time-varying Parameter Regressions using Scalable Markov Chain Monte Carlo Methods," Papers 2005.03906, arXiv.org, revised May 2023.
    326. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    327. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    328. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    329. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2012. "News Impact Curve for Stochastic Volatility Models," Global COE Hi-Stat Discussion Paper Series gd12-242, Institute of Economic Research, Hitotsubashi University.
    330. Guidolin, Massimo & Ravazzolo, Francesco & Tortora, Andrea Donato, 2013. "Alternative econometric implementations of multi-factor models of the U.S. financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(2), pages 87-111.
    331. Frédérique BEC & Songlin ZENG, 2013. "Do Stock Returns Rebound After Bear Markets? An Empirical Analysis From Five OECD Countries," THEMA Working Papers 2013-21, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    332. Gert Peersman & Sebastian K. Rüth & Wouter Van der Veken, 2019. "The Interplay between Oil and Food Commodity Prices: Has It Changed over Time?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 19/978, Ghent University, Faculty of Economics and Business Administration.
    333. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    334. Toshitaka Sekine, 2006. "Time-varying exchange rate pass-through: experiences of some industrial countries," BIS Working Papers 202, Bank for International Settlements.
    335. Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
    336. Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
    337. Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    338. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    339. Minheng Xiao, 2022. "Data-Driven Risk Measurement by SV-GARCH-EVT Model," Papers 2201.09434, arXiv.org, revised Dec 2024.
    340. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    341. Stefano Grassi & Tommaso Proietti, 2010. "Characterizing economic trends by Bayesian stochastic model specification search," EERI Research Paper Series EERI_RP_2010_25, Economics and Econometrics Research Institute (EERI), Brussels.
    342. Pym Manopimoke & Vorada Limjaroenrat, 2016. "Trend Inflation Estimates for Thailand from Disaggregated Data," PIER Discussion Papers 51, Puey Ungphakorn Institute for Economic Research.
    343. Joanna Janczura & Rafał Weron, 2013. "Goodness-of-fit testing for the marginal distribution of regime-switching models with an application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(3), pages 239-270, July.
    344. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
    345. Rodriguez, Gabriel & Castillo B., Paul & Calero, Roberto & Salcedo Cisneros, Rodrigo & Ataurima Arellano, Miguel, 2024. "Evolution of the exchange rate pass-through into prices in Peru: An empirical application using TVP-VAR-SV models," Journal of International Money and Finance, Elsevier, vol. 142(C).
    346. Musso, Alberto & Gambetti, Luca, 2012. "Loan supply shocks and the business cycle," Working Paper Series 1469, European Central Bank.
    347. Liu, Wei-han, 2016. "A re-examination of maturity effect of energy futures price from the perspective of stochastic volatility," Energy Economics, Elsevier, vol. 56(C), pages 351-362.
    348. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for A Nonlinear and Non-Gaussian State-Space Model with Correlated Errors," CARF F-Series CARF-F-104, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    349. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    350. Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," MPRA Paper 118459, University Library of Munich, Germany.
    351. Dennis Alvaro & Ángel Guillén & Gabriel Rodríguez, 2017. "Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(1), pages 71-103, February.
    352. Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
    353. Dan Li & Adam Clements & Christopher Drovandi, 2019. "Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo," Papers 1906.03828, arXiv.org, revised Mar 2020.
    354. Soojin Jo, 2012. "The Effects of Oil Price Uncertainty on the Macroeconomy," Staff Working Papers 12-40, Bank of Canada.
    355. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
    356. Kinkyo, Takuji, 2022. "The intermediating role of the Chinese renminbi in Asian currency markets: Evidence from partial wavelet coherence," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    357. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    358. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    359. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    360. Hartwig, Benny, 2020. "Robust Inference in Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224528, Verein für Socialpolitik / German Economic Association.
    361. Chan, Leo & Lien, Donald, 2002. "Measuring the impacts of cash settlement: A stochastic volatility approach," International Review of Economics & Finance, Elsevier, vol. 11(3), pages 251-263.
    362. Moon Jung Choi & Geun-Young Kim & Joo Yong Lee, 2015. "An Analysis of Trade Patterns in East Asia and the Effects of the Real Exchange Rate Movements," Working Papers 2015-29, Economic Research Institute, Bank of Korea.
    363. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," CFS Working Paper Series 577, Center for Financial Studies (CFS).
    364. Travis J. Berge, 2023. "Time-Varying Uncertainty of the Federal Reserve's Output Gap Estimate," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1191-1206, September.
    365. Audrone Virbickaite & Hedibert F. Lopes & Maria Concepción Ausín & Pedro Galeano, 2018. "Particle Learning for Bayesian Semi-Parametric Stochastic Volatility Model," DEA Working Papers 88, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    366. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    367. Petrova, Katerina, 2022. "Asymptotically valid Bayesian inference in the presence of distributional misspecification in VAR models," Journal of Econometrics, Elsevier, vol. 230(1), pages 154-182.
    368. Aknouche Abdelhakim & Demmouche Nacer & Dimitrakopoulos Stefanos & Touche Nassim, 2020. "Bayesian analysis of periodic asymmetric power GARCH models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-24, September.
    369. Kiss, Tamas & Nguyen, Hoang & Österholm, Pär, 2022. "Modelling Okun’s Law – Does non-Gaussianity Matter?," Working Papers 2022:1, Örebro University, School of Business.
    370. Kim, Dongwhan & Kang, Kyu Ho, 2021. "Conditional value-at-risk forecasts of an optimal foreign currency portfolio," International Journal of Forecasting, Elsevier, vol. 37(2), pages 838-861.
    371. Born, Benjamin & Peifer, Johannes, 2011. "Policy Risk and the Business Cycle," Bonn Econ Discussion Papers 06/2011, University of Bonn, Bonn Graduate School of Economics (BGSE).
    372. Siddhartha Chib & Minchul Shin & Fei Tan, 2020. "High-Dimensional DSGE Models: Pointers on Prior, Estimation, Comparison, and Prediction∗," Working Papers 20-35, Federal Reserve Bank of Philadelphia.
    373. Michael T. Belongia & Peter N. Ireland, 2018. "Monetary Policy Lessons from the Greenbook," Boston College Working Papers in Economics 955, Boston College Department of Economics.
    374. Worapree Maneesoonthorn & David T. Frazier & Gael M. Martin, 2024. "Probabilistic Predictions of Option Prices Using Multiple Sources of Data," Papers 2412.00658, arXiv.org.
    375. Vegard H. Larsen & Leif Anders Thorsrud & Julia Zhulanova, 2019. "News-driven inflation expectations and information rigidities," Working Paper 2019/5, Norges Bank.
    376. Fu, Buben & Wang, Bin, 2020. "The transition of China's monetary policy regime: Before and after the four trillion RMB stimulus," Economic Modelling, Elsevier, vol. 89(C), pages 273-303.
    377. Prüser, Jan & Schmidt, Torsten, 2021. "Regional composition of national house price cycles in the US," Regional Science and Urban Economics, Elsevier, vol. 87(C).
    378. Danilo Cascaldi-Garcia, 2017. "Amplification effects of news shocks through uncertainty," 2017 Papers pca1251, Job Market Papers.
    379. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    380. Lyu, Xiaoyi & Hu, Hao, 2024. "The dynamic impact of monetary policy on stock market liquidity," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 388-405.
    381. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
    382. Peter Reinhard Hansen & Zhuo Huang & Chen Tong & Tianyi Wang, 2024. "Realized GARCH, CBOE VIX, and the Volatility Risk Premium," Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 187-223.
    383. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3386-3404, August.
    384. Gerlach, Richard & Chen, Cathy W.S. & Lin, Doris S.Y. & Huang, Ming-Hsiang, 2006. "Asymmetric responses of international stock markets to trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 422-444.
    385. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    386. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
    387. István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2017. "Joint Bayesian Analysis of Parameters and States in Nonlinear non‐Gaussian State Space Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1003-1026, August.
    388. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    389. Neil Shephard & Gabriele Fiorentini & Enrique Sentana, 2003. "Likelihood-based estimation of latent generalised ARCH structures," FMG Discussion Papers dp453, Financial Markets Group.
    390. Siddhartha Chib & Neil Shephard, 2001. "Comment on Garland B. Durham and A. Ronald Gallant's "Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes"," Economics Papers 2001-W26, Economics Group, Nuffield College, University of Oxford.
    391. Ibrahim Chowdhury & Lucio Sarno, 2004. "Time‐Varying Volatility in the Foreign Exchange Market: New Evidence on its Persistence and on Currency Spillovers," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 759-793, June.
    392. Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    393. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    394. Nonejad, Nima, 2021. "Predicting equity premium using dynamic model averaging. Does the state–space representation matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    395. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2018. "The volatility effect on precious metals prices in a stochastic volatility in mean model with time-varying parameters," Working Papers 15-34, Eastern Mediterranean University, Department of Economics.
    396. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    397. Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
    398. Marcellino, Massimiliano & Carriero, Andrea & Corsello, Francesco, 2019. "The Global Component of Inflation Volatility," CEPR Discussion Papers 13470, C.E.P.R. Discussion Papers.
    399. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    400. Fruhwirth-Schnatter, Sylvia & Fruhwirth, Rudolf, 2007. "Auxiliary mixture sampling with applications to logistic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3509-3528, April.
    401. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    402. Pettenuzzo, Davide & Sabbatucci, Riccardo & Timmermann, Allan, 2023. "Dividend suspensions and cash flows during the Covid-19 pandemic: A dynamic econometric model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1522-1541.
    403. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    404. A. Golightly & D. J. Wilkinson, 2005. "Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation," Biometrics, The International Biometric Society, vol. 61(3), pages 781-788, September.
    405. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    406. Malmsten, Hans, 2004. "Evaluating exponential GARCH models," SSE/EFI Working Paper Series in Economics and Finance 564, Stockholm School of Economics, revised 03 Sep 2004.
    407. Denis Pelletier, 2004. "Regime Switching for Dynamic Correlations," Econometric Society 2004 North American Summer Meetings 230, Econometric Society.
    408. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    409. Prüser, Jan & Schmidt, Torsten, 2020. "Regional composition of national house price cycles in the US," Ruhr Economic Papers 853, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    410. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    411. Florian Huber & Michael Pfarrhofer, 2020. "Dynamic shrinkage in time-varying parameter stochastic volatility in mean models," Papers 2005.06851, arXiv.org.
    412. Rong Zhang & Brett A. Inder & Xibin Zhang, 2012. "Parameter estimation for a discrete-response model with double rules of sample selection: A Bayesian approach," Monash Econometrics and Business Statistics Working Papers 5/12, Monash University, Department of Econometrics and Business Statistics.
    413. Malik, Ali Khalil, 2005. "European exchange rate volatility dynamics: an empirical investigation," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 187-215, January.
    414. Schorfheide, Frank & An, Sungbae, 2005. "Bayesian Analysis of DSGE Models," CEPR Discussion Papers 5207, C.E.P.R. Discussion Papers.
    415. Hilde C. Bjørnland & Leif Anders Thorsrud, 2019. "Commodity prices and fiscal policy design: Procyclical despite a rule," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 161-180, March.
    416. Christophe Andre & David Gabauer & Rangan Gupta, 2020. "Time-Varying Spillovers between Housing Sentiment and Housing Market in the United States," Working Papers 202091, University of Pretoria, Department of Economics.
    417. Neha Saini & Anil Kumar Mittal, 2019. "On the predictive ability of GARCH and SV models of volatility: An empirical test on the SENSEX index," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(4), pages 1-5.
    418. Tomas Adam & Sona Benecka & Ivo Jansky, 2012. "Time-Varying Betas of Banking Sectors," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(6), pages 485-504, December.
    419. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    420. Heejoon Han & Eunhee Lee, 2020. "Triple Regime Stochastic Volatility Model with Threshold and Leverage Effects," Korean Economic Review, Korean Economic Association, vol. 36, pages 481-509.
    421. Ren-Her Wang & John Aston & Cheng-Der Fuh, 2010. "The Role of Additional Information in Option Pricing: Estimation Issues for the State Space Model," Computational Economics, Springer;Society for Computational Economics, vol. 36(4), pages 283-307, December.
    422. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    423. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    424. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    425. Massimo Guidolin & Francesco Ravazzolo & Andrea Donato Tortora, 2011. "Myths and Facts about the Alleged Over-Pricing of U.S. Real Estate. Evidence from Multi-Factor Asset Pricing Models of REIT Returns," Working Papers 416, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    426. Audrone Virbickaite & Hedibert F. Lopes, 2018. "Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model," DEA Working Papers 89, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    427. F. Pancotto & G. Pignataro & D. Raggi, 2014. "Higher order beliefs and the dynamics of exchange rates," Working Papers wp957, Dipartimento Scienze Economiche, Universita' di Bologna.
    428. Tsiaplias, Sarantis, 2008. "Factor estimation using MCMC-based Kalman filter methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 344-353, December.
    429. Arnaud Doucet & Neil Shephard, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Papers 2012-W05, Economics Group, Nuffield College, University of Oxford.
    430. Mr. Sohrab Rafiq, 2013. "The Growth and Stabilization Properties of Fiscal Policy in Malaysia," IMF Working Papers 2013/149, International Monetary Fund.
    431. Koop, Gary & Potter, Simon M., 2011. "Time varying VARs with inequality restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 1126-1138, July.
    432. Carlos A. Abanto‐Valle & Helio S. Migon & Hedibert F. Lopes, 2010. "Bayesian modeling of financial returns: A relationship between volatility and trading volume," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 172-193, March.
    433. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    434. A. Hachicha & F. Hachicha, 2021. "Analysis of the bitcoin stock market indexes using comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 56(2), pages 647-673, February.
    435. Matthias Held & Marcel Omachel, 2014. "An Efficient Parallel Simulation Method for Posterior Inference on Paths of Markov Processes," FEMM Working Papers 140010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    436. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    437. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    438. Kshatriya, Saranya & Prasanna, Krishna, 2021. "Jump Interdependencies: Stochastic linkages among international stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    439. Nalan Basturk & Pinar Ceyhan & Herman K. van Dijk, 2014. "Bayesian Forecasting of US Growth using Basic Time Varying Parameter Models and Expectations Data," Tinbergen Institute Discussion Papers 14-119/III, Tinbergen Institute, revised 14 Sep 2014.
    440. McCAUSLAND, William, 2008. "The Hessian Method (Highly Efficient State Smoothing, In a Nutshell)," Cahiers de recherche 03-2008, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    441. Anastasios Evgenidis & Costas Siriopoulos, 2015. "What are the International Channels Through Which a US Policy Shock is Transmitted to The World Economies? Evidence from a Time Varying FAVAR," Working Papers 190, Bank of Greece.
    442. Tatiana Miazhynskaia & Georg Dorffner, 2006. "A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models," Statistical Papers, Springer, vol. 47(4), pages 525-549, October.
    443. Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2008. "Dynamic probabilities of restrictions in state space models: An application to the Phillips curve," Working Paper series 26_08, Rimini Centre for Economic Analysis.
    444. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
    445. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    446. Michael Weylandt & Yu Han & Katherine B. Ensor, 2019. "Multivariate Modeling of Natural Gas Spot Trading Hubs Incorporating Futures Market Realized Volatility," Papers 1907.10152, arXiv.org.
    447. McCAUSLAND, William J. & MILLER, Shirley & PELLETIER, Denis, 2007. "A New Approach to Drawing States in State Space Models," Cahiers de recherche 2007-06, Universite de Montreal, Departement de sciences economiques.
    448. Degiannakis, Stavros & Livada, Alexandra & Panas, Epaminondas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," MPRA Paper 80464, University Library of Munich, Germany.
    449. Nonejad, Nima, 2014. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," MPRA Paper 55662, University Library of Munich, Germany.
    450. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    451. Ulm, M. & Hambuckers, J., 2022. "Do interest rate differentials drive the volatility of exchange rates? Evidence from an extended stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 125-148.
    452. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    453. Liu, Yuelin & Morley, James, 2014. "Structural evolution of the postwar U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 50-68.
    454. Florian Huber & Michael Pfarrhofer & Philipp Piribauer, 2020. "A multi-country dynamic factor model with stochastic volatility for euro area business cycle analysis," Papers 2001.03935, arXiv.org.
    455. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    456. Praveen Kumar Tripathi & Manika Agarwal, 2024. "A Bayes Analysis of Random Walk Model Under Different Error Assumptions," Annals of Data Science, Springer, vol. 11(5), pages 1635-1652, October.
    457. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
    458. Godfrey, Leslie G., 2007. "On the asymptotic validity of a bootstrap method for testing nonnested hypotheses," Economics Letters, Elsevier, vol. 94(3), pages 408-413, March.
    459. Cyrille Dubarry & Randal Douc, 2014. "Calibrating the exponential Ornstein--Uhlenbeck multiscale stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 443-456, March.
    460. Pratiti Chatterjee & David Gunawan & Robert Kohn, 2020. "The Interaction Between Credit Constraints and Uncertainty Shocks," Papers 2004.14719, arXiv.org.
    461. Guohua Feng & Todd Jewell, 2021. "Productivity and efficiency at english football clubs: a random coefficient approach," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(5), pages 571-604, November.
    462. Zakaria Moussa, 2016. "How big is the comeback? Japanese exchange rate pass-through assessed by time-varying FAVAR," Post-Print hal-03714934, HAL.
    463. Peter McAdam & Kostas Mouratidis & Theodore Panagiotidis & Georgios Papapanagiotou, 2023. "European Trade & Growth Imbalances: An Analysis using a Sign-Restriction Bayesian-GVAR with Stochastic Volatility," Working Paper series 23-12, Rimini Centre for Economic Analysis.
    464. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.
    465. Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    466. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    467. James Hamilton, 2000. "Book review," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 135-137.
    468. Huang Yu-Fan, 2021. "An effcient exact Bayesian method For state space models with stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-10, April.
    469. BAUWENS, Luc & BOS, Charles S. & VAN DIJK, Herman K., 1999. "Adaptive polar sampling with an application to a Bayes measure of value-at-risk," LIDAM Discussion Papers CORE 1999057, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    470. Yong Li & Jun Yu, 2010. "A New Bayesian Unit Root Test in Stochastic Volatility Models," Working Papers 21-2010, Singapore Management University, School of Economics, revised Oct 2010.
    471. Eric Eisenstat & Rodney Strachan, 2014. "Modelling Inflation Volatility," Working Paper series 43_14, Rimini Centre for Economic Analysis.
    472. Berg, Tim Oliver, 2011. "Technology news and the U.S. economy: Time variation and structural changes," MPRA Paper 35361, University Library of Munich, Germany.
    473. Luis Uzeda, 2018. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Staff Working Papers 18-14, Bank of Canada.
    474. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    475. Neil Shephard & Thomas Flury, 2009. "Learning and filtering via simulation: smoothly jittered particle filters," Economics Series Working Papers 469, University of Oxford, Department of Economics.
    476. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    477. Liu, Zhenya & Wang, Shixuan, 2017. "Decoding Chinese stock market returns: Three-state hidden semi-Markov model," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 127-149.
    478. Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    479. Christian Bontemps & Nour Meddahi, 2002. "Testing Normality: A GMM Approach," CIRANO Working Papers 2002s-63, CIRANO.
    480. Kalimipalli, Madhu & Susmel, Raul, 2004. "Regime-switching stochastic volatility and short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 309-329, June.
    481. Thomas A. Dean & Sumeetpal S. Singh & Ajay Jasra & Gareth W. Peters, 2014. "Parameter Estimation for Hidden Markov Models with Intractable Likelihoods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 970-987, December.
    482. Yan Meng & Xueyan Zhao & Xibin Zhang & Jiti Gao, 2017. "A panel data analysis of hospital variations in length of stay for hip replacements: Private versus public," Monash Econometrics and Business Statistics Working Papers 20/17, Monash University, Department of Econometrics and Business Statistics.
    483. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    484. Roman Liesenfeld & Guilherme V. Moura & Jean-François Richard & Hariharan Dharmarajan, 2013. "Efficient Likelihood Evaluation of State-Space Representations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 538-567.
    485. Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    486. Michal Franta & Ivan Sutoris, 2020. "Dynamics of Czech Inflation: The Role of the Trend and the Cycle," Working Papers 2020/1, Czech National Bank.
    487. Yuelin Liu, 2014. "How Structural Is Unemployment in the United States?," Discussion Papers 2014-42, School of Economics, The University of New South Wales.
    488. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International Transmission of Macroeconomic Uncertainty in Small Open Economies: An Empirical Approach," Working Papers No 12/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    489. Fabio Franco, 2019. "Likelihood Induced by Moment Functions Using Particle Filter: a Comparison of Particle GMM and Standard MCMC Methods," CEIS Research Paper 477, Tor Vergata University, CEIS, revised 04 Dec 2019.
    490. Lee, Eunhee, 2019. "Asset prices with stochastic volatilities and a UIP puzzle," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 41-61.
    491. Tobias Eckernkemper & Bastian Gribisch, 2021. "Classical and Bayesian Inference for Income Distributions using Grouped Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 32-65, February.
    492. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
    493. Julio-Román, Juan Manuel, 2019. "Estimating the Exchange Rate Pass-Through: A Time-Varying Vector Auto-Regression with Residual Stochastic Volatility Approach," Working papers 21, Red Investigadores de Economía.
    494. Ringwald, Leopold & Zörner, Thomas O., 2023. "The money-inflation nexus revisited," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 293-333.
    495. Moussa, Zakaria, 2010. "The Japanese Quantitative Easing Policy under Scrutiny: A Time-Varying Parameter Factor-Augmented VAR Model," MPRA Paper 29429, University Library of Munich, Germany.
    496. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    497. Martina Danielova Zaharieva & Mark Trede & Bernd Wilfling, 2017. "Bayesian semiparametric multivariate stochastic volatility with an application to international stock-market co-movements," CQE Working Papers 6217, Center for Quantitative Economics (CQE), University of Muenster.
    498. Schlösser, Alexander, 2020. "Forecasting industrial production in Germany: The predictive power of leading indicators," Ruhr Economic Papers 838, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    499. Joshua C C Chan & Yong Song, 2017. "Measuring inflation expectations uncertainty using high-frequency data," CAMA Working Papers 2017-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    500. Nima Nonejad, 2021. "Using the conditional volatility channel to improve the accuracy of aggregate equity return predictions," Empirical Economics, Springer, vol. 61(2), pages 973-1009, August.
    501. Alex, Dony, 2021. "Anchoring of inflation expectations in large emerging economies," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    502. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    503. Xiao-Bin Liu & Yong Li, 2013. "Bayesian testing volatility persistence in stochastic volatility models with jumps," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1415-1426, December.
    504. Iiboshi, Hirokuni, 2007. "Duration dependence of the business cycle in Japan: A Bayesian analysis of extended Markov switching model," Japan and the World Economy, Elsevier, vol. 19(1), pages 86-111, January.
    505. G. Dhaene, 2004. "Indirect Inference for Stochastic Volatility Models via the Log-Squared Observations," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(3), pages 421-440.
    506. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    507. Charles S. Bos & Ronald J. Mahieu & Herman K. van Dijk, 2000. "Daily Exchange Rate Behaviour and Hedging of Currency Risk," Econometric Society World Congress 2000 Contributed Papers 0504, Econometric Society.
    508. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
    509. Wei, Steven X., 2002. "A censored-GARCH model of asset returns with price limits," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 197-223, March.
    510. Patrick Aschermayr & Konstantinos Kalogeropoulos, 2023. "Sequential Bayesian Learning for Hidden Semi-Markov Models," Papers 2301.10494, arXiv.org.
    511. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
    512. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    513. Pitt, Michael K., 2002. "Smooth particle filters for likelihood evaluation and maximisation," Economic Research Papers 269464, University of Warwick - Department of Economics.
    514. Smith Aaron, 2012. "Markov Breaks in Regression Models," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-35, May.
    515. Alexander Rathke & Samad Sarferaz, 2014. "Malthus and the Industrial Revolution," KOF Working papers 14-351, KOF Swiss Economic Institute, ETH Zurich.
    516. Sergey Egiev, 2016. "On Persistence of Uncertainty Shocks," HSE Working papers WP BRP 144/EC/2016, National Research University Higher School of Economics.
    517. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
    518. Fulvia Focker & Umberto Triacca, 2006. "A new proxy of the average volatility of a basket of returns: A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-14.
    519. Giuseppe Pagano Giorgianni & Valeria Patella, 2024. "Belief distortions and Disagreement about Inflation," Working Paper series 24-08, Rimini Centre for Economic Analysis.
    520. Gabriele Fiorentini & Enrique Sentana & Giorgio Calzolari, 2000. "Constrained Emm And Indirect Inference Estimation," Working Papers. Serie AD 2000-26, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    521. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    522. Bontemps, Christian, 2014. "Simple moment-based tests for value-at-risk models and discrete distribution," TSE Working Papers 14-535, Toulouse School of Economics (TSE).
    523. Jun Yu, 2004. "On leverage in a stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 497, Econometric Society.
    524. Franses, Ph.H.B.F. & van der Leij, M.J. & Paap, R., 2005. "A simple test for GARCH against a stochastic volatility," Econometric Institute Research Papers EI 2005-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    525. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    526. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    527. Dibiasi, Andreas & Sarferaz, Samad, 2023. "Measuring macroeconomic uncertainty: A cross-country analysis," European Economic Review, Elsevier, vol. 153(C).
    528. Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2016. "Choosing Prior Hyperparameters," Working Paper 16-9, Federal Reserve Bank of Richmond.
    529. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    530. Manabu Asai & Michael McAleer, 2018. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Tinbergen Institute Discussion Papers 18-005/III, Tinbergen Institute.
    531. Carlos A. Abanto-Valle & Gabriel Rodríguez & Luis M. Castro Cepero & Hernán B. Garrafa-Aragón, 2024. "Approximate Bayesian Estimation of Stochastic Volatility in Mean Models Using Hidden Markov Models: Empirical Evidence from Emerging and Developed Markets," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1775-1801, September.
    532. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos & Touche, Nassim, 2019. "Integer-valued stochastic volatility," MPRA Paper 91962, University Library of Munich, Germany, revised 04 Feb 2019.
    533. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    534. Grammig, Joachim & Schaub, Eva-Maria, 2014. "Give me strong moments and time - Combining GMM and SMM to estimate long-run risk asset pricing models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100607, Verein für Socialpolitik / German Economic Association.
    535. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    536. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    537. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in international dairy commodity markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(3), pages 704-728, July.
    538. Renee van Eyden & Rangan Gupta & Christophe Andre & Xin Sheng, 2021. "The Effect of Macroeconomic Uncertainty on Housing Returns and Volatility: Evidence from US State-Level Data," Working Papers 202131, University of Pretoria, Department of Economics.
    539. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2010. "Bayesian Estimation and Particle Filter for Max-Stable Processes," CIRJE F-Series CIRJE-F-757, CIRJE, Faculty of Economics, University of Tokyo.
    540. Salima El Kolei, 2012. "Parametric estimation of hidden stochastic model by contrast minimization and deconvolution: application to the Stochastic Volatility Model," Papers 1202.2559, arXiv.org, revised Mar 2013.
    541. M. Berument & Yeliz Yalcin & Julide Yildirim, 2011. "The inflation and inflation uncertainty relationship for Turkey: a dynamic framework," Empirical Economics, Springer, vol. 41(2), pages 293-309, October.
    542. D'Agostino, Antonello & Ehrmann, Michael, 2012. "The pricing of G7 sovereign bond spreads – the times, they are a-changin," MPRA Paper 40604, University Library of Munich, Germany.
    543. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    544. Istvan Barra & Siem Jan Koopman & Agnieszka Borowska, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute, revised 16 Feb 2018.
    545. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    546. Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
    547. Nakajima, Jouchi & Kunihama, Tsuyoshi & Omori, Yasuhiro & Frühwirth-Schnatter, Sylvia, 2012. "Generalized extreme value distribution with time-dependence using the AR and MA models in state space form," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3241-3259.
    548. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2015. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Working Papers 550, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    549. Lee Kai Ming & Koopman Siem Jan, 2004. "Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-17, May.
    550. Jamie L. Cross & Chenghan Hou & Gary Koop, 2021. "Macroeconomic Forecasting with Large Stochastic Volatility in Mean VARs," Working Papers No 04/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    551. Kamalyan, Hayk, 2022. "Data revisions and the effects of monetary policy volatility," Economics Letters, Elsevier, vol. 215(C).
    552. Bali, Turan G. & Wu, Liuren, 2006. "A comprehensive analysis of the short-term interest-rate dynamics," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1269-1290, April.
    553. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    554. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    555. Brandt, Michael W. & Wu, Tao, 2002. "Cross-sectional tests of deterministic volatility functions," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 525-550, December.
    556. Awijen, Haithem & Ben Zaied, Younes & Nguyen, Duc Khuong & Sensoy, Ahmet, 2020. "Endogenous Financial Uncertainty and Macroeconomic Volatility: Evidence from the United States," MPRA Paper 101276, University Library of Munich, Germany, revised Jun 2020.
    557. Nima Nonejad, 2013. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," CREATES Research Papers 2013-27, Department of Economics and Business Economics, Aarhus University.
    558. Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
    559. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2015. "Forecasting trends with asset prices," Papers 1504.03934, arXiv.org, revised Apr 2015.
    560. van der Sluis Pieter J., 1997. "EmmPack 1.01: C/C++ Code for Use with Ox for Estimation of Univariate Stochastic Volatility Models with the Efficient Method of Moments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(3), pages 1-20, October.
    561. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    562. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    563. Kim C. Raath & Katherine B. Ensor, 2023. "Wavelet-L2E Stochastic Volatility Models: an Application to the Water-Energy Nexus," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 150-176, May.
    564. Soojin Jo, 2014. "The Effects of Oil Price Uncertainty on Global Real Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(6), pages 1113-1135, September.
    565. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.
    566. Francesco Ravazzolo & Philip Rothman, 2015. "Oil-Price Density Forecasts of U.S. GDP," Working Papers No 10/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    567. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2020. "Measuring Uncertainty and Its Effects in the COVID-19 Era," Working Papers 20-32R, Federal Reserve Bank of Cleveland, revised 05 Jan 2022.
    568. Wu, Xinyu & Wang, Xiaona, 2020. "Forecasting volatility using realized stochastic volatility model with time-varying leverage effect," Finance Research Letters, Elsevier, vol. 34(C).
    569. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    570. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
    571. Bo Zhang, 2019. "Real‐time inflation forecast combination for time‐varying coefficient models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 175-191, April.
    572. Jules H. van Binsbergen & Jesús Fernández-Villaverde & Ralph S.J. Koijen & Juan F. Rubio-Ramírez, 2010. "The Term Structure of Interest Rates in a DSGE Model with Recursive Preferences," PIER Working Paper Archive 10-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    573. Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023. "Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
    574. Peñaranda, Francisco, 2003. "Evaluation of joint density forecasts of stock and bond returns: predictability and parameter uncertainty," LSE Research Online Documents on Economics 24857, London School of Economics and Political Science, LSE Library.
    575. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-952, CIRJE, Faculty of Economics, University of Tokyo.
    576. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    577. Thomas B Götz & Klemens Hauzenberger, 2021. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 442-461.
    578. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    579. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    580. Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
    581. Ellington, Michael & Florackis, Chris & Milas, Costas, 2017. "Liquidity shocks and real GDP growth: Evidence from a Bayesian time-varying parameter VAR," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 93-117.
    582. Juan R. Hernández, 2024. "Covered interest parity: a forecasting approach to estimate the neutral band," BIS Working Papers 1206, Bank for International Settlements.
    583. Nima Nonejad, 2019. "Has the 2008 financial crisis and its aftermath changed the impact of inflation on inflation uncertainty in member states of the european monetary union?," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(2), pages 246-276, May.
    584. Chan, Leo & Lien, Donald, 2003. "Using high, low, open, and closing prices to estimate the effects of cash settlement on futures prices," International Review of Financial Analysis, Elsevier, vol. 12(1), pages 35-47.
    585. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    586. Masahiro Watanabe, 2003. "A Model of Stochastic Liquidity," Yale School of Management Working Papers ysm385, Yale School of Management.
    587. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
    588. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.
    589. Bhatt, Vipul & Kishor, N. Kundan, 2021. "(A)Synchronous Housing Markets of Global Cities," MPRA Paper 107175, University Library of Munich, Germany.
    590. S. Avouyi-Dovi & G. Horny & P. Sevestre, 2015. "The stability of short-term interest rates pass-through in the euro area during the financial market and sovereign debt crises," Working papers 547, Banque de France.
    591. Chon, Sora & Kim, Jaeho, 2021. "Does the Financial Leverage Effect Depend on Volatility Regimes?," Finance Research Letters, Elsevier, vol. 39(C).
    592. Brandt, Michael W. & Jones, Christopher S., 2005. "Bayesian range-based estimation of stochastic volatility models," Finance Research Letters, Elsevier, vol. 2(4), pages 201-209, December.
    593. Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
    594. Cappé Olivier, 2001. "Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 81-92, December.
    595. Denitsa Stefanova, 2012. "Stock Market Asymmetries: A Copula Diffusion," Tinbergen Institute Discussion Papers 12-125/IV/DSF45, Tinbergen Institute.
    596. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    597. Mikkelsen, Peter, 2001. "MCMC Based Estimation of Term Structure Models," Finance Working Papers 01-7, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    598. Griffin, Jim E. & Mitrodima, Gelly, 2020. "A Bayesian quantile time series model for asset returns," LSE Research Online Documents on Economics 105610, London School of Economics and Political Science, LSE Library.
    599. Yong Li & Jun Yu, 2019. "An Improved Bayesian Unit Root Test in Stochastic Volatility Models," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 103-122, May.
    600. Naoko Hara & Kazuhiro Hiraki & Yoshitaka Ichise, 2015. "Changing Exchange Rate Pass-Through in Japan: Does It Indicate Changing Pricing Behavior?," Bank of Japan Working Paper Series 15-E-4, Bank of Japan.
    601. Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
    602. Tetsuya Takaishi, 2010. "Bayesian estimation of GARCH model with an adaptive proposal density," Papers 1012.5986, arXiv.org, revised Dec 2010.
    603. Vorada Limjaroenrat, 2017. "Distributional Effects of Monetary Policy on Housing Bubbles: Some Evidence," PIER Discussion Papers 74, Puey Ungphakorn Institute for Economic Research.
    604. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    605. Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    606. Rui Luo & Weinan Zhang & Xiaojun Xu & Jun Wang, 2017. "A Neural Stochastic Volatility Model," Papers 1712.00504, arXiv.org, revised Dec 2018.
    607. Diego Ferreira & Andreza Aparecida Palma, 2018. "Inflation And Inflation Uncertainty In Latin America: A Time-Varying Stochastic Volatility In Mean Approach," Anais do XLIV Encontro Nacional de Economia [Proceedings of the 44th Brazilian Economics Meeting] 125, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    608. Diebold, Giorgianni, & Inoue, "undated". "Stamp 5.0: A Review," Home Pages _058, University of Pennsylvania.
    609. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    610. Mike Tsionas & Marwan Izzeldin & Lorenzo Trapani, 2019. "Bayesian estimation of large dimensional time varying VARs using copulas," Papers 1912.12527, arXiv.org.
    611. Martin Iseringhausen, 2018. "The Time-Varying Asymmetry Of Exchange Rate Returns: A Stochastic Volatility – Stochastic Skewness Model," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 18/944, Ghent University, Faculty of Economics and Business Administration.
    612. Frédérique Bec & Anders Rahbek & Neil Shephard, 2008. "The ACR Model: A Multivariate Dynamic Mixture Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 583-618, October.
    613. Michael Clements, 2016. "Are Macroeconomic Density Forecasts Informative?," ICMA Centre Discussion Papers in Finance icma-dp2016-02, Henley Business School, University of Reading.
    614. Masahiro Watanabe, 2003. "A Model of Stochastic Liquidity," Yale School of Management Working Papers ysm385, Yale School of Management.
    615. Daniel Kaufmann, 2015. "Nominal stability and Swiss monetary regimes over two centuries," KOF Working papers 15-379, KOF Swiss Economic Institute, ETH Zurich.
    616. Laurini, Márcio Poletti & Mauad, Roberto Baltieri & Aiube, Fernando Antônio Lucena, 2020. "The impact of co-jumps in the oil sector," Research in International Business and Finance, Elsevier, vol. 52(C).
    617. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    618. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    619. Bos, C.S. & Mahieu, R.J. & van Dijk, H.K., 2000. "On the variation of hedging decisions in daily currency risk management," Econometric Institute Research Papers EI 2000-20/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    620. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, October.
    621. Markus Jochmann & Gary Koop & Simon M. Potter, 2009. "Modeling the Dynamics of Inflation Compensation," Working Paper series 15_09, Rimini Centre for Economic Analysis.
    622. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2017. "The nexus between the oil price and its volatility in a stochastic volatility in mean model with time-varying parameters," Working Papers 15-33, Eastern Mediterranean University, Department of Economics.
    623. Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
    624. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    625. Wang, Min & Sun, Xiaoqian, 2012. "Bayesian inference for the correlation coefficient in two seemingly unrelated regressions," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2442-2453.
    626. Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2014. "Drifts, Volatilities, and Impulse Responses Over the Last Century," Working Paper 14-10, Federal Reserve Bank of Richmond.
    627. Dávid Zoltán Szabó & Kata Váradi, 2022. "Margin requirements based on a stochastic correlation model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1797-1820, October.
    628. Wensheng Kang & Ronald A. Ratti & Kyung Hwan Yoon, 2015. "Time-varying effect of oil market shocks on the stock market," CAMA Working Papers 2015-35, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    629. David E. Allen & Michael McAleer, 2020. "Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE," Risks, MDPI, vol. 8(1), pages 1-20, February.
    630. Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Business School.
    631. Guohua Feng & Chuan Wang, 2021. "Determinants of profitability of community banks in the USA: a cost-frontier-based decomposition approach," Empirical Economics, Springer, vol. 60(6), pages 2969-2992, June.
    632. Pascale VALERY (HEC-Montreal) & Jean-Marie Dufour (University of Montreal), 2004. "A simple estimation method and finite-sample inference for a stochastic volatility model," Econometric Society 2004 North American Summer Meetings 153, Econometric Society.
    633. Jean Pierre Fernández Prada Saucedo & Gabriel Rodríguez, 2020. "Modeling the Volatility of Returns on Commodities: An Application and Empirical Comparison of GARCH and SV Models," Documentos de Trabajo / Working Papers 2020-484, Departamento de Economía - Pontificia Universidad Católica del Perú.
    634. Bian, Zhicun & Ma, Jun & Ni, Jinlan & Stewart, Shamar, 2020. "Synchronization of regional growth dynamics in China," China Economic Review, Elsevier, vol. 61(C).
    635. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    636. Bampinas, Georgios & Panagiotidis, Theodore & Papapanagiotou, Georgios, 2023. "Oil shocks and investor attention," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 68-81.
    637. Chaya Weerasinghe & Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2023. "ABC-based Forecasting in State Space Models," Monash Econometrics and Business Statistics Working Papers 12/23, Monash University, Department of Econometrics and Business Statistics.
    638. Anders Rahbek & Neil Shephard, 2001. "Autoregressive conditional root model," Economics Papers 2002-W7, Economics Group, Nuffield College, University of Oxford, revised 01 Feb 2002.
    639. Jhonatan Portilla & Gabriel Rodríguez & Paul Castillo B., 2022. "Evolution of Monetary Policy in Peru: An Empirical Application Using a Mixture Innovation TVP-VAR-SV Model [Metas de Inflación en Una Economía Dolarizada: La Experencia Del Perú]," CESifo Economic Studies, CESifo Group, vol. 68(1), pages 98-126.
    640. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    641. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
    642. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    643. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    644. Yunjong Eo & Luis Uzeda & Benjamin Wong, 2022. "Understanding trend inflation through the lens of the goods and services sectors," CAMA Working Papers 2022-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    645. Pourkhanali, Armin & Tafakori, Laleh & Bee, Marco, 2023. "Forecasting Value-at-Risk using functional volatility incorporating an exogenous effect," International Review of Financial Analysis, Elsevier, vol. 89(C).
    646. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    647. Kawakatsu, Hiroyuki, 2007. "Specification and estimation of discrete time quadratic stochastic volatility models," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 424-442, June.
    648. Baxa, Jaromír & Plašil, Miroslav & Vašíček, Bořek, 2015. "Changes in inflation dynamics under inflation targeting? Evidence from Central European countries," Economic Modelling, Elsevier, vol. 44(C), pages 116-130.
    649. Liesenfeld, Roman, 2001. "A generalized bivariate mixture model for stock price volatility and trading volume," Journal of Econometrics, Elsevier, vol. 104(1), pages 141-178, August.
    650. Selçuk, Faruk, 2004. "Free float and stochastic volatility: the experience of a small open economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 693-700.
    651. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
    652. Robert Czudaj, 2019. "Crude oil futures trading and uncertainty," Chemnitz Economic Papers 027, Department of Economics, Chemnitz University of Technology, revised Jan 2019.
    653. Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
    654. Liao, Wenting & Ma, Jun & Zhang, Chengsi, 2024. "Commodity returns co-movement, uncertainty shocks, and the US dollar exchange rate," Journal of International Money and Finance, Elsevier, vol. 143(C).
    655. Laurini, Márcio Poletti & Mauad, Roberto Baltieri, 2015. "A common jump factor stochastic volatility model," Finance Research Letters, Elsevier, vol. 12(C), pages 2-10.
    656. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    657. Priddle, Jacob W. & Drovandi, Christopher, 2023. "Transformations in semi-parametric Bayesian synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    658. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    659. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Smoothing volatility targeting," Papers 2212.07288, arXiv.org.
    660. Mikkelsen, Peter, 2003. "Estimating intractable non-linear term structure models," Finance Working Papers 02-7, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    661. Hedibert F. Lopes & Nicholas G. Polson, 2016. "Particle Learning for Fat-Tailed Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1666-1691, December.
    662. Raanju R. Sundararajan & Wagner Barreto‐Souza, 2023. "Student‐t stochastic volatility model with composite likelihood EM‐algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 125-147, January.
    663. Nonejad, Nima, 2015. "Flexible model comparison of unobserved components models using particle Gibbs with ancestor sampling," Economics Letters, Elsevier, vol. 133(C), pages 35-39.
    664. Tino Berger & Sibylle Grabert & Bernd Kempa, 2016. "Global and Country-Specific Output Growth Uncertainty and Macroeconomic Performance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 694-716, October.
    665. M. Pilar Muñoz & M. Dolores Marquez & Lesly M. Acosta, 2007. "Forecasting volatility by means of threshold models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 343-363.
    666. Malik, Sheheryar & Pitt, Michael K., 2009. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Economic Research Papers 271302, University of Warwick - Department of Economics.
    667. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    668. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
    669. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, University Library of Munich, Germany.
    670. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    671. Joshua C.C. Chan & Eric Eisenstat, 2015. "Efficient estimation of Bayesian VARMAs with time-varying coefficients," CAMA Working Papers 2015-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    672. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    673. N. Balakrishna & Bovas Abraham & Ranjini Sivakumar, 2006. "Gamma stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 153-171.
    674. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    675. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    676. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
    677. Joshua C.C. Chan & Angelia L. Grant, 2015. "Modeling energy price dynamics: GARCH versus stochastic volatility," CAMA Working Papers 2015-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    678. Lenza, Michele & Jarociński, Marek, 2016. "An inflation-predicting measure of the output gap in the euro area," Working Paper Series 1966, European Central Bank.
    679. John M Maheu & Thomas H McCurdy, 2007. "Modeling foreign exchange rates with jumps," Working Papers tecipa-279, University of Toronto, Department of Economics.
    680. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    681. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    682. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    683. Lee, Cheol Woo & Kang, Kyu Ho, 2023. "Estimating and testing skewness in a stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 445-467.
    684. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    685. Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
    686. Michael P. Clements & David F. Hendry, 2005. "Guest Editors’ Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
    687. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    688. Andreas Stadie, 2003. "Detecting periods in which a time series model fails to predict the observed volatility," Computational Statistics, Springer, vol. 18(3), pages 375-386, September.
    689. Chiu Adrian & Wieladek Tomasz, 2013. "Is the “Great Recession” really so different from the past?," The B.E. Journal of Macroeconomics, De Gruyter, vol. 13(1), pages 1037-1084, October.
    690. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    691. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "Determinants of bid and ask quotes and implications for the cost of trading," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 656-678, September.
    692. Ezgi O. Ozturk & Xuguang Simon Sheng, 2017. "Measuring Global and Country-Specific Uncertainty," IMF Working Papers 2017/219, International Monetary Fund.
    693. Jaeho Kim & Sora Chon, 2022. "Bayesian estimation of the long-run trend of the US economy," Empirical Economics, Springer, vol. 62(2), pages 461-485, February.
    694. Benjamin Wong, 2013. "The Evolution of the U.S. Output-Inflation Tradeoff," CAMA Working Papers 2013-70, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    695. Gerald P. Dwyer & K. B. Williams, 1999. "Portable random number generators," FRB Atlanta Working Paper 99-14, Federal Reserve Bank of Atlanta.
    696. Jamie L. Cross & Aubrey Poon, 2020. "On the contribution of international shocks in Australian business cycle fluctuations," Empirical Economics, Springer, vol. 59(6), pages 2613-2637, December.
    697. Boguth, Oliver & Carlson, Murray & Fisher, Adlai & Simutin, Mikhail, 2011. "Conditional risk and performance evaluation: Volatility timing, overconditioning, and new estimates of momentum alphas," Journal of Financial Economics, Elsevier, vol. 102(2), pages 363-389.
    698. David Edmund Allen, 2020. "Stochastic Volatility and GARCH: Do Squared End-of-Day Returns Provide Similar Information?," JRFM, MDPI, vol. 13(9), pages 1-25, September.
    699. Christian Bontemps, 2019. "Moment-Based Tests under Parameter Uncertainty," Post-Print hal-02004687, HAL.
    700. Siem Jan Koopman & Charles S. Bos, 2002. "Time Series Models with a Common Stochastic Variance for Analysing Economic Time Series," Tinbergen Institute Discussion Papers 02-113/4, Tinbergen Institute.
    701. Gerlach, Richard & Tuyl, Frank, 2006. "MCMC methods for comparing stochastic volatility and GARCH models," International Journal of Forecasting, Elsevier, vol. 22(1), pages 91-107.
    702. Bédard, Mylène, 2017. "Hierarchical models: Local proposal variances for RWM-within-Gibbs and MALA-within-Gibbs," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 231-246.
    703. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    704. Wolf, Elias, 2023. "Estimating Growth at Risk with Skewed Stochastic Volatility Models," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277696, Verein für Socialpolitik / German Economic Association.
    705. Prado, Raquel & Molina, Francisco & Huerta, Gabriel, 2006. "Multivariate time series modeling and classification via hierarchical VAR mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1445-1462, December.
    706. Mr. Noureddine Krichene, 2003. "Modeling Stochastic Volatility with Application to Stock Returns," IMF Working Papers 2003/125, International Monetary Fund.
    707. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    708. Cléaud, G. & Lemoine, M. & Pionnier, P.-A., 2013. "Which size and evolution of the government expenditure multiplier in France (1980-2010)?," Working papers 469, Banque de France.
    709. Tetsuya Takaishi, 2009. "Bayesian Inference on QGARCH Model Using the Adaptive Construction Scheme," Papers 0907.5276, arXiv.org.
    710. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Phillips Curve Models with Non-Filtered Time Series," Tinbergen Institute Discussion Papers 13-011/III, Tinbergen Institute.
    711. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    712. Zampolli, Fabrizio, 2006. "Optimal monetary policy in a regime-switching economy: The response to abrupt shifts in exchange rate dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1527-1567.
    713. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    714. Pedro L. Valls Pereira & Hotta, L.K. & Souza, L.A.R., 1999. "Alternative Models to extract asset volatility: a comparative study," Finance Lab Working Papers flwp_14, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    715. Nasir, Muhammad Ali & Naidoo, Lutchmee & Shahbaz, Muhammad & Amoo, Nii, 2018. "Implications of oil prices shocks for the major emerging economies: A comparative analysis of BRICS," Energy Economics, Elsevier, vol. 76(C), pages 76-88.
    716. Carlos A. Abanto‐Valle & Roland Langrock & Ming‐Hui Chen & Michel V. Cardoso, 2017. "Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 394-408, August.
    717. Chen, Zhengyang & Valcarcel, Victor J., 2021. "Monetary transmission in money markets: The not-so-elusive missing piece of the puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    718. Bo Zhang & Joshua C.C. Chan & Jamie L. Cross, 2018. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," CAMA Working Papers 2018-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    719. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    720. Fabio Canova & Fernando J. Pérez Forero, 2012. "Estimating Overidentified, Nonrecursive Time-Varying Coefficients Structural VARs," Working Papers 637, Barcelona School of Economics.
    721. Berument, M. Hakan & Yalcin, Yeliz & Yildirim, Julide, 2012. "Inflation and inflation uncertainty: A dynamic framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4816-4826.
    722. Jean-Francois Richard & Roman Liesenfeld, 2007. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Working Paper 322, Department of Economics, University of Pittsburgh, revised Jan 2004.
    723. Dinghai Xu & Yuying Li, 2010. "Empirical Evidence of the Leverage Effect in a Stochastic Volatility Model: A Realized Volatility Approach," Working Papers 1002, University of Waterloo, Department of Economics, revised May 2010.
    724. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously ( Revised in March 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2," CARF F-Series CARF-F-108, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    725. Kang, Kyu Ho, 2015. "The predictive density simulation of the yield curve with a zero lower bound," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 51-66.
    726. Yanhui Xi & Hui Peng & Yemei Qin, 2016. "Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-15, February.
    727. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    728. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    729. Tian, Shuairu & Hamori, Shigeyuki, 2016. "Time-varying price shock transmission and volatility spillover in foreign exchange, bond, equity, and commodity markets: Evidence from the United States," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 163-171.
    730. Ilias Tsiakas, 2010. "The Economic Gains Of Trading Stocks Around Holidays," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 1-26, March.
    731. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2012. "Efficient estimation and particle filter for max‐stable processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 61-80, January.
    732. Han, Chuan-Hsiang & Molina, German & Fouque, Jean-Pierre, 2014. "McMC estimation of multiscale stochastic volatility models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 1-11.
    733. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    734. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    735. D. Sornette & Y. Malevergne & J. F. Muzy, 2002. "Volatility fingerprints of large shocks: Endogeneous versus exogeneous," Papers cond-mat/0204626, arXiv.org.
    736. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    737. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    738. Robert Brooks & Xibin Zhang & Emawtee Bissoondoyal Bheenick, 2007. "Country risk and the estimation of asset return distributions," Quantitative Finance, Taylor & Francis Journals, vol. 7(3), pages 261-265.
    739. Terence Tai Leung Chong & Yue Ding & Yong Li, 2015. "Executive Stock Option Pricing in China Under Stochastic Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(10), pages 953-960, October.
    740. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
    741. Yuelin Liu, 2022. "How structural is unemployment in the United States?," Economic Inquiry, Western Economic Association International, vol. 60(3), pages 1258-1276, July.
    742. Kavanagh, Ella & Zhu, Sheng & O’Sullivan, Niall, 2022. "Monetary policy, trade-offs and the transmission of UK Monetary Policy," Journal of Policy Modeling, Elsevier, vol. 44(6), pages 1128-1147.
    743. David S. Bates, 2003. "Maximum Likelihood Estimation of Latent Affine Processes," NBER Working Papers 9673, National Bureau of Economic Research, Inc.
    744. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
    745. Heinrich, Markus, 2020. "Does the Current State of the Business Cycle matter for Real-Time Forecasting? A Mixed-Frequency Threshold VAR approach," EconStor Preprints 219312, ZBW - Leibniz Information Centre for Economics.
    746. Jan Prüser & Alexander Schlösser, 2020. "On the Time‐Varying Effects of Economic Policy Uncertainty on the US Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1217-1237, October.
    747. Grammig, Joachim & Schaub, Eva-Maria, 2014. "Give me strong moments and time: Combining GMM and SMM to estimate long-run risk asset pricing," CFR Working Papers 14-05, University of Cologne, Centre for Financial Research (CFR).
    748. Gary Koop & Simon Potter, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Post-Print hal-00732535, HAL.
    749. Vidal-Llana, Xenxo & Uribe, Jorge M. & Guillén, Montserrat, 2023. "European stock market volatility connectedness: The role of country and sector membership," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    750. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2020. "On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin," Econometrics and Statistics, Elsevier, vol. 16(C), pages 69-90.
    751. Eraker, Bjørn & Wu, Yue, 2017. "Explaining the negative returns to volatility claims: An equilibrium approach," Journal of Financial Economics, Elsevier, vol. 125(1), pages 72-98.
    752. Pan, Qi & Li, Yong, 2013. "Testing volatility persistence on Markov switching stochastic volatility models," Economic Modelling, Elsevier, vol. 35(C), pages 45-50.
    753. Collin Philipps & Sebastian Laumer, 2022. "Government Spending between Active and Passive Monetary Policy," Working Papers 2022-04, Department of Economics and Geosciences, US Air Force Academy.
    754. Prüser, Jan & Schlösser, Alexander, 2018. "On the time-varying effects of economic policy uncertainty on the US economy," Ruhr Economic Papers 761, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    755. Hasbrouck, Joel, 1999. "Security bid/ask dynamics with discreteness and clustering: Simple strategies for modeling and estimation1," Journal of Financial Markets, Elsevier, vol. 2(1), pages 1-28, February.
    756. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
    757. Hardiyanto, A.V., 2007. "Daily Rp/USD stochastic volatility and the policy implication lesson," Journal of Asian Economics, Elsevier, vol. 18(1), pages 237-256, February.
    758. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Efficient variational approximations for state space models," Papers 2210.11010, arXiv.org, revised Jun 2023.
    759. Zhongjun Qu & Pierre Perron, 2008. "A Stochastic Volatility Model with Random Level Shifts: Theory and Applications to S&P 500 and NASDAQ Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-007, Boston University - Department of Economics.
    760. David F. Hendry, 2004. "Robustifying Forecasts from Equilibrium-Correction Models," Economics Papers 2004-W14, Economics Group, Nuffield College, University of Oxford.
    761. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    762. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    763. B. Jungbacker & S.J. Koopman, 2005. "Model-based Measurement of Actual Volatility in High-Frequency Data," Tinbergen Institute Discussion Papers 05-002/4, Tinbergen Institute.
    764. Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).
    765. Yuelin Liu & James Morley, 2013. "Structural Evolution of the Postwar U.S. Economy," Discussion Papers 2013-15, School of Economics, The University of New South Wales.
    766. Alexander Rathke & Samad Sarferaz, 2010. "Malthus was right: new evidence from a time-varying VAR," IEW - Working Papers 477, Institute for Empirical Research in Economics - University of Zurich.
    767. Blaise Gnimassoun & Marc Joëts & Tovonony Razafindrabe, 2016. "On the link between current account and oil price fluctuations in diversified economies: The case of Canada," Working Papers hal-04141574, HAL.
    768. Michael P. Clements & Ana Beatriz Galvão, 2023. "Density forecasting with Bayesian Vector Autoregressive models under macroeconomic data uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 164-185, March.
    769. Francesco Corsello & Valerio Nispi Landi, 2020. "Labor Market and Financial Shocks: A Time‐Varying Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(4), pages 777-801, June.
    770. Tetsuya Takaishi, 2009. "Bayesian Inference of Stochastic Volatility Model by Hybrid Monte Carlo," Papers 1001.0024, arXiv.org.
    771. Ding, Liang & Vo, Minh, 2012. "Exchange rates and oil prices: A multivariate stochastic volatility analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 15-37.
    772. Tetsuya Takaishi, 2009. "An Adaptive Markov Chain Monte Carlo Method for GARCH Model," Papers 0901.0992, arXiv.org.
    773. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
    774. Bruno Solnik & Thaisiri Watewai, 2016. "International Correlation Asymmetries: Frequent-but-Small and Infrequent-but-Large Equity Returns," PIER Discussion Papers 31, Puey Ungphakorn Institute for Economic Research.
    775. Banerjee, A. & Malik, S., 2012. "The changing role of expectations in US monetary policy: A new look using the Livingston Survey," Working papers 376, Banque de France.
    776. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    777. Sergey Ivashchenko & Semih Emre Cekin & Rangan Gupta & Chien-Chiang Lee, 2022. "Real-Time Forecast of DSGE Models with Time-Varying Volatility in GARCH Form," Working Papers 202204, University of Pretoria, Department of Economics.
    778. Cross, Jamie, 2019. "On the reduced macroeconomic volatility of the Australian economy: Good policy or good luck?," Economic Modelling, Elsevier, vol. 77(C), pages 174-186.
    779. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    780. T. Philipp Dybowski & Max Hanisch & Bernd Kempa, 2018. "The role of the exchange rate in Canadian monetary policy: evidence from a TVP-BVAR model," Empirical Economics, Springer, vol. 55(2), pages 471-494, September.
    781. Bontemps, Christian, 2013. "Moment-Based Tests for Discrete Distributions," IDEI Working Papers 772, Institut d'Économie Industrielle (IDEI), Toulouse, revised Oct 2014.
    782. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    783. Hong, Yongmiao & Li, Haitao, 2002. "Nonparametric specification testing for continuous-time models with application to spot interest rates," SFB 373 Discussion Papers 2002,32, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    784. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    785. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    786. Pezzo, Rosanna & Uberti, Mariacristina, 2006. "Approaches to forecasting volatility: Models and their performances for emerging equity markets," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 556-565.
    787. Tristan Senga Kiessé & Nabil Zougab & Célestin C. Kokonendji, 2016. "Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data," Computational Statistics, Springer, vol. 31(1), pages 189-206, March.
    788. Eddie Gerba & Klemens Hauzenberger, 2013. "Estimating US Fiscal and Monetary Interactions in a Time Varying VAR," Studies in Economics 1303, School of Economics, University of Kent.
    789. Jian Zhou & Zhixin Kang, 2011. "A Comparison of Alternative Forecast Models of REIT Volatility," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 275-294, April.
    790. Mardi Dungey & Diana Zhumabekova, 2001. "Factor analysis of a model of stock market returns using simulation-based estimation techniques," Pacific Basin Working Paper Series 2001-08, Federal Reserve Bank of San Francisco.
    791. Nonejad, Nima, 2018. "Déjà vol oil? Predicting S&P 500 equity premium using crude oil price volatility: Evidence from old and recent time-series data," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 260-270.
    792. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    793. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    794. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
    795. Filippo Pagani & Martin Wiegand & Saralees Nadarajah, 2022. "An n‐dimensional Rosenbrock distribution for Markov chain Monte Carlo testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 657-680, June.
    796. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    797. Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
    798. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    799. Eymen Errais & Dhikra Bahri, 2016. "Is Standard Deviation a Good Measure of Volatility? the Case of African Markets with Price Limits," Annals of Economics and Finance, Society for AEF, vol. 17(1), pages 145-165, May.
    800. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    801. Solibakke, Per Bjarte, 2001. "A stochastic volatility model specification with diagnostics for thinly traded equity markets," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 385-406, December.
    802. George J. Jiang & Pieter J. van der Sluis, 1998. "Pricing Stock Options under Stochastic Volatility and Stochastic Interest Rates with Efficient Method of Moments Estimation," Tinbergen Institute Discussion Papers 98-067/4, Tinbergen Institute.
    803. Anufriev, Mikhail & Panchenko, Valentyn, 2015. "Connecting the dots: Econometric methods for uncovering networks with an application to the Australian financial institutions," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 241-255.
    804. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    805. Aymeric Ortmans, 2020. "Evolving Monetary Policy in the Aftermath of the Great Recession," Documents de recherche 20-01, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
    806. Bowen Fu, Ivan Mendieta-Muñoz, 2023. "Structural shocks and trend inflation," Working Paper Series, Department of Economics, University of Utah 2023_04, University of Utah, Department of Economics.
    807. Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
    808. Rodríguez, Gabriel & Vassallo, Renato & Castillo B., Paul, 2023. "Effects of external shocks on macroeconomic fluctuations in Pacific Alliance countries," Economic Modelling, Elsevier, vol. 124(C).
    809. Helio Migon & Alexandra Schmidt & Romy Ravines & João Pereira, 2013. "An efficient sampling scheme for dynamic generalized models," Computational Statistics, Springer, vol. 28(5), pages 2267-2293, October.
    810. Lu Yang & Shigeyuki Hamori, 2018. "Modeling The Dynamics Of International Agricultural Commodity Prices: A Comparison Of Garch And Stochastic Volatility Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 1-20, September.
    811. Dybowski, T. Philipp, 2015. "Tracing the Role of Foresight on the Effects of U.S. Tax Policy: Evidence from a Time-Varying SVAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113049, Verein für Socialpolitik / German Economic Association.
    812. Samuel Gingras & William J. McCausland, 2020. "A Flexible Stochastic Conditional Duration Model," Papers 2005.09166, arXiv.org.
    813. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2017. "A re-examination of growth and growth uncertainty relationship in a stochastic volatility in mean model with time-varying parameters," Working Papers 15-32, Eastern Mediterranean University, Department of Economics.
    814. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    815. Milan Fičura & Jiří Witzany, 2018. "Use of Adapted Particle Filters in SVJD Models," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2018(3), pages 5-20.
    816. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2020. "The economic drivers of volatility and uncertainty," Temi di discussione (Economic working papers) 1285, Bank of Italy, Economic Research and International Relations Area.
    817. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    818. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    819. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2018. "Modeling volatility dynamics using non-Gaussian stochastic volatility model based on band matrix routine," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 193-201.
    820. Chen, Yi-Ting, 2012. "A simple approach to standardized-residuals-based higher-moment tests," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 427-453.
    821. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Nov 2024.
    822. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    823. Fernando J. Pérez Forero, 2017. "Measuring the Stance of Monetary Policy in a Time-Varying," Working Papers 102, Peruvian Economic Association.
    824. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    825. Andersen, Torben G. & Sorensen, Bent E., 1997. "GMM and QML asymptotic standard deviations in stochastic volatility models: Comments on Ruiz (1994)," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 397-403.
    826. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    827. Siddhartha Chib & Minchul Shin & Fei Tan, 2023. "DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 69-111, January.
    828. Ramis Khabibullin, 2019. "What measures of real economic activity slack are helpful for forecasting Russian inflation?," Bank of Russia Working Paper Series wps50, Bank of Russia.
    829. Benjamin K. Johannsen & Elmar Mertens, 2016. "A Time Series Model of Interest Rates With the Effective Lower Bound," Finance and Economics Discussion Series 2016-033, Board of Governors of the Federal Reserve System (U.S.).
    830. Keating, John W. & Valcarcel, Victor J., 2017. "What's so great about the Great Moderation?," Journal of Macroeconomics, Elsevier, vol. 51(C), pages 115-142.
    831. Bec, Frédérique & Bouabdallah, Othman & Ferrara, Laurent, 2015. "Comparing the shape of recoveries: France, the UK and the US," Economic Modelling, Elsevier, vol. 44(C), pages 327-334.
    832. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    833. Norris I. Bruce, 2008. "Pooling and Dynamic Forgetting Effects in Multitheme Advertising: Tracking the Advertising Sales Relationship with Particle Filters," Marketing Science, INFORMS, vol. 27(4), pages 659-673, 07-08.
    834. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    835. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    836. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
    837. Nils Bertschinger & Iurii Mozzhorin, 2021. "Bayesian estimation and likelihood-based comparison of agent-based volatility models," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 173-210, January.
    838. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
    839. Mengheng Li & Marcel Scharth, 2022. "Leverage, Asymmetry, and Heavy Tails in the High-Dimensional Factor Stochastic Volatility Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 285-301, January.
    840. Eiji Minemura, 2006. "An Interest-rate Model Analysis Based on Data Augmentation Bayesian Forecasting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(10), pages 1085-1104.
    841. Grammig, Joachim & Schaub, Eva-Maria, 2014. "Give me strong moments and time: Combining GMM and SMM to estimate long-run risk asset pricing models," CFS Working Paper Series 479, Center for Financial Studies (CFS).
    842. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    843. Hermann Singer, 2003. "Simulated Maximum Likelihood in Nonlinear Continuous-Discrete State Space Models: Importance Sampling by Approximate Smoothing," Computational Statistics, Springer, vol. 18(1), pages 79-106, March.
    844. Huang, Jing-Zhi & Ni, Jun & Xu, Li, 2022. "Leverage effect in cryptocurrency markets," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    845. Sun, Weihong & Liu, Ding, 2023. "Great moderation with Chinese characteristics: Uncovering the role of monetary policy," Economic Modelling, Elsevier, vol. 121(C).
    846. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
    847. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.
    848. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    849. Ronald Henry Lange, 2018. "The Monetary Transmission Mechanism in Canada: A Time-Varying Vector Autoregression with Stochastic Volatility," Applied Economics and Finance, Redfame publishing, vol. 5(6), pages 42-51, November.
    850. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," Economics Papers 2004-W20, Economics Group, Nuffield College, University of Oxford.
    851. Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
    852. Grassi, Stefano & Proietti, Tommaso, 2008. "Has the Volatility of U.S. Inflation Changed and How?," MPRA Paper 11453, University Library of Munich, Germany.
    853. Nima Nonejad, 2020. "Does the price of crude oil help predict the conditional distribution of aggregate equity return?," Empirical Economics, Springer, vol. 58(1), pages 313-349, January.
    854. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    855. Tomohiro Ando, 2008. "Measuring the baseline sales and the promotion effect for incense products: a Bayesian state-space modeling approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 763-780, December.
    856. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    857. Daichi Hiraki & Siddhartha Chib & Yasuhiro Omori, 2024. "Stochastic Volatility in Mean: Efficient Analysis by a Generalized Mixture Sampler," Papers 2404.13986, arXiv.org, revised Nov 2024.
    858. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    859. Florian Huber & Gregor Kastner & Michael Pfarrhofer, 2018. "Introducing shrinkage in heavy-tailed state space models to predict equity excess returns," Papers 1805.12217, arXiv.org, revised Jul 2019.
    860. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    861. Gabriel Rodríguez & Renato Vassallo, 2022. "Time Evolution of External Shocks on Macroeconomic Fluctuations in Pacific Alliance Countries: Empirical Application using TVP-VAR-SV Models," Documentos de Trabajo / Working Papers 2022-508, Departamento de Economía - Pontificia Universidad Católica del Perú.
    862. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
    863. Rehim Kilic, 2011. "A conditional variance tale from an emerging economy's freely floating exchange rate," Applied Economics, Taylor & Francis Journals, vol. 43(19), pages 2465-2480.
    864. Michael P Clements & Ana Beatriz Galvao, 2017. "Data Revisions and Real-time Probabilistic Forecasting of Macroeconomic Variables," ICMA Centre Discussion Papers in Finance icma-dp2017-01, Henley Business School, University of Reading.
    865. Dinghai Xu & John Knight, 2013. "Stochastic volatility model under a discrete mixture-of-normal specification," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(2), pages 216-239, April.
    866. Tetsuya Takaishi, 2009. "Markov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme," Papers 0909.1478, arXiv.org.
    867. Deschamps, Philippe J., 2006. "A flexible prior distribution for Markov switching autoregressions with Student-t errors," Journal of Econometrics, Elsevier, vol. 133(1), pages 153-190, July.
    868. Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
    869. Tetsuya Takaishi, 2008. "Financial Time Series Analysis of SV Model by Hybrid Monte Carlo," Papers 0807.4394, arXiv.org.
    870. Chen Gong & David S. Stoffer, 2021. "A Note on Efficient Fitting of Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 186-200, March.
    871. Brockwell, A.E., 2007. "Universal residuals: A multivariate transformation," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1473-1478, August.
    872. Dao, Chi-Mai & Wolters, Jürgen, 2008. "Common stochastic volatility trends in international stock returns," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 431-445, June.
    873. Alan Woodland & Kishti Sen, 2010. "The volatility of Australian traded goods' prices," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3849-3869.
    874. Benedikt Rotermann & Bernd Wilfling, 2015. "Estimating rational stock-market bubbles with sequential Monte Carlo methods," CQE Working Papers 4015, Center for Quantitative Economics (CQE), University of Muenster.
    875. Masahito Kobayashi & Xiuhong Shi, 2005. "Testing for EGARCH Against Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 135-150, January.
    876. Masaru Chiba & Masahito Kobayashi, 2013. "Testing for a Single-Factor Stochastic Volatility in Bivariate Series," JRFM, MDPI, vol. 6(1), pages 1-31, December.
    877. Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," LIDAM Discussion Papers CORE 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    878. S. Boragan Aruoba, 2016. "Term structures of inflation expectations and real interest rates," Working Papers 16-9, Federal Reserve Bank of Philadelphia.
    879. Tak Kuen Siu, 2023. "Bayesian nonlinear expectation for time series modelling and its application to Bitcoin," Empirical Economics, Springer, vol. 64(1), pages 505-537, January.
    880. David T. Frazier & Eric Renault, 2016. "Indirect Inference With(Out) Constraints," Papers 1607.06163, arXiv.org, revised Aug 2019.
    881. Langrock, Roland & MacDonald, Iain L. & Zucchini, Walter, 2012. "Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 147-161.
    882. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    883. Fuest, Angela & Schmidt, Torsten, 2020. "Inflation expectation uncertainty in a New Keynesian framework," Ruhr Economic Papers 867, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    884. Joel Hasbrouck, 1998. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-076, New York University, Leonard N. Stern School of Business-.
    885. Mendieta-Muñoz Ivan, 2024. "Time-varying Investment Dynamics in the USA," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-18.
    886. Petrella, Ivan & Antolin-Diaz, Juan & Drechsel, Thomas, 2021. "Advances in Nowcasting Economic Activity: Secular Trends, Large Shocks and New Data," CEPR Discussion Papers 15926, C.E.P.R. Discussion Papers.
    887. Osman Dou{g}an & Raffaele Mattera & Philipp Otto & Suleyman Tac{s}p{i}nar, 2024. "A Dynamic Spatiotemporal and Network ARCH Model with Common Factors," Papers 2410.16526, arXiv.org.
    888. Wen, Conghua & Zhai, Jia & Wang, Yinuo & Cao, Yi, 2024. "Implied volatility is (almost) past-dependent: Linear vs non-linear models," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    889. Oliveira, Fernando Nascimento & Plaga, Alessandra Ribeiro, 2011. "Eficácia das intervenções do Banco Central do Brasil sobre a volatilidade da taxa de câmbio nominal," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 65(1), March.
    890. Berger, Tino & Richter, Julia, 2017. "What has caused global business cycle decoupling: Smaller shocks or reduced sensitivity?," University of Göttingen Working Papers in Economics 300, University of Goettingen, Department of Economics.
    891. Juan Manuel Julio-Román & Fredy Gamboa-Estrada, 2019. "The Exchange Rate and Oil Prices in Colombia: A High Frequency Analysis," Borradores de Economia 1091, Banco de la Republica de Colombia.
    892. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    893. André, Christophe & Gabauer, David & Gupta, Rangan, 2021. "Time-varying spillovers between housing sentiment and housing market in the United States☆," Finance Research Letters, Elsevier, vol. 42(C).
    894. Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
    895. Michal Franta, 2011. "Identification of Monetary Policy Shocks in Japan Using Sign Restrictions within the TVP-VAR Framework," IMES Discussion Paper Series 11-E-13, Institute for Monetary and Economic Studies, Bank of Japan.
    896. Iwata, Yasuharu & Iiboshi, Hirokuni, 2020. "Fiscal Adjustments and Debt-Dependent Multipliers: Evidence from the U.S. Time Series," Discussion paper series HIAS-E-103, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    897. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    898. Thomas Url & Serguei Kaniovski, 2020. "The Potential Capital Requirement for a Minimum Prices Insurance Scheme for Wheat, Maize, and Rape Seed," WIFO Working Papers 601, WIFO.
    899. Lemoine, M. & Mougin, C., 2010. "The Growth-Volatility Relationship: New Evidence Based on Stochastic Volatility in Mean Models," Working papers 285, Banque de France.
    900. Darjus Hosszejni & Gregor Kastner, 2019. "Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol," Papers 1906.12123, arXiv.org, revised Feb 2021.
    901. Joshua C.C. Chan & Eric Eisenstat, 2013. "Gibbs Samplers for VARMA and Its Extensions," ANU Working Papers in Economics and Econometrics 2013-604, Australian National University, College of Business and Economics, School of Economics.
    902. Jong-Min Kim & Chulhee Jun & Junyoup Lee, 2021. "Forecasting the Volatility of the Cryptocurrency Market by GARCH and Stochastic Volatility," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
    903. Helmut Herwartz & Malte Rengel & Fang Xu, 2016. "Local Trends in Price‐to‐Dividend Ratios—Assessment, Predictive Value, and Determinants," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(8), pages 1655-1690, December.
    904. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    905. Zakaria Moussa, 2016. "How big is the comeback? Japanese exchange rate pass-through assessed by Time-Varying FAVAR," Working Papers hal-01282811, HAL.
    906. Romero, Eva, 2024. "Fitting complex stochastic volatility models using Laplace approximation," DES - Working Papers. Statistics and Econometrics. WS 43947, Universidad Carlos III de Madrid. Departamento de Estadística.
    907. Shieh-Liang Chen & Shian-Chang Huang & Yi-Mien Lin, 2007. "Using multivariate stochastic volatility models to investigate the interactions among NASDAQ and major Asian stock indices," Applied Economics Letters, Taylor & Francis Journals, vol. 14(2), pages 127-133.
    908. Balcilar, Mehmet & Ozdemir, Zeynel Abidin, 2019. "The nexus between the oil price and its volatility risk in a stochastic volatility in the mean model with time-varying parameters," Resources Policy, Elsevier, vol. 61(C), pages 572-584.
    909. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    910. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    911. Saranya, K. & Prasanna, P. Krishna, 2018. "Estimating stochastic volatility with jumps and asymmetry in Asian markets," Finance Research Letters, Elsevier, vol. 25(C), pages 145-153.
    912. T. R. Santos, 2018. "A Bayesian GED-Gamma stochastic volatility model for return data: a marginal likelihood approach," Papers 1809.01489, arXiv.org.
    913. Daniel J Lewis, 2021. "Identifying Shocks via Time-Varying Volatility [First Order Autoregressive Processes and Strong Mixing]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 3086-3124.
    914. Tetsuya Takaishi, 2013. "Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm," Papers 1305.3184, arXiv.org.
    915. S'andor Kuns'agi-M'at'e & G'abor F'ath & Istv'an Csabai & G'abor Moln'ar-S'aska, 2022. "Deep Weighted Monte Carlo: A hybrid option pricing framework using neural networks," Papers 2208.14038, arXiv.org, revised Dec 2022.
    916. Ronald Mahieu & Rob Bauer, 1998. "A Bayesian analysis of stock return volatility and trading volume," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 671-687.
    917. Whiteley, Nick, 2021. "Dimension-free Wasserstein contraction of nonlinear filters," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 31-50.
    918. Fu, Bowen, 2020. "Is the slope of the Phillips curve time-varying? Evidence from unobserved components models," Economic Modelling, Elsevier, vol. 88(C), pages 320-340.
    919. Andrew D. Sanford & Gael M. Martin, 2006. "Bayesian comparison of several continuous time models of the Australian short rate," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(2), pages 309-326, June.
    920. Wang, Nianling & Lou, Zhusheng, 2023. "Sequential Bayesian analysis for semiparametric stochastic volatility model with applications," Economic Modelling, Elsevier, vol. 123(C).
    921. Denis Belomestny & Ekaterina Krymova & Andrey Polbin, 2020. "Estimating TVP-VAR models with time invariant long-run multipliers," Papers 2008.00718, arXiv.org.
    922. Balatti, Mirco, 2020. "Inflation volatility in small and large advanced open economies," Working Paper Series 2448, European Central Bank.
    923. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    924. Xiaodong Du & Fengxia Dong, 2016. "Responses to market information and the impact on price volatility and trading volume: the case of Class III milk futures," Empirical Economics, Springer, vol. 50(2), pages 661-678, March.
    925. Didit Budi Nugroho & Takayuki Morimoto, 2019. "Incorporating Realized Quarticity into a Realized Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 495-528, December.
    926. Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
    927. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    928. Ahsan, Md. Nazmul & Dufour, Jean-Marie, 2021. "Simple estimators and inference for higher-order stochastic volatility models," Journal of Econometrics, Elsevier, vol. 224(1), pages 181-197.
    929. Stock, James H. & Watson, Mark, 2008. "The Evolution of National and Regional Factors in U.S. Housing Construction," Scholarly Articles 28468706, Harvard University Department of Economics.
    930. Wei Wei & Denis Pelletier, 2015. "A Jump-Diffusion Model with Stochastic Volatility and Durations," CREATES Research Papers 2015-34, Department of Economics and Business Economics, Aarhus University.
    931. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    932. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    933. Sophie Altermatt & Simon Beyeler, 2018. "Shall We Twist?," Diskussionsschriften dp1825, Universitaet Bern, Departement Volkswirtschaft.
    934. Chung, Tsz-Kin & Iiboshi, Hirokuni, 2015. "Prediction of Term Structure with Potentially Misspecified Macro-Finance Models near the Zero Lower Bound," MPRA Paper 85709, University Library of Munich, Germany.
    935. Jeongeun Kim & David S. Stoffer, 2008. "Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 811-833, September.
    936. Sanha Noh, 2020. "Posterior Inference on Parameters in a Nonlinear DSGE Model via Gaussian-Based Filters," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 795-841, December.
    937. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    938. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    939. Dufrénot, Gilles & Keddad, Benjamin, 2014. "Spillover effects of the 2008 global financial crisis on the volatility of the Indian equity markets: Coupling or uncoupling? A study on sector-based data," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 17-32.
    940. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    941. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    942. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    943. Strickland, Chris M. & Turner, Ian. W. & Denham, Robert & Mengersen, Kerrie L., 2009. "Efficient Bayesian estimation of multivariate state space models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4116-4125, October.
    944. Kondo, Koji, 1997. "Statistical analysis of foreign exchange rates: application of cointegration model and regime-switching stochastic volatility model," ISU General Staff Papers 1997010108000012997, Iowa State University, Department of Economics.
    945. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    946. Elder, John, 2021. "Canadian industry level production and energy prices," Energy Economics, Elsevier, vol. 99(C).
    947. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference (Revised in April 2006, subsequently published in "Journal of Econometrics", 140, 425-449, 2007. )," CARF F-Series CARF-F-011, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    948. Thomas A. Lubik & Christian Matthes, 2015. "Time-Varying Parameter Vector Autoregressions: Specification, Estimation, and an Application," Economic Quarterly, Federal Reserve Bank of Richmond, issue 4Q, pages 323-352.
    949. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for Asymmetric Stochastic Volatility Models (Published in "Computational Statistics and Data Analysis", 52-6, 2892-2910. February 2008. )," CARF F-Series CARF-F-103, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    950. G. Everaert & L. Pozzi, 2014. "The dynamics of European financial market integration," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 14/877, Ghent University, Faculty of Economics and Business Administration.
    951. Yves Atchade, 2006. "Resampling from the past to improve on MCMC algorithms," RePAd Working Paper Series LRSP-WP2, Département des sciences administratives, UQO.
    952. Haroon Mumtaz & Konstantinos Theodoridis, 2016. "Volatility Co-movement and the Great Moderation. An Empirical Analysis," Working Papers 804, Queen Mary University of London, School of Economics and Finance.
    953. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    954. Qiang Zhang & Rui Luo & Yaodong Yang & Yuanyuan Liu, 2018. "Benchmarking Deep Sequential Models on Volatility Predictions for Financial Time Series," Papers 1811.03711, arXiv.org.
    955. Manabu Asai, 2005. "Comparison of MCMC Methods for Estimating Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 281-301, June.
    956. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    957. Fałdziński, Marcin & Fiszeder, Piotr & Molnár, Peter, 2024. "Improving volatility forecasts: Evidence from range-based models," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    958. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    959. Koehler, Anne & Diebold, Francis X. & Giogianni, Lorenzo & Inoue, Atsushi, 1996. "Software review," International Journal of Forecasting, Elsevier, vol. 12(2), pages 309-315, June.
    960. Benjamin Wee, 2024. "Comparing MCMC algorithms in Stochastic Volatility Models using Simulation Based Calibration," Papers 2402.12384, arXiv.org.
    961. Lv, Qiming & Schneider, Manuel K. & Pitchford, Jonathan W., 2008. "Individualism in plant populations: Using stochastic differential equations to model individual neighbourhood-dependent plant growth," Theoretical Population Biology, Elsevier, vol. 74(1), pages 74-83.
    962. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    963. David Leuwer & Bernd Süssmuth, 2013. "The Exchange Rate Susceptibility of Some European Core Industries and the Currency Union," CESifo Working Paper Series 4253, CESifo.
    964. Jonathan R. Stroud & Michael S. Johannes, 2014. "Bayesian Modeling and Forecasting of 24-Hour High-Frequency Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1368-1384, December.
    965. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    966. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    967. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    968. Gary Koop & Simon M. Potter, 2007. "A flexible approach to parametric inference in nonlinear time series models," Staff Reports 285, Federal Reserve Bank of New York.
    969. Jim Griffin & Maria Kalli & Mark Steel, 2018. "Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 207-218, June.
    970. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    971. Ductor, Lorenzo & Leiva-León, Danilo, 2022. "Fluctuations in global output volatility," Journal of International Money and Finance, Elsevier, vol. 120(C).
    972. Liu, Qingfu & Wong, Ieokhou & An, Yunbi & Zhang, Jinqing, 2014. "Asymmetric Information and Volatility Forecasting in Commodity Futures Markets," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 79-97.
    973. Joel Hasbrouck, 1998. "Security Bid/Ask Dynamics with Discreteness and Clustering: Simple Strategies for Modeling and Estimation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-042, New York University, Leonard N. Stern School of Business-.
    974. Marco Del Negro & Giorgio E. Primiceri, 2013. "Time-Varying Structural Vector Autoregressions and Monetary Policy: a Corrigendum," Staff Reports 619, Federal Reserve Bank of New York.
    975. Bhatt, Vipul & Kishor, N Kundan & Ma, Jun, 2017. "The impact of EMU on bond yield convergence: Evidence from a time-varying dynamic factor model," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 206-222.
    976. Balcilar, Mehmet & Ozdemir, Zeynel Abidin, 2019. "The volatility effect on precious metals price returns in a stochastic volatility in mean model with time-varying parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    977. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
    978. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    979. James H. Stock & Mark W. Watson, 2019. "Trend, Seasonal, and Sectoral Inflation in the Euro Area," Working Papers 2019-30, Princeton University. Economics Department..
    980. Malin Gardberg & Lorenzo (L.C.G.) Pozzi, 2018. "Consumption and wealth in the long run: an integrated unobserved component approach," Tinbergen Institute Discussion Papers 18-046/VI, Tinbergen Institute, revised 13 Sep 2018.
    981. Hau, Liya & Zhu, Huiming & Huang, Rui & Ma, Xiang, 2020. "Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression," Energy, Elsevier, vol. 213(C).
    982. Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
    983. Prüser, Jan & Schlösser, Alexander, 2017. "The effects of economic policy uncertainty on European economies: Evidence from a TVP-FAVAR," Ruhr Economic Papers 708, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    984. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    985. Massimiliano De Santis, 2005. "Movements in the Equity Premium: Evidence from a Bayesian Time-Varying VAR," Money Macro and Finance (MMF) Research Group Conference 2005 62, Money Macro and Finance Research Group.
    986. Y. K. Tse & Xibin Zhang & Jun Yu, 2004. "Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 158-169.
    987. Rafiq Sohrab, 2012. "Is Discretionary Fiscal Policy in Japan Effective?," The B.E. Journal of Macroeconomics, De Gruyter, vol. 12(1), pages 1-49, August.
    988. Lee, Eunhee & Han, Doo Bong, 2016. "Oil Price Volatility and Asymmetric Leverage Effects," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235480, Agricultural and Applied Economics Association.
    989. Jin-Yu Zhang & Zhong-Tian Chen & Yong Li, 2019. "Bayesian Testing for Leverage Effect in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1153-1164, March.
    990. Hall, Stephen & Mizon, Grayham E. & Welfe, Aleksander, 2000. "Modelling economies in transition: an introduction," Economic Modelling, Elsevier, vol. 17(3), pages 339-357, August.
    991. Alex Hsu & Francisco Palomino & Liang Qian, 2023. "Gone with the Vol: A Decline in Asset Return Predictability During the Great Moderation," Management Science, INFORMS, vol. 69(5), pages 3025-3047, May.
    992. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.
    993. Leuwer, David & Süßmuth, Bernd, 2017. "The exchange rate susceptibility of European core industries, 1995-2010," Working Papers 147, University of Leipzig, Faculty of Economics and Management Science.
    994. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
    995. Xiaohui Zhang & Katharina Hauck & Xueyan Zhao, 2013. "Patient Safety In Hospitals – A Bayesian Analysis Of Unobservable Hospital And Specialty Level Risk Factors," Health Economics, John Wiley & Sons, Ltd., vol. 22(9), pages 1158-1174, September.
    996. Mike G. Tsionas & Valentin Zelenyuk, 2022. "Testing for Optimization Behavior in Production when Data is with Measurement Errors: A Bayesian Approach," CEPA Working Papers Series WP012022, School of Economics, University of Queensland, Australia.
    997. Joris de Wind & Luca Gambetti, 2014. "Reduced-rank time-varying vector autoregressions," CPB Discussion Paper 270, CPB Netherlands Bureau for Economic Policy Analysis.
    998. Chiara Pederzoli, 2006. "Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(1), pages 41-59.
    999. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    1000. Noriyuki Kunimoto & Kazuhiko Kakamu, 2021. "Is Bitcoin really a currency? A viewpoint of a stochastic volatility model," Papers 2111.15351, arXiv.org.
    1001. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    1002. Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Time-varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies," Tinbergen Institute Discussion Papers 16-099/III, Tinbergen Institute.
    1003. Osman Doğan & Süleyman Taşpınar & Anil K. Bera, 2021. "Bayesian estimation of stochastic tail index from high-frequency financial data," Empirical Economics, Springer, vol. 61(5), pages 2685-2711, November.
    1004. Han, Yufeng, 2012. "State uncertainty in stock markets: How big is the impact on the cost of equity?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2575-2592.
    1005. Carlos A. Abanto-Valle & Hernán B. Garrafa-Aragón, 2019. "Threshold Stochastic Volatility Models with Heavy Tails:A Bayesian Approach," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 32-53.
    1006. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.
    1007. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    1008. Caio Ibsen Rodrigues de Almeida & Samy Dana, 2005. "Stochastic Volatility and Option Pricing in the Brazilian Stock Marke," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(2), pages 169-206, August.
    1009. Sakaria, D.K. & Griffin, J.E., 2017. "On efficient Bayesian inference for models with stochastic volatility," Econometrics and Statistics, Elsevier, vol. 3(C), pages 23-33.
    1010. Grant, Angelia L., 2018. "The Great Recession and Okun's law," Economic Modelling, Elsevier, vol. 69(C), pages 291-300.
    1011. Raggi, Davide & Bordignon, Silvano, 2006. "Comparing stochastic volatility models through Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1678-1699, April.
    1012. Castelnuovo, Efrem & Greco, Luciano & Raggi, Davide, 2008. "Estimating regime-switching Taylor rules with trend inflation," Bank of Finland Research Discussion Papers 20/2008, Bank of Finland.
    1013. Feng, Guohua & Zhang, Xiaohui, 2014. "Returns to scale at large banks in the US: A random coefficient stochastic frontier approach," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 135-145.
    1014. Luo, Weijie & Wang, Yong & Zhang, Xiaoge, 2022. "Monetary policy uncertainty and firm risk-taking," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    1015. Perry Sadorsky, 2005. "Stochastic volatility forecasting and risk management," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 121-135.
    1016. Mário Correia Fernandes & José Carlos Dias & João Pedro Vidal Nunes, 2024. "Performance comparison of alternative stochastic volatility models and its determinants in energy futures: COVID‐19 and Russia–Ukraine conflict features," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 343-383, March.
    1017. Vo, Minh & Cohen, Michael & Boulter, Terry, 2015. "Asymmetric risk and return: Evidence from the Australian Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 558-573.
    1018. Yun, Jaeho, 2011. "The role of time-varying jump risk premia in pricing stock index options," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 833-846.
    1019. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.
    1020. Gordon V. Chavez, 2019. "Dynamic tail inference with log-Laplace volatility," Papers 1901.02419, arXiv.org, revised Jul 2019.
    1021. Yang, Jian & Zhou, Yinggang & Wang, Zijun, 2009. "The stock-bond correlation and macroeconomic conditions: One and a half centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 670-680, April.
    1022. Rong Zhang & Brett A. Inder & Xibin Zhang, 2013. "Bayesian estimation of a discrete response model with double rules of sample selection," Monash Econometrics and Business Statistics Working Papers 24/13, Monash University, Department of Econometrics and Business Statistics.
    1023. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.

  63. Andrew C Harvey & N.G. Shephard, 1993. "Estimation and Testing of Stochastic Variance Models," STICERD - Econometrics Paper Series 268, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    Cited by:

    1. Paolo Girardello & Orietta Nicolis & Giovanni Tondini, 2003. "Comparing Conditional Variance Models: Theory and Empirical Evidence," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 177-206, September.
    2. Hwang, Soosung & Satchell, Stephen E., 2000. "Market risk and the concept of fundamental volatility: Measuring volatility across asset and derivative markets and testing for the impact of derivatives markets on financial markets," Journal of Banking & Finance, Elsevier, vol. 24(5), pages 759-785, May.
    3. Francis E. Warnock & Veronica C. Warnock, 2000. "The declining volatility of U.S. employment: was Arthur Burns right?," International Finance Discussion Papers 677, Board of Governors of the Federal Reserve System (U.S.).
    4. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    5. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Francis X. Diebold & Jose A. Lopez, 1995. "Measuring Volatility Dynamics," NBER Technical Working Papers 0173, National Bureau of Economic Research, Inc.
    7. Alejandro Islas Camargo & Francisco Venegas Martínez, 2003. "Pricing Derivatives Securities with Prior Information on Long- Memory Volatility," Economía Mexicana NUEVA ÉPOCA, CIDE, División de Economía, vol. 0(1), pages 103-134, January-J.
    8. G Sandmann & Siem Jan Koopman, 1996. "Maximum Likelihood Estimation of Stochastic Volatility Models," FMG Discussion Papers dp248, Financial Markets Group.
    9. Ramaprasad Bhar & Damien Lee, 2018. "Alternative characterization of volatility of short-term interest rate," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-15, June.
    10. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    11. Mike So & K. Lam & W. K. Li, 1999. "Forecasting exchange rate volatility using autoregressive random variance model," Applied Financial Economics, Taylor & Francis Journals, vol. 9(6), pages 583-591.
    12. Ester Ruiz & Fernando Lorenzo, 1998. "The relation between the level and uncertainty of inflation," Documentos de Trabajo (working papers) 0698, Department of Economics - dECON.
    13. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    14. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    15. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    16. Alin Sima, 2008. "Stylized Facts and Discrete Stochastic Volatility Models," Advances in Economic and Financial Research - DOFIN Working Paper Series 10, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    17. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, October.
    18. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    19. J. I. Pena & E. Ruiz, 1995. "Stock market regulations and international financial integration: the case of Spain," The European Journal of Finance, Taylor & Francis Journals, vol. 1(4), pages 367-382.
    20. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    21. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2004. "How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations," Econometric Society 2004 Latin American Meetings 198, Econometric Society.
    22. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    23. Grané, A. & Veiga, H., 2008. "Accurate minimum capital risk requirements: A comparison of several approaches," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2482-2492, November.
    24. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.

  64. Siem Jan Koopman & N.G. Shephard, 1992. "Exact Score for Time Series Models in State Space Form (Now published in Biometrika (1992), 79, 4, pp.283-6.)," STICERD - Econometrics Paper Series 241, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    Cited by:

    1. Borus Jungbacker & Siem Jan Koopman & Michel van der Wel, 2009. "Smooth Dynamic Factor Analysis with an Application to the U.S. Term Structure of Interest Rates," CREATES Research Papers 2009-39, Department of Economics and Business Economics, Aarhus University.
    2. Neil Shephard, "undated". "The relationship between the conditional sum of squares and the exact likelihood for autoregressive moving average model," Economics Papers 1997-W6., Economics Group, Nuffield College, University of Oxford.
    3. Lasse Bork, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," CREATES Research Papers 2009-11, Department of Economics and Business Economics, Aarhus University.
    4. F. Butter & S. Koopman, 2001. "Interaction between structural and cyclical shocks in production and employment," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 137(2), pages 273-296, June.

  65. Neil Shephard & Justin J Yang, "undated". "Continuous time analysis of fleeting discrete price moves," Working Paper 360986, Harvard University OpenScholar.

    Cited by:

    1. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    2. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    3. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    4. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    5. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    6. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
    7. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    8. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.

  66. Neil Shephard, "undated". "The relationship between the conditional sum of squares and the exact likelihood for autoregressive moving average model," Economics Papers 1997-W6., Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Samir Amine & Wilner Predelus, 2019. "The Persistence of the 2008-2009 Recession and Insolvency Filings in Canada," Economics Bulletin, AccessEcon, vol. 39(1), pages 84-93.

  67. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Jurgen A. Doornik & Neil Shephard & David F. Hendry, 2004. "Parallel Computation in Econometrics: A Simplified Approach," Economics Papers 2004-W16, Economics Group, Nuffield College, University of Oxford.
    2. Christopher Ferrall, 2003. "Solving Finite Mixture Models in Parallel," Computational Economics 0303003, University Library of Munich, Germany.
    3. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
    4. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," UFAE and IAE Working Papers 637.05, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).

  68. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Pitt, M.K. & Walker, S.G., 2001. "Construction of Stationary Time Series via the Giggs Sampler with Application to Volatility Models," The Warwick Economics Research Paper Series (TWERPS) 595, University of Warwick, Department of Economics.
    2. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    3. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    5. Ilias Tsiakas, 2004. "Analysis of the predictive ability of information accumulated over nights, weekends and holidays," Econometric Society 2004 Australasian Meetings 208, Econometric Society.
    6. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    7. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    8. Laurent-Emmanuel Calvet & Adlai J. Fisher & Samuel B. Thompson, 2006. "Volatility Comovement: a multifrequency approach," Post-Print hal-00459667, HAL.
    9. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    10. Siddhartha Chib & Neil Shephard, 2001. "Comment on Garland B. Durham and A. Ronald Gallant's "Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes"," Economics Papers 2001-W26, Economics Group, Nuffield College, University of Oxford.
    11. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    12. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    13. Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez, 2004. "Estimating Nonlinear Dynamic Equilibrium economies: A Likelihood Approach," PIER Working Paper Archive 04-001, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    14. Hasbrouck, Joel, 1999. "Security bid/ask dynamics with discreteness and clustering: Simple strategies for modeling and estimation1," Journal of Financial Markets, Elsevier, vol. 2(1), pages 1-28, February.
    15. Runxia Guo & Zhile Wei & Ye Wei, 2020. "State estimation for the electro-hydraulic actuator based on particle filter with an improved resampling technique," Journal of Risk and Reliability, , vol. 234(1), pages 41-51, February.
    16. Joel Hasbrouck, 1998. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-076, New York University, Leonard N. Stern School of Business-.
    17. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    18. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    19. Joel Hasbrouck, 1998. "Security Bid/Ask Dynamics with Discreteness and Clustering: Simple Strategies for Modeling and Estimation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-042, New York University, Leonard N. Stern School of Business-.
    20. Lopes, Hedibert Freitas & Moreira, Ajax R. Bello & Schmidt, Alexandra Mello, 1999. "Hyperparameter estimation in forecast models," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 387-410, February.

Articles

  1. Luke Bornn & Neil Shephard & Reza Solgi, 2019. "Moment conditions and Bayesian non‐parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 5-43, February.
    See citations under working paper version above.
  2. Jack Britton & Neil Shephard & Anna Vignoles, 2019. "A comparison of sample survey measures of earnings of English graduates with administrative data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(3), pages 719-754, June.

    Cited by:

    1. Britton, Jack & Gruber, Jonathan, 2020. "Do income contingent student loans reduce labor supply?," Economics of Education Review, Elsevier, vol. 79(C).
    2. Arun Advani, 2022. "Who does and doesn't pay taxes?," Fiscal Studies, John Wiley & Sons, vol. 43(1), pages 5-22, March.
    3. Emmenegger Jana & Münnich Ralf, 2023. "Localising the Upper Tail: How Top Income Corrections Affect Measures of Regional Inequality," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 243(3-4), pages 285-317, June.
    4. Chris Belfield & Jack Britton & Franz Buscha & Lorraine Dearden & Matt Dickson & Luke Sibieta & Laura van der Erve & Anna Vignoles & Ian Walker & Yu Zhu, 2021. "How much does degree choice matter?," IFS Working Papers W21/24, Institute for Fiscal Studies.
    5. Kilic,Talip & Van den Broeck,Goedele & Koolwal,Gayatri B. & Moylan,Heather G., 2020. "Are You Being Asked ? Impacts of Respondent Selection on Measuring Employment," Policy Research Working Paper Series 9152, The World Bank.
    6. Advani, Arun & Summers, Andy & Tarrant, Hannah, 2020. "Measuring UK top incomes," CAGE Online Working Paper Series 490, Competitive Advantage in the Global Economy (CAGE).
    7. Jenkins, Stephen P. & Rios-Avila, Fernando, 2023. "Reconciling reports: modelling employment earnings and measurement errors using linked survey and administrative data," LSE Research Online Documents on Economics 117213, London School of Economics and Political Science, LSE Library.
    8. Jack Britton & Neil Shephard & Laura van der Erve, 2019. "Econometrics of valuing income contingent student loans using administrative data: groups of English students," IFS Working Papers W19/04, Institute for Fiscal Studies.

  3. Jack Britton & Lorraine Dearden & Neil Shephard & Anna Vignoles, 2019. "Is Improving Access to University Enough? Socio‐Economic Gaps in the Earnings of English Graduates," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(2), pages 328-368, April.

    Cited by:

    1. Britton, Jack & Gruber, Jonathan, 2020. "Do income contingent student loans reduce labor supply?," Economics of Education Review, Elsevier, vol. 79(C).
    2. Jack Britton & Neil Shephard & Laura van der Erve, 2019. "Econometrics of valuing income contingent student loans using administrative data: groups of English students," IFS Working Papers W19/04, Institute for Fiscal Studies.

  4. Neil Shephard & Justin J. Yang, 2017. "Continuous Time Analysis of Fleeting Discrete Price Moves," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1090-1106, July.
    See citations under working paper version above.
  5. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.

    Cited by:

    1. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    2. Kong, Xin-Bing & Liu, Cheng, 2018. "Testing against constant factor loading matrix with large panel high-frequency data," Journal of Econometrics, Elsevier, vol. 204(2), pages 301-319.
    3. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
    4. Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.

  6. Asger Lunde & Neil Shephard & Kevin Sheppard, 2016. "Econometric Analysis of Vast Covariance Matrices Using Composite Realized Kernels and Their Application to Portfolio Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 504-518, October.

    Cited by:

    1. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    2. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
    3. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    4. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
    5. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
    6. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    7. Weichuan Deng & Pawel Polak & Abolfazl Safikhani & Ronakdilip Shah, 2023. "A Unified Framework for Fast Large-Scale Portfolio Optimization," Papers 2303.12751, arXiv.org, revised Nov 2023.
    8. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
    9. Xin Jin & Jia Liu & Qiao Yang, 2021. "Does the Choice of Realized Covariance Measures Empirically Matter? A Bayesian Density Prediction Approach," Econometrics, MDPI, vol. 9(4), pages 1-22, December.
    10. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
    11. Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
    12. Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2021. "High-dimensional estimation of quadratic variation based on penalized realized variance," Papers 2103.03237, arXiv.org.
    13. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    14. Rafael Alves & Diego S. de Brito & Marcelo C. Medeiros & Ruy M. Ribeiro, 2023. "Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage," Papers 2303.16151, arXiv.org.
    15. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    16. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    17. Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
    18. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    19. Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2023. "High-dimensional estimation of quadratic variation based on penalized realized variance," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 331-359, July.
    20. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    21. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    22. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    23. Vasyl Golosnoy & Benno Hildebrandt & Steffen Köhler, 2019. "Modeling and Forecasting Realized Portfolio Diversification Benefits," JRFM, MDPI, vol. 12(3), pages 1-16, July.
    24. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    25. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.
    26. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).

  7. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    See citations under working paper version above.
  8. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.

    Cited by:

    1. Ole E. Barndorff-Nielsen & Orimar Sauri & Benedykt Szozda, 2017. "Selfdecomposable Fields," Journal of Theoretical Probability, Springer, vol. 30(1), pages 233-267, March.
    2. Mikkel Bennedsen & Asger Lunde & Neil Shephard & Almut E. D. Veraart, 2021. "Inference and forecasting for continuous-time integer-valued trawl processes," Papers 2107.03674, arXiv.org, revised Feb 2023.
    3. Doukhan, Paul & Jakubowski, Adam & Lopes, Silvia R.C. & Surgailis, Donatas, 2019. "Discrete-time trawl processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1326-1348.
    4. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    5. Valentin Courgeau & Almut E.D. Veraart, 2022. "Asymptotic theory for the inference of the latent trawl model for extreme values," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1448-1495, December.
    6. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
    7. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2018. "Intermittency of trawl processes," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 235-242.
    8. Leonte, Dan & Veraart, Almut E.D., 2024. "Simulation methods and error analysis for trawl processes and ambit fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 518-542.
    9. Mikkel Bennedsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2021. "Inference and forecasting for continuous-time integer-valued trawl processes and their use in financial economics," CREATES Research Papers 2021-12, Department of Economics and Business Economics, Aarhus University.

  9. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    See citations under working paper version above.
  10. Ole E. Barndorff-Nielsen & David G. Pollard & Neil Shephard, 2012. "Integer-valued L�vy processes and low latency financial econometrics," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 587-605, January.

    Cited by:

    1. Mikkel Bennedsen & Asger Lunde & Neil Shephard & Almut E. D. Veraart, 2021. "Inference and forecasting for continuous-time integer-valued trawl processes," Papers 2107.03674, arXiv.org, revised Feb 2023.
    2. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    3. Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
    4. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    5. Paul Doukhan, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 447-450, September.
    6. Jonas Hallgren & Timo Koski, 2016. "Testing for Causality in Continuous Time Bayesian Network Models of High-Frequency Data," Papers 1601.06651, arXiv.org.
    7. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    8. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    9. Baena-Mirabete, S. & Puig, P., 2020. "Computing probabilities of integer-valued random variables by recurrence relations," Statistics & Probability Letters, Elsevier, vol. 161(C).
    10. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    11. Shota Gugushvili & Ester Mariucci & Frank van der Meulen, 2020. "Decompounding discrete distributions: A nonparametric Bayesian approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 464-492, June.
    12. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.
    13. Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
    14. Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.
    15. Michael Grabchak, 2022. "Discrete Tempered Stable Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1877-1890, September.
    16. Fry, John & Serbera, Jean-Philippe, 2017. "Modelling and mitigation of Flash Crashes," MPRA Paper 82457, University Library of Munich, Germany.
    17. Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
    18. Xiaofei Hu & Beth Andrews, 2021. "Integer‐valued asymmetric garch modeling," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 737-751, September.
    19. Mikkel Bennedsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2021. "Inference and forecasting for continuous-time integer-valued trawl processes and their use in financial economics," CREATES Research Papers 2021-12, Department of Economics and Business Economics, Aarhus University.
    20. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.

  11. Meddahi, Nour & Mykland, Per & Shephard, Neil, 2011. "Realized Volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 1-1, January.

    Cited by:

    1. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    2. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    4. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    6. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    7. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    8. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    9. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    10. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    11. Benjamin Y. Zhang & Hao Zhou & Haibin Zhu, 2005. "Explaining credit default swap spreads with the equity volatility and jump risks of individual firms," Finance and Economics Discussion Series 2005-63, Board of Governors of the Federal Reserve System (U.S.).
    12. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
    13. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    14. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    15. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    16. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    17. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    18. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    19. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    20. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    21. Ng, Wing Lon, 2006. "Overreaction and multiple tail dependence at the high-frequency level: The copula rose," SFB 649 Discussion Papers 2006-086, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    22. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    23. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers halshs-00387286, HAL.
    24. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    25. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    26. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    27. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.
    28. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    29. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    30. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
    31. Juan M. Londono, 2011. "The variance risk premium around the world," International Finance Discussion Papers 1035, Board of Governors of the Federal Reserve System (U.S.).
    32. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," NBER Working Papers 13449, National Bureau of Economic Research, Inc.
    33. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    34. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    35. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    36. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    37. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
    38. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    39. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    40. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
    41. Jeffrey R. Russell & Federico M. Bandi, 2004. "Microstructure noise, realized volatility, and optimal sampling," Econometric Society 2004 Latin American Meetings 220, Econometric Society.
    42. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.

  12. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Subsampling realised kernels," Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
    See citations under working paper version above.
  13. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(5), pages 933-956, October. See citations under working paper version above.
  14. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    See citations under working paper version above.
  15. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    See citations under working paper version above.
  16. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.

    Cited by:

    1. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
    2. Christian Brinch, 2012. "Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling," Computational Statistics, Springer, vol. 27(1), pages 13-28, March.
    3. Edward P. Herbst & Frank Schorfheide, 2012. "Sequential Monte Carlo sampling for DSGE models," Working Papers 12-27, Federal Reserve Bank of Philadelphia.
    4. Siem Jan Koopman & Rutger Lit, 2015. "A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
    5. Jonas E. Arias & Juan F. Rubio-Ramirez & Daniel F. Waggoner, 2018. "Inference in Bayesian Proxy-SVARs," FRB Atlanta Working Paper 2018-16, Federal Reserve Bank of Atlanta.
    6. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    7. Youngjun Choe & Henry Lam & Eunshin Byon, 2018. "Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1155-1172, December.
    8. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    9. Tore Selland Kleppe & Jun Yu & Hans J. Skaug, 2012. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 12-2012, Singapore Management University, School of Economics.
    10. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    11. Dominik Bertsche & Robin Braun, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2018-03, Department of Economics, University of Konstanz.
    12. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    13. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    14. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    15. Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2011. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 11-057/4, Tinbergen Institute, revised 27 Jan 2012.
    16. G. Mesters & S. J. Koopman & M. Ooms, 2016. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
    17. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    18. Siem Jan Koopman & Geert Mesters, 2014. "Empirical Bayes Methods for Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-061/III, Tinbergen Institute.
    19. Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
    20. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    21. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
    22. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2013. "Testing for the shape parameter of generalized extreme value distribution based on the $$L_q$$ -likelihood ratio statistic," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 641-671, July.
    23. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    24. Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
    25. Bräuning, Falk & Koopman, Siem Jan, 2020. "The dynamic factor network model with an application to international trade," Journal of Econometrics, Elsevier, vol. 216(2), pages 494-515.

  17. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.

    Cited by:

    1. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    2. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2012. "A nonparametric test of the leverage hypothesis," CeMMAP working papers CWP24/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    4. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    5. Matteo Barigozzi & Christian T. Brownlees & Giampiero M. Gallo & David Veredas, 2010. "Disentangling Systematic and Idiosyncratic Risk for Large Panels of Assets," Econometrics Working Papers Archive wp2010_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    6. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    7. Pawel Janus & Siem Jan Koopman & André Lucas, 2011. "Long Memory Dynamics for Multivariate Dependence under Heavy Tails," Tinbergen Institute Discussion Papers 11-175/2/DSF28, Tinbergen Institute.
    8. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2017. "The Memory of Stock Return Volatility: Asset Pricing Implications," Hannover Economic Papers (HEP) dp-613, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    10. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
    11. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    12. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Gustavo Fruet Dias & Marcelo Fernandes & Cristina Mabel Scherrer, 2019. "Price discovery in a continuous-time setting," University of East Anglia School of Economics Working Paper Series 2019-02, School of Economics, University of East Anglia, Norwich, UK..
    14. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    15. Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    16. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    17. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
    18. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    19. Wei Lin & Gloria González‐Rivera, 2019. "Extreme returns and intensity of trading," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1121-1140, November.
    20. Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
    21. Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," SFB 649 Discussion Papers 2014-055, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    22. Knüppel, Malte & Krüger, Fabian & Pohle, Marc-Oliver, 2022. "Score-based calibration testing for multivariate forecast distributions," Discussion Papers 50/2022, Deutsche Bundesbank.
    23. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
    24. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
    25. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Post-Print hal-01474249, HAL.
    26. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    27. Huang, Wen & Huang, Zhuo & Matei, Marius & Wang, Tianyi, 2012. "Price Volatility Forecast for Agricultural Commodity Futures: The Role of High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 83-103, December.
    28. Jianqing Fan & Yingying Li & Ke Yu, 2012. "Vast Volatility Matrix Estimation Using High-Frequency Data for Portfolio Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 412-428, March.
    29. Peter Reinhard Hansen & Chen Tong, 2024. "Convolution-t Distributions," Papers 2404.00864, arXiv.org.
    30. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    31. Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
    32. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    33. Adrian Fernandez‐Perez & Bart Frijns & Ilnara Gafiatullina & Alireza Tourani‐Rad, 2018. "Determinants of intraday price discovery in VIX exchange traded notes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 535-548, May.
    34. Tse, Yiu-Kuen & Dong, Yingjie, 2014. "Intraday periodicity adjustments of transaction duration and their effects on high-frequency volatility estimation," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 352-361.
    35. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    36. Kim Christensen & Charlotte Christiansen & Anders M. Posselt, 2019. "The Economic Value of VIX ETPs," CREATES Research Papers 2019-14, Department of Economics and Business Economics, Aarhus University.
    37. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    38. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Econometrics Working Papers Archive 2016_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    39. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    40. Ballinari, Daniele & Audrino, Francesco & Sigrist, Fabio, 2022. "When does attention matter? The effect of investor attention on stock market volatility around news releases," International Review of Financial Analysis, Elsevier, vol. 82(C).
    41. Christensen, Kim & Oomen, Roel & Renò, Roberto, 2022. "The drift burst hypothesis," Journal of Econometrics, Elsevier, vol. 227(2), pages 461-497.
    42. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    43. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    44. Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
    45. Gustavo Fruet Dias & Karsten Schweiker, 2024. "Integrated Variance Estimation for Assets Traded in Multiple Venues," University of East Anglia School of Economics Working Paper Series 2024-04, School of Economics, University of East Anglia, Norwich, UK..
    46. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    47. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
    48. Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
    49. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    50. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    51. Barbara Będowska-Sójka, 2021. "Is liquidity wasted? The zero-returns on the Warsaw Stock Exchange," Annals of Operations Research, Springer, vol. 297(1), pages 37-51, February.
    52. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    53. Ding, Hui & Huang, Yisu & Wang, Jiqian, 2023. "Have the predictability of oil changed during the COVID-19 pandemic: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 87(C).
    54. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    55. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    56. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    57. Yu‐Sheng Lai, 2018. "Estimation of the optimal futures hedge ratio for equity index portfolios using a realized beta generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1370-1390, November.
    58. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    59. Fangfang Wang, 2016. "An Unbiased Measure of Integrated Volatility in the Frequency Domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 147-164, March.
    60. Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
    61. Kirill Dragun & Kris Boudt & Orimar Sauri & Steven Vanduffel, 2021. "Beta-Adjusted Covariance Estimation," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1010, Ghent University, Faculty of Economics and Business Administration.
    62. Sutton, Maxwell & Vasnev, Andrey L. & Gerlach, Richard, 2019. "Mixed interval realized variance: A robust estimator of stock price volatility," Econometrics and Statistics, Elsevier, vol. 11(C), pages 43-62.
    63. Bodilsen, Simon & Eriksen, Jonas N. & Grønborg, Niels S., 2021. "Asset pricing and FOMC press conferences," Journal of Banking & Finance, Elsevier, vol. 128(C).
    64. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    65. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    66. Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
    67. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    68. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    69. Anne Opschoor & André Lucas, 2019. "Observation-driven Models for Realized Variances and Overnight Returns," Tinbergen Institute Discussion Papers 19-052/IV, Tinbergen Institute.
    70. Zhang, Chuanhai & Zhang, Zhengjun & Xu, Mengyu & Peng, Zhe, 2023. "Good and bad self-excitation: Asymmetric self-exciting jumps in Bitcoin returns," Economic Modelling, Elsevier, vol. 119(C).
    71. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2013. "A nonparametric test of a strong leverage hypothesis," CeMMAP working papers 28/13, Institute for Fiscal Studies.
    72. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    73. Dovonon, Prosper & Goncalves, Silvia & Hounyo, Ulrich & Meddahi, Nour, 2017. "Bootstrapping high-frequency jump tests," IDEI Working Papers 870, Institut d'Économie Industrielle (IDEI), Toulouse.
    74. Bollerslev, Tim & Patton, Andrew J. & Zhang, Haozhe, 2022. "Equity clusters through the lens of realized semicorrelations," Economics Letters, Elsevier, vol. 211(C).
    75. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    76. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    77. Giorgio Mirone, 2018. "Cross-sectional noise reduction and more efficient estimation of Integrated Variance," CREATES Research Papers 2018-18, Department of Economics and Business Economics, Aarhus University.
    78. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    79. Li, Jia & Todorov, Viktor & Tauchen, George & Chen, Rui, 2017. "Mixed-scale jump regressions with bootstrap inference," Journal of Econometrics, Elsevier, vol. 201(2), pages 417-432.
    80. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    81. Lars Winkelmann & Wenying Yao, 2024. "Tests for Jumps in Yield Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 946-957, July.
    82. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    83. Enilov, Martin & Mensi, Walid & Stankov, Petar, 2023. "Does safe haven exist? Tail risks of commodity markets during COVID-19 pandemic," Journal of Commodity Markets, Elsevier, vol. 29(C).
    84. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    85. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    86. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    87. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    88. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    89. Tim Bollerslev & Jia Li & Yuan Xue, 2016. "Volume, Volatility and Public News Announcements," CREATES Research Papers 2016-19, Department of Economics and Business Economics, Aarhus University.
    90. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
    91. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    92. Xu, Yanyan & Liu, Jing & Ma, Feng & Chu, Jielei, 2024. "Liquidity and realized volatility prediction in Chinese stock market: A time-varying transitional dynamic perspective," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 543-560.
    93. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2011. "A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation," NBER Working Papers 17152, National Bureau of Economic Research, Inc.
    94. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    95. Robert F. Engle & Martin Klint Hansen & Asger Lunde, 2012. "And Now, The Rest of the News: Volatility and Firm Specific News Arrival," CREATES Research Papers 2012-56, Department of Economics and Business Economics, Aarhus University.
    96. Besma Hkiri & Juncal Cunado & Mehmet Balcilar & Rangan Gupta, 2019. "Time-Varying Relationship between Conventional and Unconventional Monetary Policies and Risk Aversion: International Evidence from Time- and Frequency-Domains," Working Papers 201965, University of Pretoria, Department of Economics.
    97. Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
    98. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    99. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    100. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    101. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    102. Gianluca Cubadda & Alain Hecq & Antonio Riccardo, 2018. "Forecasting Realized Volatility Measures with Multivariate and Univariate Models: The Case of The US Banking Sector," CEIS Research Paper 445, Tor Vergata University, CEIS, revised 30 Oct 2018.
    103. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    104. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
    105. Noss, Joseph & Pedace, Lucas & Tobek, Ondrej & Linton, Oliver & Crowley-Reidy, Liam, 2017. "The October 2016 sterling flash episode: when liquidity disappeared from one of the world’s most liquid markets," Bank of England working papers 687, Bank of England.
    106. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
    107. Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
    108. Jacod, Jean & Klüppelberg, Claudia & Müller, Gernot, 2017. "Testing for non-correlation between price and volatility jumps," Journal of Econometrics, Elsevier, vol. 197(2), pages 284-297.
    109. Cathy Ning & Dinghai Xu & Tony Wirjanto, 2014. "Is Volatility Clustering of Asset Returns Asymmetric?," Working Papers 050, Toronto Metropolitan University, Department of Economics.
    110. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    111. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    112. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    113. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
    114. Giuseppe Buccheri & Stefano Grassi & Giorgio Vocalelli, 2021. "Estimating Risk in Illiquid Markets: a Model of Market Friction with Stochastic Volatility," CEIS Research Paper 506, Tor Vergata University, CEIS, revised 08 Nov 2021.
    115. Jiang, George J. & Zhu, Kevin X., 2017. "Information Shocks and Short-Term Market Underreaction," Journal of Financial Economics, Elsevier, vol. 124(1), pages 43-64.
    116. Simon Clinet & Yoann Potiron, 2017. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Papers 1701.01185, arXiv.org, revised Jun 2018.
    117. Alemany, Nuria & Aragó, Vicent & Salvador, Enrique, 2020. "The distribution of index futures realised volatility under seasonality and microstructure noise," Economic Modelling, Elsevier, vol. 93(C), pages 398-414.
    118. Gerlach, Richard & Naimoli, Antonio & Storti, Giuseppe, 2018. "Time Varying Heteroskedastic Realized GARCH models for tracking measurement error bias in volatility forecasting," MPRA Paper 83893, University Library of Munich, Germany.
    119. Bannouh, Karim & Martens, Martin & van Dijk, Dick, 2013. "Forecasting volatility with the realized range in the presence of noise and non-trading," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 535-551.
    120. Johnson, James A. & Medeiros, Marcelo C. & Paye, Bradley S., 2022. "Jumps in stock prices: New insights from old data," Journal of Financial Markets, Elsevier, vol. 60(C).
    121. Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
    122. Gkillas Konstantinos & Gupta Rangan & Vortelinos Dimitrios I., 2023. "Uncertainty and realized jumps in the pound-dollar exchange rate: evidence from over one century of data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(1), pages 25-47, February.
    123. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    124. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    125. Gu, Tiantian & Venkateswaran, Anand & Erath, Marc, 2023. "Impact of fiscal stimulus on volatility: A cross-country analysis," Research in International Business and Finance, Elsevier, vol. 65(C).
    126. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    127. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    128. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    129. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, Department of Economics and Business Economics, Aarhus University.
    130. Chao Liang & Yongan Xu & Zhonglu Chen & Xiafei Li, 2023. "Forecasting China's stock market volatility with shrinkage method: Can Adaptive Lasso select stronger predictors from numerous predictors?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3689-3699, October.
    131. Nabil Bouamara & Kris Boudt & S'ebastien Laurent & Christopher J. Neely, 2023. "Sluggish news reactions: A combinatorial approach for synchronizing stock jumps," Papers 2309.15705, arXiv.org.
    132. Bian, Siyu & Serra, Teresa & Garcia, Philip & Irwin, Scott, 2022. "New evidence on market response to public announcements in the presence of microstructure noise," European Journal of Operational Research, Elsevier, vol. 298(2), pages 785-800.
    133. Hollstein, Fabian & Wese Simen, Chardin, 2020. "Variance risk: A bird’s eye view," Journal of Econometrics, Elsevier, vol. 215(2), pages 517-535.
    134. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    135. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
    136. Alessandra Amendola & Vincenzo Candila & Fabrizio Cipollini & Giampiero M. Gallo, 2020. "Doubly Multiplicative Error Models with Long- and Short-run Components," Papers 2006.03458, arXiv.org.
    137. Manh Cuong Dong & Cathy W. S. Chen & Manabu Asai, 2023. "Bayesian non‐linear quantile effects on modelling realized kernels," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 981-995, January.
    138. Moawia Alghalith & Christos Floros & Konstantinos Gkillas, 2020. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility," Risks, MDPI, vol. 8(2), pages 1-15, April.
    139. Shamima Ahmed & Muneer Alshater & Anis El Ammari & Helmi Hammami, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Post-Print hal-03697290, HAL.
    140. Dierkes, Maik & Hollstein, Fabian & Prokopczuk, Marcel & Würsig, Christoph Matthias, 2024. "Measuring tail risk," Journal of Econometrics, Elsevier, vol. 241(2).
    141. Leopoldo Catania & Mads Sandholdt, 2019. "Bitcoin at High Frequency," JRFM, MDPI, vol. 12(1), pages 1-20, February.
    142. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    143. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    144. Shuping Shi & Jun Yu, 2023. "Volatility Puzzle: Long Memory or Antipersistency," Management Science, INFORMS, vol. 69(7), pages 3861-3883, July.
    145. Tianlun Fei & Xiaoquan Liu & Conghua Wen, 2023. "Forecasting stock return volatility: Realized volatility‐type or duration‐based estimators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1594-1621, November.
    146. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    147. Apostolos Kourtis & Raphael N. Markellos & Lazaros Symeonidis, 2016. "An International Comparison of Implied, Realized, and GARCH Volatility Forecasts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1164-1193, December.
    148. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    149. Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
    150. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    151. Francisco Blasques & Vladimir Holy & Petra Tomanova, 2019. "Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros," Tinbergen Institute Discussion Papers 19-004/III, Tinbergen Institute.
    152. Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
    153. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    154. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    155. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    156. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    157. Walid Abass Mohammed, 2021. "Volatility Spillovers among Developed and Developing Countries: The Global Foreign Exchange Markets," JRFM, MDPI, vol. 14(6), pages 1-30, June.
    158. Markus Bibinger & Christopher J. Neely & Lars Winkelmann, 2017. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Working Papers 2017-12, Federal Reserve Bank of St. Louis.
    159. Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
    160. Johanna F. Ziegel & Fabian Kruger & Alexander Jordan & Fernando Fasciati, 2017. "Murphy Diagrams: Forecast Evaluation of Expected Shortfall," Papers 1705.04537, arXiv.org.
    161. M. Karanasos & S. Yfanti & A. Christopoulos, 2021. "The long memory HEAVY process: modeling and forecasting financial volatility," Annals of Operations Research, Springer, vol. 306(1), pages 111-130, November.
    162. Zhang, Hanyu & Dufour, Alfonso, 2019. "Modeling intraday volatility of European bond markets: A data filtering application," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 131-146.
    163. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    164. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    165. Jan Novotný & Giovanni Urga, 2018. "Testing for Co-jumps in Financial Markets," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 118-128.
    166. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    167. Lilian de Menezes & Marianna Russo & Giovanni Urga, 2016. "Identifying Drivers of Liquidity in the NBP Month-ahead Market," EcoMod2016 9570, EcoMod.
    168. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    169. Yabei Zhu & Xingguo Luo & Qi Xu, 2023. "Industry variance risk premium, cross‐industry correlation, and expected returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(1), pages 3-32, January.
    170. Fengler, Matthias R. & Mammen, Enno & Vogt, Michael, 2013. "Additive modeling of realized variance: tests for parametric specifications and structural breaks," Economics Working Paper Series 1332, University of St. Gallen, School of Economics and Political Science.
    171. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    172. Wong, Patrick, 2023. "Explaining intraday crude oil returns with higher order risk-neutral moments," Journal of Commodity Markets, Elsevier, vol. 31(C).
    173. Roger Buckland & Julian Williams & Janice Beecher, 2015. "Risk and regulation in water utilities: a cross-country comparison of evidence from the CAPM," Journal of Regulatory Economics, Springer, vol. 47(2), pages 117-145, April.
    174. Bollerslev, Tim & Todorov, Viktor, 2023. "The jump leverage risk premium," Journal of Financial Economics, Elsevier, vol. 150(3).
    175. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    176. Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    177. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    178. Gustavo Fruet Dias & Marcelo Fernandes & Cristina M. Scherrer, 2016. "Component shares in continuous time," CREATES Research Papers 2016-25, Department of Economics and Business Economics, Aarhus University.
    179. Dräger, Lena & Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The Long Memory of Equity Volatility and the Macroeconomy: International Evidence," Hannover Economic Papers (HEP) dp-667, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    180. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    181. George Kapetanios & Michael Neumann & George Skiadopoulos, 2014. "Jumps in Option Prices and Their Determinants: Real-time Evidence from the E-mini S&P 500 Option Market," Working Papers 730, Queen Mary University of London, School of Economics and Finance.
    182. David Ardia & Cl'ement Aymard & Tolga Cenesizoglu, 2023. "Fast and Furious: A High-Frequency Analysis of Robinhood Users' Trading Behavior," Papers 2307.11012, arXiv.org.
    183. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    184. Marius Matei & Xari Rovira & Núria Agell, 2019. "Bivariate Volatility Modeling with High-Frequency Data," Econometrics, MDPI, vol. 7(3), pages 1-15, September.
    185. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
    186. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    187. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017. "Copula–Based vMEM Specifications versus Alternatives: The Case of Trading Activity," Econometrics, MDPI, vol. 5(2), pages 1-24, April.
    188. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    189. Rangika Peiris & Chao Wang & Richard Gerlach & Minh-Ngoc Tran, 2024. "Semi-parametric financial risk forecasting incorporating multiple realized measures," Papers 2402.09985, arXiv.org, revised Dec 2024.
    190. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    191. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    192. Nabil Bouamara & S'ebastien Laurent & Shuping Shi, 2023. "Sequential Cauchy Combination Test for Multiple Testing Problems with Financial Applications," Papers 2303.13406, arXiv.org, revised Jun 2023.
    193. Prateek Sharma & Swati Sharma, 2015. "Forecasting gains of robust realized variance estimators: evidence from European stock markets," Economics Bulletin, AccessEcon, vol. 35(1), pages 61-69.
    194. Konstantinos Gkillas & Elie Bouri & Rangan Gupta & David Roubaud, 2020. "Spillovers in Higher-Order Moments of Crude Oil, Gold, and Bitcoin," Working Papers 202068, University of Pretoria, Department of Economics.
    195. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    196. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2017. "The Long Memory of Equity Volatility: International Evidence," Hannover Economic Papers (HEP) dp-614, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    197. Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
    198. Zhang, Chuanhai & Ma, Huan & Liao, Xiaosai, 2023. "Futures trading activity and the jump risk of spot market: Evidence from the bitcoin market," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    199. Gianluca De Nard & Robert F. Engle & Olivier Ledoit & Michael Wolf, 2020. "Large dynamic covariance matrices: enhancements based on intraday data," ECON - Working Papers 356, Department of Economics - University of Zurich, revised Jan 2022.
    200. Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
    201. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    202. Będowska-Sójka, Barbara, 2020. "Do aggressive orders affect liquidity? An evidence from an emerging market," Research in International Business and Finance, Elsevier, vol. 54(C).
    203. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    204. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    205. Janis Becker & Christian Leschinski, 2021. "Estimating the volatility of asset pricing factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 269-278, March.
    206. Gustavo Fruet Dias & Cristina M. Scherrer & Fotis Papailias, 2016. "Volatility Discovery," CREATES Research Papers 2016-07, Department of Economics and Business Economics, Aarhus University.
    207. Będowska-Sójka, Barbara & Echaust, Krzysztof, 2020. "What is the best proxy for liquidity in the presence of extreme illiquidity?," Emerging Markets Review, Elsevier, vol. 43(C).
    208. Jonathan Chassot & Michael Creel, 2023. "Constructing Efficient Simulated Moments Using Temporal Convolutional Networks," Working Papers 1412, Barcelona School of Economics.
    209. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    210. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    211. Rasika Yatigammana & Shelton Peiris & Richard Gerlach & David Edmund Allen, 2018. "Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants," Risks, MDPI, vol. 6(2), pages 1-22, May.
    212. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    213. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    214. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.
    215. Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
    216. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    217. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    218. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    219. Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
    220. Hiroyuki Kawakatsu, 2021. "Information in daily data volatility measurements," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1642-1656, April.
    221. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
    222. Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
    223. Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
    224. Guido Russi, 2012. "Estimating the Leverage Effect Using High Frequency Data," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 1-24, February.
    225. Yu‐Sheng Lai, 2021. "Generalized autoregressive score model with high‐frequency data for optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 2023-2045, December.
    226. Ziegel, Johanna F. & Krueger, Fabian & Jordan, Alexander & Fasciati, Fernando, 2017. "Murphy Diagrams: Forecast Evaluation of Expected Shortfall," Working Papers 0632, University of Heidelberg, Department of Economics.
    227. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," LSE Research Online Documents on Economics 88375, London School of Economics and Political Science, LSE Library.
    228. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    229. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Janeway Institute Working Papers 2423, Faculty of Economics, University of Cambridge.
    230. Christina Sklibosios Nikitopoulos & Alice Carole Thomas & Jianxin Wang, 2024. "Hedging pressure and oil volatility: Insurance versus liquidity demands," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 252-280, February.
    231. Bahcivan, Hulusi & Karahan, Cenk C., 2022. "High frequency correlation dynamics and day-of-the-week effect: A score-driven approach in an emerging market stock exchange," International Review of Financial Analysis, Elsevier, vol. 80(C).
    232. Song, Junmo & Baek, Changryong, 2019. "Detecting structural breaks in realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 58-75.
    233. Charles S. Bos & Pawel Janus, 2013. "A Quantile-based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data," Tinbergen Institute Discussion Papers 13-155/III, Tinbergen Institute.
    234. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," Journal of Econometrics, Elsevier, vol. 206(1), pages 226-257.
    235. Maria Ghani & Feng Ma & Dengshi Huang, 2024. "Forecasting the Asian stock market volatility: Evidence from WTI and INE oil futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1496-1512, April.
    236. Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
    237. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    238. Alexander Koch & Toan Luu Duc Huynh & Mei Wang, 2024. "News sentiment and international equity markets during BREXIT period: A textual and connectedness analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 5-34, January.
    239. Stavroula Yfanti & Georgios Chortareas & Menelaos Karanasos & Emmanouil Noikokyris, 2022. "A three‐dimensional asymmetric power HEAVY model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 2737-2761, July.
    240. Qinkai Chen & Christian-Yann Robert, 2021. "Multivariate Realized Volatility Forecasting with Graph Neural Network," Papers 2112.09015, arXiv.org, revised Dec 2021.
    241. Chao Liang & Yi Zhang & Yaojie Zhang, 2022. "Forecasting the volatility of the German stock market: New evidence," Applied Economics, Taylor & Francis Journals, vol. 54(9), pages 1055-1070, February.
    242. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
    243. Ranjan R. Chakravarty & Sudhanshu Pani, 2021. "A Data Paradigm to Operationalise Expanded Filtration: Realized Volatilities and Kernels from Non-Synchronous NASDAQ Quotes and Trades," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 617-652, December.
    244. Ke Yang & Nan Hu & Fengping Tian, 2024. "Forecasting Crude Oil Volatility Using the Deep Learning‐Based Hybrid Models With Common Factors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1429-1446, August.
    245. Dimpfl, Thomas & Schweikert, Karsten, 2023. "Information shares for markets with partially overlapping trading hours," Journal of Banking & Finance, Elsevier, vol. 154(C).
    246. Keren Shen & Jianfeng Yao & Wai Keung Li, 2016. "On the Surprising Explanatory Power of Higher Realized Moments in Practice," Papers 1604.07969, arXiv.org.
    247. Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
    248. Nima Nonejad, 2013. "A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory," CREATES Research Papers 2013-24, Department of Economics and Business Economics, Aarhus University.
    249. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    250. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    251. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    252. Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
    253. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    254. Heejoon Han, 2016. "Quantile Dependence between Stock Markets and its Application in Volatility Forecasting," Papers 1608.07193, arXiv.org.
    255. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    256. Curato, Imma Valentina & Mancino, Maria Elvira & Recchioni, Maria Cristina, 2018. "Spot volatility estimation using the Laplace transform," Econometrics and Statistics, Elsevier, vol. 6(C), pages 22-43.
    257. Dias, Gustavo Fruet & Fernandes, Marcelo & Scherrer, Cristina Mabel, 2017. "Improving on daily measures of price discovery," Textos para discussão 444, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    258. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
    259. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
    260. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    261. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    262. Mishra Anuj & Ramanathan Thekke Variyam, 2017. "Nonstationary autoregressive conditional duration models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-22, September.
    263. Mohammad Jahan-Parvar & Filip Zikes, 2019. "When do low-frequency measures really measure transaction costs?," Finance and Economics Discussion Series 2019-051, Board of Governors of the Federal Reserve System (U.S.).
    264. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    265. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    266. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    267. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    268. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
    269. Juho Kanniainen & Ye Yue, 2019. "The Arrival of News and Return Jumps in Stock Markets: A Nonparametric Approach," Papers 1901.02691, arXiv.org.
    270. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    271. Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
    272. Bugge, Sebastian A. & Guttormsen, Haakon J. & Molnár, Peter & Ringdal, Martin, 2016. "Implied volatility index for the Norwegian equity market," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 133-141.
    273. Rennekamp, Kristina M. & Sethuraman, Mani & Steenhoven, Blake A., 2022. "Engagement in earnings conference calls," Journal of Accounting and Economics, Elsevier, vol. 74(1).
    274. Su, Fei & Zhang, Jingjing, 2018. "Global price discovery in the Australian dollar market and its determinants," Pacific-Basin Finance Journal, Elsevier, vol. 48(C), pages 35-55.
    275. Shen, Yiwen & Shi, Meiqi, 2024. "Intraday variation in cross-sectional stock comovement and impact of index-based strategies," Journal of Financial Markets, Elsevier, vol. 68(C).
    276. Xinyue He & Teresa Serra, 2022. "Are price limits cooling off agricultural futures markets?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(5), pages 1724-1746, October.
    277. Li, Zeming & Sakkas, Athanasios & Urquhart, Andrew, 2022. "Intraday time series momentum: Global evidence and links to market characteristics," Journal of Financial Markets, Elsevier, vol. 57(C).
    278. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    279. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    280. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    281. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    282. Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    283. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
    284. Ingmar Nolte & Valeri Voev, 2011. "Least Squares Inference on Integrated Volatility and the Relationship Between Efficient Prices and Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 94-108, April.
    285. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    286. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.
    287. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.
    288. Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
    289. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.
    290. Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
    291. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    292. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.
    293. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).
    294. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.

  18. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    See citations under working paper version above.
  19. Frédérique Bec & Anders Rahbek & Neil Shephard, 2008. "The ACR Model: A Multivariate Dynamic Mixture Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 583-618, October.
    See citations under working paper version above.
  20. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.

    Cited by:

    1. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    2. Antonio A. F. Santos, 2021. "Bayesian Estimation for High-Frequency Volatility Models in a Time Deformed Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 455-479, February.
    3. Martin Iseringhausen & Hauke Vierke, 2018. "What Drives Output Volatility? The Role of Demographics and Government Size Revisited," European Economy - Discussion Papers 075, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    5. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
    6. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    7. Khorunzhina, Natalia & Richard, Jean-Francois, 2016. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," MPRA Paper 72326, University Library of Munich, Germany.
    8. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
    9. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2018. "Dissecting the 2007–2009 Real Estate Market Bust: Systematic Pricing Correction or Just a Housing Fad?," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 34-62.
    10. Jin‐Yu Chen & Xue‐Hong Zhu & Mei‐Rui Zhong, 2021. "Time‐varying effects and structural change of oil price shocks on industrial output: Evidence from China's oil industrial chain," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3460-3472, July.
    11. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    12. Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Bayesian Modeling of Time-Varying Parameters Using Regression Trees," Working Papers 23-05, Federal Reserve Bank of Cleveland.
    13. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
    14. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
    15. Gerdie Everaert & Martin Iseringhausen, 2017. "Measuring The International Dimension Of Output Volatility," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 17/928, Ghent University, Faculty of Economics and Business Administration.
    16. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    17. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    18. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    19. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously," CIRJE F-Series CIRJE-F-515, CIRJE, Faculty of Economics, University of Tokyo.
    20. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2024. "Constructing fan charts from the ragged edge of SPF forecasts," Working Papers 2429, Banco de España.
    21. Tino Berger & Gerdie Everaert & Hauke Vierke, 2015. "Testing for time variation in an unobserved components model for the U.S. economy," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/903, Ghent University, Faculty of Economics and Business Administration.
    22. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    23. Süleyman Taşpınar & Osman DoĞan & Jiyoung Chae & Anil K. Bera, 2021. "Bayesian Inference in Spatial Stochastic Volatility Models: An Application to House Price Returns in Chicago," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1243-1272, October.
    24. Guglielmo Maria Caporale & Luis Alberiko Gil‐Alana & Tommaso Trani, 2022. "On the persistence of UK inflation: A long‐range dependence approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 439-454, January.
    25. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    26. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    27. Yuriy Kitsul & Jonathan H. Wright, 2012. "The Economics of Options-Implied Inflation Probability Density Functions," Economics Working Paper Archive 600, The Johns Hopkins University,Department of Economics.
    28. Haroon Mumtaz, 2018. "A generalised stochastic volatility in mean VAR," Working Papers 855, Queen Mary University of London, School of Economics and Finance.
    29. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    30. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    31. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    32. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    33. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    34. Casas, Isabel, 2019. "Exploring option pricing and hedging via volatility asymmetry," DES - Working Papers. Statistics and Econometrics. WS 28234, Universidad Carlos III de Madrid. Departamento de Estadística.
    35. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    36. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    37. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    38. James H. Stock & Mark W. Watson, 2015. "Core Inflation and Trend Inflation," NBER Working Papers 21282, National Bureau of Economic Research, Inc.
    39. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    40. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    41. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2024. "A Bayesian approach for the determinants of bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 91(C).
    42. Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2020. "Bayesian Modelling of TVP-VARs Using Regression Trees," Working Papers 2308, University of Strathclyde Business School, Department of Economics, revised Aug 2023.
    43. Drew D. Creal & Jing Cynthia Wu, 2017. "Monetary Policy Uncertainty And Economic Fluctuations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1317-1354, November.
    44. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    45. Makoto Nakakita & Teruo Nakatsuma, 2021. "Bayesian Analysis of Intraday Stochastic Volatility Models of High-Frequency Stock Returns with Skew Heavy-Tailed Errors," JRFM, MDPI, vol. 14(4), pages 1-29, March.
    46. Angelos Alexopoulos & Petros Dellaportas & Omiros Papaspiliopoulos, 2019. "Bayesian prediction of jumps in large panels of time series data," Papers 1904.05312, arXiv.org, revised Apr 2021.
    47. Bognanni, Mark & Zito, John, 2020. "Sequential Bayesian inference for vector autoregressions with stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    48. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," CARF F-Series CARF-F-198, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    49. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    50. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    51. Fabian Kr ger & Todd E. Clark & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers No 8/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    52. Iseringhausen, Martin & Petrella, Ivan & Theodoridis, Konstantinos, 2022. "Aggregate Skewness and the Business Cycle," CEPR Discussion Papers 17162, C.E.P.R. Discussion Papers.
    53. James H. Stock & Mark W. Watson, 2019. "Trend, Seasonal, and Sectoral Inflation in the Euro Area," Working Papers Central Bank of Chile 847, Central Bank of Chile.
    54. Bai, Yu & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Macroeconomic Forecasting in a Multi-country Context," CEPR Discussion Papers 16994, C.E.P.R. Discussion Papers.
    55. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    56. Kastner, Gregor, 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
    57. Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
    58. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    59. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    60. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    61. IIBOSHI Hirokuni & MATSUMAE Tatsuyoshi & NISHIYAMA Shin-Ichi, 2014. "Sources of the Great Recession:A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks," ESRI Discussion paper series 313, Economic and Social Research Institute (ESRI).
    62. Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
    63. Florian Huber & Katrin Rabitsch, 2019. "Exchange rate dynamics and monetary policy -- Evidence from a non-linear DSGE-VAR approach," Department of Economics Working Papers wuwp295, Vienna University of Economics and Business, Department of Economics.
    64. Marcellino, Massimiliano & Aastveit, Knut Are & Carriero, Andrea & Clark, Todd, 2016. "Have Standard VARs Remained Stable Since the Crisis?," CEPR Discussion Papers 11558, C.E.P.R. Discussion Papers.
    65. James H. Stock & Mark W. Watson, 2020. "Trend, Seasonal, and Sectorial Inflation in the Euro Area," Central Banking, Analysis, and Economic Policies Book Series, in: Gonzalo Castex & Jordi Galí & Diego Saravia (ed.),Changing Inflation Dynamics,Evolving Monetary Policy, edition 1, volume 27, chapter 9, pages 317-344, Central Bank of Chile.
    66. Arnoud Stevens & Joris Wauters, 2021. "Is euro area lowflation here to stay? Insights from a time‐varying parameter model with survey data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 566-586, August.
    67. Lin, Qian & Sun, Xianming & Zhou, Chao, 2020. "Horizon-unbiased investment with ambiguity," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    68. Naoki Awaya & Yasuhiro Omori, 2017. "Particle rolling MCMC with Double Block Sampling: Conditional SMC Update Approach," CIRJE F-Series CIRJE-F-1066, CIRJE, Faculty of Economics, University of Tokyo.
    69. Nalan Baştürk & Cem Çakmakli & S. Pinar Ceyhan & Herman K. Van Dijk, 2014. "Posterior‐Predictive Evidence On Us Inflation Using Extended New Keynesian Phillips Curve Models With Non‐Filtered Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1164-1182, November.
    70. Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
    71. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    72. Hong, Hui & Bian, Zhicun & Chen, Naiwei, 2020. "Leverage effect on stochastic volatility for option pricing in Hong Kong: A simulation and empirical study," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    73. Joseph P. Byrne & Boulis M. Ibrahim & Xiaoyu Zong, 2020. "Asset Prices and Capital Share Risks: Theory and Evidence," Papers 2006.14023, arXiv.org.
    74. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    75. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2012. "News Impact Curve for Stochastic Volatility Models," Global COE Hi-Stat Discussion Paper Series gd12-242, Institute of Economic Research, Hitotsubashi University.
    76. Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    77. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    78. Minheng Xiao, 2022. "Data-Driven Risk Measurement by SV-GARCH-EVT Model," Papers 2201.09434, arXiv.org, revised Dec 2024.
    79. Pym Manopimoke & Vorada Limjaroenrat, 2016. "Trend Inflation Estimates for Thailand from Disaggregated Data," PIER Discussion Papers 51, Puey Ungphakorn Institute for Economic Research.
    80. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution Models," CIRJE F-Series CIRJE-F-738, CIRJE, Faculty of Economics, University of Tokyo.
    81. James M. Nason & Gregor W. Smith, 2021. "UK inflation forecasts since the thirteenth century," CAMA Working Papers 2021-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    82. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    83. Zhu, Qinwen & Diao, Xundi & Wu, Chongfeng, 2023. "Volatility forecast with the regularity modifications," Finance Research Letters, Elsevier, vol. 58(PA).
    84. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2021. "The time-varying effects of financial and geopolitical uncertainties on commodity market dynamics: A TVP-SVAR-SV analysis," Resources Policy, Elsevier, vol. 72(C).
    85. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    86. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    87. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    88. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    89. Efrem Castelnuovo & Kerem Tuzcuoglu & Luis Uzeda, 2022. "Sectoral Uncertainty," "Marco Fanno" Working Papers 0288, Dipartimento di Scienze Economiche "Marco Fanno".
    90. Travis J. Berge, 2023. "Time-Varying Uncertainty of the Federal Reserve's Output Gap Estimate," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1191-1206, September.
    91. Chen, Ji & Yang, Xinglin & Liu, Xiliang, 2022. "Learning, disagreement and inflation forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    92. Maciej Kostrzewski, 2016. "Bayesian SVLEDEJ Model for Detecting Jumps in Logarithmic Growth Rates of One Month Forward Gas Contract Prices," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(3), pages 161-179, September.
    93. Audrone Virbickaite & Hedibert F. Lopes & Maria Concepción Ausín & Pedro Galeano, 2018. "Particle Learning for Bayesian Semi-Parametric Stochastic Volatility Model," DEA Working Papers 88, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    94. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    95. Siddhartha Chib & Minchul Shin & Fei Tan, 2020. "High-Dimensional DSGE Models: Pointers on Prior, Estimation, Comparison, and Prediction∗," Working Papers 20-35, Federal Reserve Bank of Philadelphia.
    96. Danilo Cascaldi-Garcia, 2017. "Amplification effects of news shocks through uncertainty," 2017 Papers pca1251, Job Market Papers.
    97. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    98. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    99. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
    100. István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2017. "Joint Bayesian Analysis of Parameters and States in Nonlinear non‐Gaussian State Space Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1003-1026, August.
    101. Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
    102. Qin, Yun & Chen, Jinyu & Dong, Xuesong, 2021. "Oil prices, policy uncertainty and travel and leisure stocks in China," Energy Economics, Elsevier, vol. 96(C).
    103. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    104. Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
    105. Marcellino, Massimiliano & Carriero, Andrea & Corsello, Francesco, 2019. "The Global Component of Inflation Volatility," CEPR Discussion Papers 13470, C.E.P.R. Discussion Papers.
    106. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    107. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    108. Frédéric Karamé, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Post-Print hal-02296093, HAL.
    109. Audrone Virbickaite & Hedibert F. Lopes, 2018. "Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model," DEA Working Papers 89, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    110. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2014. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-932, CIRJE, Faculty of Economics, University of Tokyo.
    111. Nalan Basturk & Pinar Ceyhan & Herman K. van Dijk, 2014. "Bayesian Forecasting of US Growth using Basic Time Varying Parameter Models and Expectations Data," Tinbergen Institute Discussion Papers 14-119/III, Tinbergen Institute, revised 14 Sep 2014.
    112. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
    113. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    114. Ulm, M. & Hambuckers, J., 2022. "Do interest rate differentials drive the volatility of exchange rates? Evidence from an extended stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 125-148.
    115. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
    116. Huang Yu-Fan, 2021. "An effcient exact Bayesian method For state space models with stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-10, April.
    117. Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Papers 2404.11057, arXiv.org.
    118. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    119. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    120. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
    121. Xiao-Bin Liu & Yong Li, 2013. "Bayesian testing volatility persistence in stochastic volatility models with jumps," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1415-1426, December.
    122. Sergey Egiev, 2016. "On Persistence of Uncertainty Shocks," HSE Working papers WP BRP 144/EC/2016, National Research University Higher School of Economics.
    123. Chen, Jinyu & Zhu, Xuehong & Li, Hailing, 2020. "The pass-through effects of oil price shocks on China's inflation: A time-varying analysis," Energy Economics, Elsevier, vol. 86(C).
    124. Kang, Sang Hoon & Islam, Faridul & Kumar Tiwari, Aviral, 2019. "The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 90-101.
    125. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
    126. Jebabli, Ikram & Arouri, Mohamed & Teulon, Frédéric, 2014. "On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility," Energy Economics, Elsevier, vol. 45(C), pages 66-98.
    127. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2010. "Bayesian Estimation and Particle Filter for Max-Stable Processes," CIRJE F-Series CIRJE-F-757, CIRJE, Faculty of Economics, University of Tokyo.
    128. Istvan Barra & Siem Jan Koopman & Agnieszka Borowska, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute, revised 16 Feb 2018.
    129. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    130. Nakajima, Jouchi & Kunihama, Tsuyoshi & Omori, Yasuhiro & Frühwirth-Schnatter, Sylvia, 2012. "Generalized extreme value distribution with time-dependence using the AR and MA models in state space form," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3241-3259.
    131. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2015. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Working Papers 550, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    132. Xu Gong & Yujing Jin & Chuanwang Sun, 2022. "Time‐varying pure contagion effect between energy and nonenergy commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1960-1986, October.
    133. Awijen, Haithem & Ben Zaied, Younes & Nguyen, Duc Khuong & Sensoy, Ahmet, 2020. "Endogenous Financial Uncertainty and Macroeconomic Volatility: Evidence from the United States," MPRA Paper 101276, University Library of Munich, Germany, revised Jun 2020.
    134. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    135. Christopher D. Walker, 2024. "A Bayesian Perspective on the Maximum Score Problem," Papers 2410.17153, arXiv.org.
    136. Francesco Ravazzolo & Philip Rothman, 2015. "Oil-Price Density Forecasts of U.S. GDP," Working Papers No 10/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    137. Naoki Awaya & Yasuhiro Omori, 2019. "Particle rolling MCMC," CIRJE F-Series CIRJE-F-1110, CIRJE, Faculty of Economics, University of Tokyo.
    138. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
    139. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-952, CIRJE, Faculty of Economics, University of Tokyo.
    140. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    141. Mumtaz, Haroon, 2018. "A generalised stochastic volatility in mean VAR," Economics Letters, Elsevier, vol. 173(C), pages 10-14.
    142. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    143. Chon, Sora & Kim, Jaeho, 2021. "Does the Financial Leverage Effect Depend on Volatility Regimes?," Finance Research Letters, Elsevier, vol. 39(C).
    144. Naoko Hara & Kazuhiro Hiraki & Yoshitaka Ichise, 2015. "Changing Exchange Rate Pass-Through in Japan: Does It Indicate Changing Pricing Behavior?," Bank of Japan Working Paper Series 15-E-4, Bank of Japan.
    145. Martin Iseringhausen, 2018. "The Time-Varying Asymmetry Of Exchange Rate Returns: A Stochastic Volatility – Stochastic Skewness Model," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 18/944, Ghent University, Faculty of Economics and Business Administration.
    146. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    147. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    148. Zribi, Wissal & Boufateh, Talel & Guesmi, Khaled, 2023. "Climate uncertainty effects on bitcoin ecological footprint through cryptocurrency environmental attention," Finance Research Letters, Elsevier, vol. 58(PD).
    149. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    150. Yunjong Eo & Luis Uzeda & Benjamin Wong, 2022. "Understanding trend inflation through the lens of the goods and services sectors," CAMA Working Papers 2022-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    151. Sabiwalsky, Ralf, 2012. "Does Basel II pillar 3 risk exposure data help to identify risky banks?," SFB 649 Discussion Papers 2012-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    152. Christophe Chesneau & Salima El Kolei & Fabien Navarro, 2022. "Parametric estimation of hidden Markov models by least squares type estimation and deconvolution," Statistical Papers, Springer, vol. 63(5), pages 1615-1648, October.
    153. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    154. Tino Berger & Sibylle Grabert & Bernd Kempa, 2016. "Global and Country-Specific Output Growth Uncertainty and Macroeconomic Performance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 694-716, October.
    155. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    156. Malik, Sheheryar & Pitt, Michael K., 2009. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Economic Research Papers 271302, University of Warwick - Department of Economics.
    157. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    158. Cem Cakmakli & Verda Ozturk, 2021. "Economic Value of Modeling the Joint Distribution of Returns and Volatility: Leverage Timing," Koç University-TUSIAD Economic Research Forum Working Papers 2110, Koc University-TUSIAD Economic Research Forum.
    159. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    160. Lee, Cheol Woo & Kang, Kyu Ho, 2023. "Estimating and testing skewness in a stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 445-467.
    161. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    162. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    163. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    164. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Phillips Curve Models with Non-Filtered Time Series," Tinbergen Institute Discussion Papers 13-011/III, Tinbergen Institute.
    165. Yanhui Xi & Hui Peng & Yemei Qin, 2016. "Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-15, February.
    166. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2012. "Efficient estimation and particle filter for max‐stable processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 61-80, January.
    167. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    168. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2020. "On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin," Econometrics and Statistics, Elsevier, vol. 16(C), pages 69-90.
    169. Doğan, Osman & Taşpınar, Süleyman & Bera, Anil K., 2021. "A Bayesian robust chi-squared test for testing simple hypotheses," Journal of Econometrics, Elsevier, vol. 222(2), pages 933-958.
    170. Xiuqin Xu & Ying Chen, 2021. "Deep Stochastic Volatility Model," Papers 2102.12658, arXiv.org.
    171. Francesco Corsello & Valerio Nispi Landi, 2020. "Labor Market and Financial Shocks: A Time‐Varying Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(4), pages 777-801, June.
    172. Michael Grabchak & Eliana Christou, 2021. "A note on calculating expected shortfall for discrete time stochastic volatility models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-16, December.
    173. Zhou, Ying-Zhe & Huang, Jian-Bai & Chen, Jin-Yu, 2019. "Time-varying effect of the financialization of nonferrous metals markets on China's industrial sector," Resources Policy, Elsevier, vol. 64(C).
    174. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    175. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2020. "The effects of geopolitical risks on the stock dynamics of China's rare metals: A TVP-VAR analysis," Resources Policy, Elsevier, vol. 68(C).
    176. Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
    177. Berger, Tino & Grabert, Sibylle & Kempa, Bernd, 2017. "Global macroeconomic uncertainty," Journal of Macroeconomics, Elsevier, vol. 53(C), pages 42-56.
    178. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2020. "The economic drivers of volatility and uncertainty," Temi di discussione (Economic working papers) 1285, Bank of Italy, Economic Research and International Relations Area.
    179. Boufateh, Talel & Saadaoui, Zied, 2021. "The time-varying responses of financial intermediation and inflation to oil supply and demand shocks in the US: Evidence from Bayesian TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 102(C).
    180. Cem Cakmakli & Hamza Demircan, 2020. "Using Survey Information for Improving the Density Nowcasting of US GDP with a Focus on Predictive Performance during Covid-19 Pandemic," Koç University-TUSIAD Economic Research Forum Working Papers 2016, Koc University-TUSIAD Economic Research Forum.
    181. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2018. "Modeling volatility dynamics using non-Gaussian stochastic volatility model based on band matrix routine," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 193-201.
    182. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    183. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    184. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    185. Huang, Jing-Zhi & Ni, Jun & Xu, Li, 2022. "Leverage effect in cryptocurrency markets," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    186. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    187. Daichi Hiraki & Siddhartha Chib & Yasuhiro Omori, 2024. "Stochastic Volatility in Mean: Efficient Analysis by a Generalized Mixture Sampler," Papers 2404.13986, arXiv.org, revised Nov 2024.
    188. Florian Huber & Gregor Kastner & Michael Pfarrhofer, 2018. "Introducing shrinkage in heavy-tailed state space models to predict equity excess returns," Papers 1805.12217, arXiv.org, revised Jul 2019.
    189. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    190. Qian Lin & Xianming Sun & Chao Zhou, 2019. "Horizon-unbiased Investment with Ambiguity," Papers 1904.09379, arXiv.org.
    191. Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
    192. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
    193. Dinghai Xu & John Knight, 2013. "Stochastic volatility model under a discrete mixture-of-normal specification," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(2), pages 216-239, April.
    194. Arthur T. Rego & Thiago R. dos Santos, 2018. "Non-Gaussian Stochastic Volatility Model with Jumps via Gibbs Sampler," Papers 1809.01501, arXiv.org, revised Oct 2018.
    195. Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
    196. Umberto Triacca & Fulvia Focker, 2014. "Estimating overnight volatility of asset returns by using the generalized dynamic factor model approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 235-254, October.
    197. Darjus Hosszejni & Gregor Kastner, 2019. "Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage," Papers 1901.11491, arXiv.org, revised Nov 2019.
    198. Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," LIDAM Discussion Papers CORE 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    199. Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
    200. Tak Kuen Siu, 2023. "Bayesian nonlinear expectation for time series modelling and its application to Bitcoin," Empirical Economics, Springer, vol. 64(1), pages 505-537, January.
    201. Osman Dou{g}an & Raffaele Mattera & Philipp Otto & Suleyman Tac{s}p{i}nar, 2024. "A Dynamic Spatiotemporal and Network ARCH Model with Common Factors," Papers 2410.16526, arXiv.org.
    202. Berger, Tino & Richter, Julia, 2017. "What has caused global business cycle decoupling: Smaller shocks or reduced sensitivity?," University of Göttingen Working Papers in Economics 300, University of Goettingen, Department of Economics.
    203. Darjus Hosszejni & Gregor Kastner, 2019. "Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol," Papers 1906.12123, arXiv.org, revised Feb 2021.
    204. T. R. Santos, 2018. "A Bayesian GED-Gamma stochastic volatility model for return data: a marginal likelihood approach," Papers 1809.01489, arXiv.org.
    205. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    206. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    207. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    208. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    209. Sanha Noh, 2020. "Posterior Inference on Parameters in a Nonlinear DSGE Model via Gaussian-Based Filters," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 795-841, December.
    210. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    211. Annika Camehl & Tomasz Wo'zniak, 2023. "Time-Varying Identification of Monetary Policy Shocks," Papers 2311.05883, arXiv.org, revised May 2024.
    212. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    213. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for Asymmetric Stochastic Volatility Models (Published in "Computational Statistics and Data Analysis", 52-6, 2892-2910. February 2008. )," CARF F-Series CARF-F-103, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    214. Jonathan R. Stroud & Michael S. Johannes, 2014. "Bayesian Modeling and Forecasting of 24-Hour High-Frequency Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1368-1384, December.
    215. Ming Ma & Jing Zhang, 2023. "RETRACTED ARTICLE: A Bayesian analysis based on multivariate stochastic volatility model: evidence from green stocks," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-14, January.
    216. James H. Stock & Mark W. Watson, 2019. "Trend, Seasonal, and Sectoral Inflation in the Euro Area," Working Papers 2019-30, Princeton University. Economics Department..
    217. Omar Abbara & Mauricio Zevallos, 2022. "Maximum Likelihood Inference for Asymmetric Stochastic Volatility Models," Econometrics, MDPI, vol. 11(1), pages 1-18, December.
    218. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    219. Cem Çakmakli, 2012. "Bayesian Semiparametric Dynamic Nelson-Siegel Model," Working Paper series 59_12, Rimini Centre for Economic Analysis, revised Sep 2012.
    220. Noriyuki Kunimoto & Kazuhiko Kakamu, 2021. "Is Bitcoin really a currency? A viewpoint of a stochastic volatility model," Papers 2111.15351, arXiv.org.
    221. Osman Doğan & Süleyman Taşpınar & Anil K. Bera, 2021. "Bayesian estimation of stochastic tail index from high-frequency financial data," Empirical Economics, Springer, vol. 61(5), pages 2685-2711, November.
    222. Carlos A. Abanto-Valle & Hernán B. Garrafa-Aragón, 2019. "Threshold Stochastic Volatility Models with Heavy Tails:A Bayesian Approach," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 32-53.
    223. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    224. Smith Daniel R, 2009. "Asymmetry in Stochastic Volatility Models: Threshold or Correlation?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-36, May.

  21. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.

    Cited by:

    1. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    2. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
    3. Soojin Jo & Rodrigo Sekkel, 2019. "Macroeconomic Uncertainty Through the Lens of Professional Forecasters," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 436-446, July.
    4. Sofia Anyfantaki & Antonis Demos, 2012. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," DEOS Working Papers 1228, Athens University of Economics and Business.
    5. Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.
    6. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    7. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    9. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    10. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    11. Guanyu Hu & Ming-Hui Chen & Nalini Ravishanker, 2023. "Bayesian analysis of spherically parameterized dynamic multivariate stochastic volatility models," Computational Statistics, Springer, vol. 38(2), pages 845-869, June.
    12. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in dairy markets," Papers 2104.12707, arXiv.org.
    13. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    14. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    17. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    18. Benjamin Poignard & Manabu Asaiz, 2020. "A Penalised OLS Framework for High-Dimensional Multivariate Stochastic Volatility Models," Discussion Papers in Economics and Business 20-02, Osaka University, Graduate School of Economics.
    19. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    20. Sentana, Enrique & Calzolari, Giorgio & Fiorentini, Gabriele, 2008. "Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks," Journal of Econometrics, Elsevier, vol. 146(1), pages 10-25, September.
    21. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2013. "Bayesian Inference of Multiscale Stochastic Conditional Duration Models," Working Paper series 63_13, Rimini Centre for Economic Analysis.
    22. K. Triantafyllopoulos, 2012. "Multi‐variate stochastic volatility modelling using Wishart autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 48-60, January.
    23. Matteo Pelagatti & Giacomo Sbrana, 2020. "Estimating high dimensional multivariate stochastic volatility models," Working Papers 428, University of Milano-Bicocca, Department of Economics, revised Jan 2020.
    24. Frank C. Z. Wu, 2024. "Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 697-704, June.
    25. Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
    26. Santos, André A. P. & Nogales, Francisco J., 2009. "Comparing univariate and multivariate models to forecast portfolio value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws097222, Universidad Carlos III de Madrid. Departamento de Estadística.
    27. Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
    28. José Gonzalo Rangel & Robert F. Engle, 2011. "The Factor--Spline--GARCH Model for High and Low Frequency Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 109-124, May.
    29. Sung Hoon Choi & Donggyu Kim, 2023. "Large Global Volatility Matrix Analysis Based on Observation Structural Information," Papers 2305.01464, arXiv.org, revised Feb 2024.
    30. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    31. Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
    32. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    33. Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468, arXiv.org, revised Nov 2017.
    34. Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(2), pages 179-202, November.
    35. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    36. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    37. Roberto Leon-Gonzalez & Blessings Majon, 2024. "Approximate Factor Models with a Common Multiplicative Factor for Stochastic Volatility," GRIPS Discussion Papers 24-02, National Graduate Institute for Policy Studies.
    38. Christian Aßmann & Jens Boysen-Hogrefe & Markus Pape, 2024. "Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 577-609, September.
    39. Niyati Bhanja & Samia Nasreen & Arif Billah Dar & Aviral Kumar Tiwari, 2022. "Connectedness in International Crude Oil Markets," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 227-262, January.
    40. Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
    41. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    42. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," CARF F-Series CARF-F-198, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    43. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    44. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    45. Bekierman Jeremias & Gribisch Bastian, 2016. "Estimating stochastic volatility models using realized measures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 279-300, June.
    46. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    47. Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.
    48. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    49. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    50. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    51. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2010. "Block Structure Multivariate Stochastic Volatility Models," Working Papers in Economics 10/24, University of Canterbury, Department of Economics and Finance.
    52. Ping Wu & Gary Koop, 2022. "Fast, Order-Invariant Bayesian Inference in VARs using the Eigendecomposition of the Error Covariance Matrix," Working Papers 2310, University of Strathclyde Business School, Department of Economics.
    53. Xiaodong Du & Cindy L. Yu & Dermot J. Hayes, 2009. "Speculation and Volatility Spillover in the Crude Oil and Agricultural Commodity Markets: A Bayesian Analysis," Center for Agricultural and Rural Development (CARD) Publications 09-wp491, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    54. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    55. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    56. Lee, Eunhee & Han, Doo Bong & Ito, Shoichi & Rodolfo M. Nayga, Jr, 2015. "A common factor of stochastic volatilities between oil and commodity prices," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205771, Agricultural and Applied Economics Association.
    57. Trent Spears & Stefan Zohren & Stephen Roberts, 2023. "On statistical arbitrage under a conditional factor model of equity returns," Papers 2309.02205, arXiv.org.
    58. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2016. "A Multiscale Stochastic Conditional Duration Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 1-28, December.
    59. Asai, M. & Caporin, M. & McAleer, M.J., 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2012-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    60. Shi, Yongjing & Tiwari, Aviral Kumar & Gozgor, Giray & Lu, Zhou, 2020. "Correlations among cryptocurrencies: Evidence from multivariate factor stochastic volatility model," Research in International Business and Finance, Elsevier, vol. 53(C).
    61. Travis J. Berge, 2023. "Time-Varying Uncertainty of the Federal Reserve's Output Gap Estimate," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1191-1206, September.
    62. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    63. Jari Miettinen & Markus Matilainen & Klaus Nordhausen & Sara Taskinen, 2020. "Extracting Conditionally Heteroskedastic Components using Independent Component Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 293-311, March.
    64. Andrea Cipollini & George Kapetanios, 2004. "A Stochastic Variance Factor Model for Large Datasets and an Application to S&P Data," Working Papers 506, Queen Mary University of London, School of Economics and Finance.
    65. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    66. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    67. Neil Shephard & Gabriele Fiorentini & Enrique Sentana, 2003. "Likelihood-based estimation of latent generalised ARCH structures," FMG Discussion Papers dp453, Financial Markets Group.
    68. Pettenuzzo, Davide & Sabbatucci, Riccardo & Timmermann, Allan, 2023. "Dividend suspensions and cash flows during the Covid-19 pandemic: A dynamic econometric model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1522-1541.
    69. Dufour, Jean-Marie & Valéry, Pascale, 2009. "Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 193-206, June.
    70. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2019. "Threshold Stochastic Conditional Duration Model for Financial Transaction Data," JRFM, MDPI, vol. 12(2), pages 1-21, May.
    71. Didier Nibbering & Richard Paap & Michel van der Wel, 2016. "A Bayesian Infinite Hidden Markov Vector Autoregressive Model," Tinbergen Institute Discussion Papers 16-107/III, Tinbergen Institute, revised 13 Oct 2017.
    72. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    73. Yuta yamauchi & Yasuhiro Omori, 2019. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," CIRJE F-Series CIRJE-F-1117, CIRJE, Faculty of Economics, University of Tokyo.
    74. Yuta Yamauchi & Yasuhiro Omori, 2020. "Dynamic Factor, Leverage and Realized Covariances in Multivariate Stochastic Volatility," CIRJE F-Series CIRJE-F-1158, CIRJE, Faculty of Economics, University of Tokyo.
    75. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    76. Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    77. Schüssler, Rainer & Beckmann, Joscha & Koop, Gary & Korobilis, Dimitris, 2018. "Exchange rate predictability and dynamic Bayesian learning," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181523, Verein für Socialpolitik / German Economic Association.
    78. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    79. Pan, Zhiyuan & Xiao, Dongli & Dong, Qingma & Liu, Li, 2022. "Structural breaks, macroeconomic fundamentals and cross hedge ratio," Finance Research Letters, Elsevier, vol. 47(PA).
    80. Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2016. "Choosing Prior Hyperparameters," Working Paper 16-9, Federal Reserve Bank of Richmond.
    81. Enrique Sentana, 2018. "Volatility, Diversification and Contagion," Working Papers wp2018_1803, CEMFI.
    82. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in international dairy commodity markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(3), pages 704-728, July.
    83. Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
    84. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    85. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
    86. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    87. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    88. Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
    89. Vilda Purutçuoğlu, 2013. "Inference of the stochastic MAPK pathway by modified diffusion bridge method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 415-429, March.
    90. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2021. "Multiscale Stochastic Volatility Model with Heavy Tails and Leverage Effects," JRFM, MDPI, vol. 14(5), pages 1-28, May.
    91. Nicholas G. Polson & James G. Scott, 2011. "An empirical test for Eurozone contagion using an asset-pricing model with heavy-tailed stochastic volatility," Papers 1110.5789, arXiv.org, revised Mar 2012.
    92. Yuta Yamauchi & Yasuhiro Omori, 2020. "Dynamic factor, leverage and realized covariances in multivariate stochastic volatility," Papers 2011.06909, arXiv.org, revised Sep 2021.
    93. Wei Zhang, 2024. "Bayesian Dynamic Factor Models for High-dimensional Matrix-valued Time Series," Papers 2409.08354, arXiv.org, revised Nov 2024.
    94. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
    95. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    96. Malik, Sheheryar & Pitt, Michael K., 2009. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Economic Research Papers 271302, University of Warwick - Department of Economics.
    97. Wagner, Helga & Frühwirth-Schnatter, Sylvia & Jacobi, Liana, 2023. "Factor-augmented Bayesian treatment effects models for panel outcomes," Econometrics and Statistics, Elsevier, vol. 28(C), pages 63-80.
    98. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    99. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    100. David Edmund Allen, 2020. "Stochastic Volatility and GARCH: Do Squared End-of-Day Returns Provide Similar Information?," JRFM, MDPI, vol. 13(9), pages 1-25, September.
    101. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2013. "Stochastic Conditional Duration Models with Mixture Processes," Working Paper series 29_13, Rimini Centre for Economic Analysis.
    102. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    103. Yuta Yamauchi & Yasuhiro Omori, 2021. "Dynamic Factor, Leverage and Realized Covariances in Multivariate Stochastic Volatility," CIRJE F-Series CIRJE-F-1176, CIRJE, Faculty of Economics, University of Tokyo.
    104. Yuta Yamauchi & Yasuhiro Omori, 2016. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations ," CIRJE F-Series CIRJE-F-1029, CIRJE, Faculty of Economics, University of Tokyo.
    105. Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
    106. Ming Lin & Eric A. Suess & Robert H. Shumway & Rong Chen, 2016. "Bayesian Deconvolution of Signals Observed on Arrays," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 837-850, November.
    107. Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
    108. Rodríguez, Gabriel & Vassallo, Renato & Castillo B., Paul, 2023. "Effects of external shocks on macroeconomic fluctuations in Pacific Alliance countries," Economic Modelling, Elsevier, vol. 124(C).
    109. Giorgio Calzolari & Roxana Halbleib & Christian Mucher, 2023. "Sequential Estimation of Multivariate Factor Stochastic Volatility Models," Papers 2302.07052, arXiv.org.
    110. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2018. "Modeling volatility dynamics using non-Gaussian stochastic volatility model based on band matrix routine," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 193-201.
    111. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    112. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    113. Mengheng Li & Marcel Scharth, 2022. "Leverage, Asymmetry, and Heavy Tails in the High-Dimensional Factor Stochastic Volatility Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 285-301, January.
    114. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.
    115. Kleppe, Tore Selland & Liesenfeld, Roman & Moura, Guilherme Valle & Oglend, Atle, 2022. "Analyzing Commodity Futures Using Factor State-Space Models with Wishart Stochastic Volatility," Econometrics and Statistics, Elsevier, vol. 23(C), pages 105-127.
    116. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    117. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    118. Gabriel Rodríguez & Renato Vassallo, 2022. "Time Evolution of External Shocks on Macroeconomic Fluctuations in Pacific Alliance Countries: Empirical Application using TVP-VAR-SV Models," Documentos de Trabajo / Working Papers 2022-508, Departamento de Economía - Pontificia Universidad Católica del Perú.
    119. Geert Mesters & Bernd Schwaab & Siem Jan Koopman, 2014. "A Dynamic Yield Curve Model with Stochastic Volatility and Non-Gaussian Interactions: An Empirical Study of Non-standard Monetary Policy in the Euro Area," Tinbergen Institute Discussion Papers 14-071/III, Tinbergen Institute.
    120. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    121. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    122. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    123. Xiaodong Du & Fengxia Dong, 2016. "Responses to market information and the impact on price volatility and trading volume: the case of Class III milk futures," Empirical Economics, Springer, vol. 50(2), pages 661-678, March.
    124. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    125. Ghaemi Asl, Mahdi & Raheem, Ibrahim D. & Rashidi, Muhammad Mahdi, 2023. "Do stochastic risks flow between industrial and precious metals, Islamic stocks, green bonds, green stocks, clean investments, major foreign exchange rates, and Bitcoin?," Resources Policy, Elsevier, vol. 86(PA).
    126. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    127. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    128. Malefaki, Valia, 2015. "On Flexible Linear Factor Stochastic Volatility Models," MPRA Paper 62216, University Library of Munich, Germany.
    129. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2013. "Bayesian Inference of Asymmetric Stochastic Conditional Duration Models," Working Paper series 28_13, Rimini Centre for Economic Analysis.
    130. Xu, Yingying & Lien, Donald, 2020. "Dynamic exchange rate dependences: The effect of the U.S.-China trade war," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 68(C).
    131. Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
    132. Yingying Xu & Donald Lien, 2020. "Optimal futures hedging for energy commodities: An application of the GAS model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1090-1108, July.
    133. Tao Sun, 2024. "Bundle Choice Model with Endogenous Regressors: An Application to Soda Tax," Papers 2412.05794, arXiv.org.

  22. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    See citations under working paper version above.
  23. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    See citations under working paper version above.
  24. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    See citations under working paper version above.
  25. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    See citations under working paper version above.
  26. Barndorff-Nielsen, Ole E. & Shephard, Neil & Winkel, Matthias, 2006. "Limit theorems for multipower variation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 796-806, May.
    See citations under working paper version above.
  27. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    See citations under working paper version above.
  28. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.

    Cited by:

    1. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    2. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    3. Mattiussi, V. & Iori, G., 2006. "Currency futures volatility during the 1997 East Asian crisis: an application of Fourier analysis," Working Papers 06/09, Department of Economics, City University London.
    4. Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
    5. Turan G. Bali & Armen Hovakimian, 2009. "Volatility Spreads and Expected Stock Returns," Management Science, INFORMS, vol. 55(11), pages 1797-1812, November.
    6. Gianluca Cubadda & Alain Hecq, 2021. "Reduced Rank Regression Models in Economics and Finance," CEIS Research Paper 525, Tor Vergata University, CEIS, revised 08 Nov 2021.
    7. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
    8. Ferland, Rene & Lalancette, Simon, 2006. "Dynamics of realized volatilities and correlations: An empirical study," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2109-2130, July.
    9. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
    10. Gustavo Fruet Dias & Marcelo Fernandes & Cristina Mabel Scherrer, 2019. "Price discovery in a continuous-time setting," University of East Anglia School of Economics Working Paper Series 2019-02, School of Economics, University of East Anglia, Norwich, UK..
    11. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
    12. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    13. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    14. Xin Huang & Hao Zhou & Haibin Zhu, 2009. "A Framework for Assessing the Systemic Risk of Major Financial Institutions," BIS Working Papers 281, Bank for International Settlements.
    15. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.
    16. Aït-Sahalia, Yacine & Kalnina, Ilze & Xiu, Dacheng, 2020. "High-frequency factor models and regressions," Journal of Econometrics, Elsevier, vol. 216(1), pages 86-105.
    17. Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
    18. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    19. Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," SFB 649 Discussion Papers 2014-055, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
    21. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.
    22. F. Blasques & Christian Francq & Sébastien Laurent, 2024. "Autoregressive conditional betas," Post-Print hal-04676069, HAL.
    23. Mensi, Walid & Ko, Hee-Un & Sensoy, Ahmet & Kang, Sang Hoon, 2024. "Higher-order moment connectedness between stock and commodity markets and portfolio management," Resources Policy, Elsevier, vol. 89(C).
    24. Turan G. Bali & Robert F. Engle & Yi Tang, 2013. "Dynamic Conditional Beta is Alive and Well in the Cross-Section of Daily Stock Returns," Koç University-TUSIAD Economic Research Forum Working Papers 1305, Koc University-TUSIAD Economic Research Forum.
    25. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    26. Rama Cont & Lakshithe Wagalath, 2014. "Institutional Investors and the Dependence Structure of Asset Returns," Working Papers 2014-ACF-01, IESEG School of Management.
    27. Wang, Jying-Nan & Vigne, Samuel A. & Liu, Hung-Chun & Hsu, Yuan-Teng, 2024. "Hacks and the price synchronicity of bitcoin and ether," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 294-299.
    28. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    29. Jozef Barunik & Jiri Kukacka, 2015. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 959-973, June.
    30. Krenar AVDULAJ & Jozef BARUNIK, 2013. "Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
    31. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High Dimensional Vector Autoregressive Models," CEIS Research Paper 534, Tor Vergata University, CEIS, revised 24 Mar 2022.
    32. Doan, Bao & Jayasuriya, Dulani & Lee, John B. & Reeves, Jonathan J., 2024. "Cryptocurrency systematic risk dynamics," Economics Letters, Elsevier, vol. 241(C).
    33. Dovonon, Prosper & Taamouti, Abderrahim & Williams, Julian, 2022. "Testing the eigenvalue structure of spot and integrated covariance," Journal of Econometrics, Elsevier, vol. 229(2), pages 363-395.
    34. Bonato, Mateo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Risk Spillovers in International Equity Portfolios," Working Papers on Finance 1214, University of St. Gallen, School of Finance.
    35. Peter Reinhard Hansen & Yiyao Luo, 2023. "Robust Estimation of Realized Correlation: New Insight about Intraday Fluctuations in Market Betas," Papers 2310.19992, arXiv.org.
    36. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    37. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    38. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    39. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    40. Alessandro Casini, 2018. "Tests for Forecast Instability and Forecast Failure under a Continuous Record Asymptotic Framework," Papers 1803.10883, arXiv.org, revised Dec 2018.
    41. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    42. Gustavo Fruet Dias & Karsten Schweiker, 2024. "Integrated Variance Estimation for Assets Traded in Multiple Venues," University of East Anglia School of Economics Working Paper Series 2024-04, School of Economics, University of East Anglia, Norwich, UK..
    43. Tolga Cenesizoglu & Denada Ibrushi, 2020. "Predicting Systematic Risk With Macroeconomic And Financial Variables," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 43(3), pages 649-673, August.
    44. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    45. Andersen, Torben G. & Riva, Raul & Thyrsgaard, Martin & Todorov, Viktor, 2023. "Intraday cross-sectional distributions of systematic risk," Journal of Econometrics, Elsevier, vol. 235(2), pages 1394-1418.
    46. Maria Elvira Mancino & Simona Sanfelici, 2011. "Estimation of Quarticity with High Frequency Data," Working Papers - Mathematical Economics 2011-06, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa, revised Jan 2012.
    47. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    48. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    49. Kevin Sheppard & Andrew J. Patton, 2008. "Evaluating Volatility and Correlation Forecasts," Economics Series Working Papers 2008fe22, University of Oxford, Department of Economics.
    50. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
    51. Yeh, Jin-Huei & Yun, Mu-Shu, 2023. "Assessing jump and cojumps in financial asset returns with applications in futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    52. Johannes W. Fedderke, 2020. "The South African – United States Sovereign Bond Spread and its Association with Macroeconomic Fundamentals," Working Papers 830, Economic Research Southern Africa.
    53. Warusawitharana, Missaka, 2018. "Time-varying volatility and the power law distribution of stock returns," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 123-141.
    54. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    55. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    56. Haselmann, Rainer & Herwartz, Helmut, 2010. "The introduction of the Euro and its effects on portfolio decisions," Journal of International Money and Finance, Elsevier, vol. 29(1), pages 94-110, February.
    57. Yu‐Sheng Lai, 2018. "Estimation of the optimal futures hedge ratio for equity index portfolios using a realized beta generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1370-1390, November.
    58. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    59. Wang, Kent & Liu, Junwei & Liu, Zhi, 2013. "Disentangling the effect of jumps on systematic risk using a new estimator of integrated co-volatility," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1777-1786.
    60. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    61. Kirill Dragun & Kris Boudt & Orimar Sauri & Steven Vanduffel, 2021. "Beta-Adjusted Covariance Estimation," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1010, Ghent University, Faculty of Economics and Business Administration.
    62. Aviral Kumar Tiwari & Goodness C. Aye & Rangan Gupta & Konstantinos Gkillas, 2019. "Gold-Oil Dependence Dynamics and the Role of Geopolitical Risks: Evidence from a Markov-Switching Time-Varying Copula Model," Working Papers 201918, University of Pretoria, Department of Economics.
    63. Helmut Herwartz, 2006. "Econometric analysis of high frequency data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 89-104, March.
    64. Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," Working Papers in Economics 11/11, University of Canterbury, Department of Economics and Finance.
    65. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    66. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    67. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    68. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    69. Arindam Banerjee, 2019. "Predicting Stock Return of UAE Listed Companies Using Financial Ratios," Accounting and Finance Research, Sciedu Press, vol. 8(2), pages 214-214, May.
    70. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    71. Jiang, Liang & Wang, Xiaohu & Yu, Jun, 2018. "New distribution theory for the estimation of structural break point in mean," Journal of Econometrics, Elsevier, vol. 205(1), pages 156-176.
    72. Riza Demirer & Konstantinos Gkillas & Christos Kountzakis & Amaryllis Mavragani, 2020. "Risk Appetite and Jumps in Realized Correlation," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    73. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
    74. Bollerslev, Tim & Patton, Andrew J. & Zhang, Haozhe, 2022. "Equity clusters through the lens of realized semicorrelations," Economics Letters, Elsevier, vol. 211(C).
    75. Johannes W. Fedderke, 2020. "Is the Phillips curve framework still useful for understanding inflation dynamics in South Africa," Working Papers 10142, South African Reserve Bank.
    76. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
    77. Semeyutin, Artur & Gozgor, Giray & Lau, Chi Keung Marco & Xu, Bing, 2021. "Effects of idiosyncratic jumps and co-jumps on oil, gold, and copper markets," Energy Economics, Elsevier, vol. 104(C).
    78. Zhang, Congshan & Li, Jia & Todorov, Viktor & Tauchen, George, 2022. "Variation and efficiency of high-frequency betas," Journal of Econometrics, Elsevier, vol. 228(1), pages 156-175.
    79. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, Department of Economics and Business Economics, Aarhus University.
    80. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    81. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
    82. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    83. Xinghua Zheng & Yingying Li, 2010. "On the estimation of integrated covariance matrices of high dimensional diffusion processes," Papers 1005.1862, arXiv.org, revised Mar 2012.
    84. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    85. Li, Jia & Todorov, Viktor & Tauchen, George & Chen, Rui, 2017. "Mixed-scale jump regressions with bootstrap inference," Journal of Econometrics, Elsevier, vol. 201(2), pages 417-432.
    86. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    87. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    88. Chiriac, Roxana & Voev, Valeri, 2008. "Modelling and forecasting multivariate realized volatility," CoFE Discussion Papers 08/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    89. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    90. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    91. Yu‐Sheng Lai, 2022. "High‐frequency data and stock–bond investing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1623-1638, December.
    92. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    93. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    94. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    95. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
    96. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2005. "A Framework for Exploring the Macroeconomic Determinants of Systematic Risk," American Economic Review, American Economic Association, vol. 95(2), pages 398-404, May.
    97. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    98. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    99. Andrea Bucci & Vito Ciciretti, 2021. "Market Regime Detection via Realized Covariances: A Comparison between Unsupervised Learning and Nonlinear Models," Papers 2104.03667, arXiv.org.
    100. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
    101. Liu, Guangqiang & Wang, Yan & Chen, Xiaodan & Zhang, Yifeng & Shang, Yue, 2020. "Forecasting volatility of the Chinese stock markets using TVP HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    102. Benth, Fred Espen & Schroers, Dennis & Veraart, Almut E.D., 2022. "A weak law of large numbers for realised covariation in a Hilbert space setting," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 241-268.
    103. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    104. Matros, Philipp & Vilsmeier, Johannes, 2014. "The multivariate option iPoD framework: assessing systemic financial risk," Discussion Papers 20/2014, Deutsche Bundesbank.
    105. Hu, Sunyang & Gu, Zongyuan & Wang, Yifeng & Zhang, Xiaolei, 2019. "An analysis of the clustering effect of a jump risk complex network in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 622-630.
    106. Ghosh, Anisha & Linton, Oliver, 2007. "Consistent estimation of the risk-return tradeoff in the presence of measurement error," LSE Research Online Documents on Economics 24506, London School of Economics and Political Science, LSE Library.
    107. Jozef Baruník & Evžen Kocenda & Lukáš Vácha, 2015. "Gold, Oil, and Stocks: Dynamic Correlations," CESifo Working Paper Series 5333, CESifo.
    108. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    109. Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    110. Nolte, Ingmar & Voev, Valeri, 2007. "Estimating high-frequency based (co-) variances: A unified approach," CoFE Discussion Papers 07/07, University of Konstanz, Center of Finance and Econometrics (CoFE).
    111. Hayashi, Takaki & Yoshida, Nakahiro, 2011. "Nonsynchronous covariation process and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2416-2454, October.
    112. Peter Christoffersen & Asger Lunde & Kasper V. Olesen, 2014. "Factor Structure in Commodity Futures Return and Volatility," CREATES Research Papers 2014-31, Department of Economics and Business Economics, Aarhus University.
    113. Vortelinos, Dimitrios I., 2016. "Incremental information of stock indicators," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 79-97.
    114. Philipp Matros & Johannes Vilsmeier, 2013. "The Multivariate Option iPoD Framework - Assessing Systemic Financial Risk," Working Papers 143, Bavarian Graduate Program in Economics (BGPE).
    115. Philip Bertram & Robinson Kruse & Philipp Sibbertsen, 2013. "Fractional integration versus level shifts: the case of realized asset correlations," Statistical Papers, Springer, vol. 54(4), pages 977-991, November.
    116. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    117. Rama Cont & Lakshithe Wagalath, 2016. "Institutional Investors And The Dependence Structure Of Asset Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-37, March.
    118. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
    119. Shen, Keren & Yao, Jianfeng & Li, Wai Keung, 2019. "On a spiked model for large volatility matrix estimation from noisy high-frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 207-221.
    120. Ortas, E. & Salvador, M. & Moneva, J.M., 2015. "Improved beta modeling and forecasting: An unobserved component approach with conditional heteroscedastic disturbances," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 27-51.
    121. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    122. Shin, Dong Wan & Park, Sangun, 2012. "Efficient realized variance, regression coefficient, and correlation coefficient under different sampling frequencies," Economics Letters, Elsevier, vol. 115(3), pages 334-337.
    123. Kamiar Mohaddes & M. Hashem Pesaran, 2013. "One Hundred Years of Oil Income and the Iranian Economy: A Curse or a Blessing?," Working Papers 771, Economic Research Forum, revised Sep 2013.
    124. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
    125. Erlin Guo & Cuixia Li & Fengqin Tang, 2023. "The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization," Mathematics, MDPI, vol. 11(6), pages 1-11, March.
    126. María T. González-Pérez, 2021. "Lessons from estimating the average option-implied volatility term structure for the Spanish banking sector," Working Papers 2128, Banco de España.
    127. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    128. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    129. Yu, Qian & Bajja, Salwa, 2020. "Volatility estimation of general Gaussian Ornstein–Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 163(C).
    130. Michal Krajňák, 2020. "Je daň z příjmů fyzických osob ze závislé činnosti v České republice progresivní? [Is Personal Income Tax on Dependent Activity in the Czech Republic Progressive?]," Politická ekonomie, Prague University of Economics and Business, vol. 2020(5), pages 534-553.
    131. Michela Verardo & Andrew Patton, 2009. "Does Beta Move with News? Systematic Risk and Firm-Specific Information Flows," FMG Discussion Papers dp630, Financial Markets Group.
    132. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    133. Michiel de Pooter & Martin Martens & Dick van Dijk, 2008. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
    134. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    135. Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
    136. Torben G. Andersen & Luca Benzoni, 2007. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification test for Affine Term Structure Models," NBER Working Papers 12962, National Bureau of Economic Research, Inc.
    137. Li, Wenlan & Cheng, Yuxiang & Fang, Qiang, 2020. "Forecast on silver futures linked with structural breaks and day-of-the-week effect," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    138. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    139. Cherif Guermat & Richard D. F. Harris, 2006. "Bias in the estimation of non-linear transformations of the integrated variance of returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 481-494.
    140. Claudio Morana, 2010. "Realized mean-variance efficient portfolio selection and euro area stock market integration," Applied Financial Economics, Taylor & Francis Journals, vol. 20(12), pages 989-1001.
    141. Cecilia Mancini & Fabio Gobbi, 2010. "Identifying the Brownian Covariation from the Co-Jumps Given Discrete Observations," Working Papers - Mathematical Economics 2010-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    142. Li, Jia & Todorov, Viktor & Tauchen, George, 2017. "Adaptive estimation of continuous-time regression models using high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 36-47.
    143. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    144. Bucci, Andrea & Ciciretti, Vito, 2022. "Market regime detection via realized covariances," Economic Modelling, Elsevier, vol. 111(C).
    145. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2018. "Statistical inferences for price staleness," SAFE Working Paper Series 236, Leibniz Institute for Financial Research SAFE.
    146. Andrew Phin & Todd Prono & Jonathan J. Reeves & Konark Saxena, 2018. "Level Shifts in Beta, Spurious Abnormal Returns and the TARP Announcement," Finance and Economics Discussion Series 2018-081, Board of Governors of the Federal Reserve System (U.S.).
    147. Li, Shaoyu & Zheng, Tingguo, 2017. "Modeling spot rate using a realized stochastic volatility model with level effect and dynamic drift☆," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 200-221.
    148. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    149. Luca Taschini & Matteo Bonato, 2016. "Comovement and the Financialization of Commodities," Working Papers 64, Economic Research Southern Africa.
    150. Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
    151. Qifa Xu & Junqing Zuo & Cuixia Jiang & Yaoyao He, 2021. "A large constrained time‐varying portfolio selection model with DCC‐MIDAS: Evidence from Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3417-3435, July.
    152. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    153. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    154. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "Intra-daily volatility spillovers between the US and German stock markets," Economics Working Papers 2012-06, Christian-Albrechts-University of Kiel, Department of Economics.
    155. Krenar Avdulaj & Jozef Barunik, 2013. "Are benefits from oil - stocks diversification gone? New evidence from a dynamic copula and high frequency data," Papers 1307.5981, arXiv.org, revised Feb 2015.
    156. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    157. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    158. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    159. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2014. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-932, CIRJE, Faculty of Economics, University of Tokyo.
    160. Doan, Bao & Lee, John B. & Liu, Qianqiu & Reeves, Jonathan J., 2022. "Beta measurement with high frequency returns," Finance Research Letters, Elsevier, vol. 47(PA).
    161. Bannouh, K. & van Dijk, D.J.C. & Martens, M.P.E., 2008. "Range-based covariance estimation using high-frequency data: The realized co-range," Econometric Institute Research Papers EI 2007-53, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    162. Nabil Bouamara & Kris Boudt & S'ebastien Laurent & Christopher J. Neely, 2023. "Sluggish news reactions: A combinatorial approach for synchronizing stock jumps," Papers 2309.15705, arXiv.org.
    163. Yuta yamauchi & Yasuhiro Omori, 2019. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," CIRJE F-Series CIRJE-F-1117, CIRJE, Faculty of Economics, University of Tokyo.
    164. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
    165. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij & Jeannette H.C. Woerner, 2008. "Bipower variation for Gaussian processes with stationary increments," CREATES Research Papers 2008-21, Department of Economics and Business Economics, Aarhus University.
    166. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
    167. Aslanidis, Nektarios & Christiansen, Charlotte, 2014. "Quantiles of the realized stock–bond correlation and links to the macroeconomy," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 321-331.
    168. KALNINA, Ilze & TEWOU, Kokouvi, 2015. "Cross-sectional dependence in idiosyncratic volatility," Cahiers de recherche 2015-04, Universite de Montreal, Departement de sciences economiques.
    169. Reiß, Markus & Todorov, Viktor & Tauchen, George, 2014. "Nonparametric test for a constant beta over a fixed time interval," SFB 649 Discussion Papers 2014-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    170. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    171. Bilel Sanhaji & Julien Chevallier, 2023. "Tracking ‘Pure’ Systematic Risk with Realized Betas for Bitcoin and Ethereum," Post-Print hal-04218488, HAL.
    172. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
    173. Alessandro Casini & Pierre Perron, 2020. "Continuous Record Asymptotics for Change-Point Models," Boston University - Department of Economics - Working Papers Series WP2020-013, Boston University - Department of Economics.
    174. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    175. Si Mohammed, Kamel & Tedeschi, Marco & Mallek, Sabrine & Tarczyńska-Łuniewska, Małgorzata & Zhang, Anqi, 2023. "Realized semi variance quantile connectedness between oil prices and stock market: Spillover from Russian-Ukraine clash," Resources Policy, Elsevier, vol. 85(PA).
    176. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    177. Nien-Lin Liu & Hoang-Long Ngo, 2014. "Approximation of eigenvalues of spot cross volatility matrix with a view toward principal component analysis," Papers 1409.2214, arXiv.org.
    178. Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
    179. Abad, P. & Ferreras, R. & Robles, M.D., 2020. "Intra-industry transfer effects of credit risk news: Rated versus unrated rivals," The British Accounting Review, Elsevier, vol. 52(1).
    180. Francesco Ravazzolo & Marco J. Lombardi, 2012. "Oil price density forecasts: Exploring the linkages with stock markets," Working Papers No 3/2012, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    181. McMillan, David G. & Speight, Alan E.H., 2010. "Return and volatility spillovers in three euro exchange rates," Journal of Economics and Business, Elsevier, vol. 62(2), pages 79-93, March.
    182. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    183. Shabir A.A. Saleem & Peter N. Smith & Abdullah Yalaman, 2020. "Analysis of Systematic Risk around Firm-specific News in an Emerging Market using High Frequency Data," Discussion Papers 20/09, Department of Economics, University of York.
    184. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    185. Cui, Jing & Zhao, Hua, 2015. "Intraday jumps in China's Treasury bond market and macro news announcements," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 211-223.
    186. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    187. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    188. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    189. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.
    190. Haselmann, Rainer & Herwartz, Helmut, 2008. "Portfolio performance and the Euro: Prospects for new potential EMU members," Journal of International Money and Finance, Elsevier, vol. 27(2), pages 314-330, March.
    191. Jian Chen & Xiaoquan Liu, 2010. "The model-free measures and the volatility spread," Applied Economics Letters, Taylor & Francis Journals, vol. 17(18), pages 1829-1833.
    192. Hiroki Masuda & Takayuki Morimoto, 2009. "An Optimal Weight for Realized Variance Based on Intermittent High-Frequency Data," Global COE Hi-Stat Discussion Paper Series gd08-033, Institute of Economic Research, Hitotsubashi University.
    193. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
    194. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    195. Cenesizoglu, Tolga & de Oliveira Ferrazoli Ribeiro, Fabio & Reeves, Jonathan J., 2017. "Beta forecasting at long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 936-957.
    196. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    197. Becker, Christoph & Schmidt, Wolfgang M., 2015. "How past market movements affect correlation and volatility," Journal of International Money and Finance, Elsevier, vol. 50(C), pages 78-107.
    198. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.
    199. Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
    200. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    201. Chen, Dachuan & Mykland, Per A. & Zhang, Lan, 2024. "Realized regression with asynchronous and noisy high frequency and high dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
    202. Qianqiu Liu, 2009. "On portfolio optimization: How and when do we benefit from high-frequency data?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 560-582.
    203. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    204. Adam E Clements & Christopher A Coleman-Fenn & Daniel R Smith, 2011. "Forecasting Equicorrelation," NCER Working Paper Series 72, National Centre for Econometric Research, revised 29 Aug 2011.
    205. Alessandro Casini & Pierre Perron, 2020. "Continuous Record Laplace-based Inference about the Break Date in Structural Change Models," Boston University - Department of Economics - Working Papers Series WP2020-014, Boston University - Department of Economics.
    206. Dungey, Mardi & Henry, Olan T & Hvodzdyk, Lyudmyla, 2013. "The impact of jumps and thin trading on realized hedge ratios," Working Papers 2013-02, University of Tasmania, Tasmanian School of Business and Economics, revised 28 Mar 2013.
    207. Lidan Grossmass, 2014. "Obtaining and Predicting the Bounds of Realized Correlations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 191-226, September.
    208. Nicholas Taylor, 2014. "The Economic Value of Volatility Forecasts: A Conditional Approach," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 433-478.
    209. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    210. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    211. Mustafayeva, Konul & Wang, Weining, 2020. "Non-Parametric Estimation of Spot Covariance Matrix with High-Frequency Data," IRTG 1792 Discussion Papers 2020-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    212. Yeh, Jin-Huei & Wang, Jying-Nan, 2010. "Correcting microstructure comovement biases for integrated covariance," Finance Research Letters, Elsevier, vol. 7(3), pages 184-191, September.
    213. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    214. Raphael Auer & Bruce Iwadate & Andreas Schrimpf & Alexander F. Wagner & Raphael A. Auer, 2023. "Global Production Linkages and Stock Market Comovement," CESifo Working Paper Series 10492, CESifo.
    215. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    216. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    217. Arnaud Gloter, 2007. "Efficient estimation of drift parameters in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(4), pages 495-519, October.
    218. Koch, Sophia & Dimpfl, Thomas, 2023. "Attention and retail investor herding in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 51(C).
    219. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    220. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    221. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
    222. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    223. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    224. Henker, Thomas & Husodo, Zaäfri A., 2010. "Noise and efficient variance in the Indonesia Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 199-216, April.
    225. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    226. Li, Jia & Todorov, Viktor & Tauchen, George, 2016. "Inference theory for volatility functional dependencies," Journal of Econometrics, Elsevier, vol. 193(1), pages 17-34.
    227. Lakshithe Wagalath, 2016. "Feedback effects and endogenous risk in financial markets," Finance, Presses universitaires de Grenoble, vol. 37(2), pages 39-74.
    228. Nath, H. (Mindi) B. & Kim, Jae H. & Brooks, Robert D., 2012. "Realized dual-betas for leading Australian stocks: An evaluation of the estimation methods and the effect of the sampling interval," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 10-22.
    229. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    230. Bannouh, K. & Martens, M.P.E. & Oomen, R.C.A. & van Dijk, D.J.C., 2012. "Realized mixed-frequency factor models for vast dimensional covariance estimation," ERIM Report Series Research in Management ERS-2012-017-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    231. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    232. Liu, Guangying & Zhang, Xinsheng, 2011. "Power variation of fractional integral processes with jumps," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 962-972, August.
    233. Arnerić Josip & Poklepović Tea & Teai Juin Wen, 2018. "Neural Network Approach in Forecasting Realized Variance Using High-Frequency Data," Business Systems Research, Sciendo, vol. 9(2), pages 18-34, July.
    234. Elie Bouri & Konstantinos Gkillas & Rangan Gupta, 2020. "Trade uncertainties and the hedging abilities of Bitcoin," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 49(3), September.
    235. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    236. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    237. Kliber, Agata & Łęt, Blanka & Řezáč, Pavel, 2024. "Can a boost in oil prices suspend the evolution of the green transportation market? Relationships between green indices and Brent oil," Energy, Elsevier, vol. 295(C).
    238. Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de Estadística.
    239. Vogler, Jan & Golosnoy, Vasyl, 2023. "Unrestricted maximum likelihood estimation of multivariate realized volatility models," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1063-1074.
    240. Silja Kinnebrock & Mark Podolskij, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," OFRC Working Papers Series 2007fe03, Oxford Financial Research Centre.
    241. Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    242. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
    243. Omura, Akihiro & Li, Bin & Chung, Richard & Todorova, Neda, 2018. "Convenience yield, realised volatility and jumps: Evidence from non-ferrous metals," Economic Modelling, Elsevier, vol. 70(C), pages 496-510.
    244. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    245. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    246. I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
    247. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    248. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
    249. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    250. Papavassiliou, Vassilios G., 2013. "A new method for estimating liquidity risk: Insights from a liquidity-adjusted CAPM framework," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 184-197.
    251. Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
    252. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    253. Baruník Jozef & Fišer Pavel, 2024. "Co-Jumping of Treasury Yield Curve Rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(3), pages 481-506.
    254. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    255. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    256. Yuta Yamauchi & Yasuhiro Omori, 2016. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations ," CIRJE F-Series CIRJE-F-1029, CIRJE, Faculty of Economics, University of Tokyo.
    257. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    258. Konstantinos Gkillas & Paraskevi Katsiampa & Dimitrios I. Vortelinos & Mark E. Wohar, 2023. "Greek government‐debt crisis events and European financial markets: News surprises on Greek bond yields and inter‐relations of European financial markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 4037-4054, October.
    259. Ciciretti, Vito & Bucci, Andrea, 2023. "Building optimal regime-switching portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    260. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    261. Vito Ciciretti & Alberto Pallotta, 2024. "Network Risk Parity: graph theory-based portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 25(2), pages 136-146, March.
    262. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    263. Campbell, John Y., 2009. "The Changing Role of Nominal Government Bonds in Asset Allocation," Scholarly Articles 10884856, Harvard University Department of Economics.
    264. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    265. Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2023. "High-dimensional estimation of quadratic variation based on penalized realized variance," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 331-359, July.
    266. Giuseppe Buccheri & Davide Pirino & Luca Trapin, 2021. "Managing liquidity with portfolio staleness," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 215-239, June.
    267. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    268. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    269. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.
    270. Taro Kanatani & Roberto Reno', 2007. "Unbiased covariance estimation with interpolated data," Department of Economics University of Siena 502, Department of Economics, University of Siena.
    271. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2013. "Conditional alphas and realized betas," Textos para discussão 341, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    272. L. C. G. Rogers & Fanyin Zhou, 2008. "Estimating correlation from high, low, opening and closing prices," Papers 0804.0162, arXiv.org.
    273. Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    274. Kleppe, Tore Selland & Liesenfeld, Roman & Moura, Guilherme Valle & Oglend, Atle, 2022. "Analyzing Commodity Futures Using Factor State-Space Models with Wishart Stochastic Volatility," Econometrics and Statistics, Elsevier, vol. 23(C), pages 105-127.
    275. Mohammad Abu Sayeed & Mardi Dungey & Wenying Yao, 2018. "High-frequency Characterisation of Indian Banking Stocks," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 213-238, August.
    276. Clements, Adam & Vasnev, Andrey L., 2023. "Combining simple multivariate HAR-like models for portfolio construction," Working Papers BAWP-2023-03, University of Sydney Business School, Discipline of Business Analytics.
    277. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2019. "Tests for conditional heteroscedasticity with functional data and goodness-of-fit tests for FGARCH models," MPRA Paper 93048, University Library of Munich, Germany.
    278. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    279. Anna Cieslak & Andreas Schrimpf, 2018. "Non-Monetary News in Central Bank Communication," NBER Working Papers 25032, National Bureau of Economic Research, Inc.
    280. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    281. Reiß, Markus & Todorov, Viktor & Tauchen, George, 2015. "Nonparametric test for a constant beta between Itô semi-martingales based on high-frequency data," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2955-2988.
    282. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    283. Luo, Jiawen & Marfatia, Hardik A. & Ji, Qiang & Klein, Tony, 2023. "Co-volatility and asymmetric transmission of risks between the global oil and China's futures markets," Energy Economics, Elsevier, vol. 117(C).
    284. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    285. Taro Kanatani, 2007. "Finite Sample Analysis of Weighted Realized Covariance with Noisy Asynchronous Observations," KIER Working Papers 634, Kyoto University, Institute of Economic Research.
    286. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    287. Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
    288. Vasyl Golosnoy & Benno Hildebrandt & Steffen Köhler, 2019. "Modeling and Forecasting Realized Portfolio Diversification Benefits," JRFM, MDPI, vol. 12(3), pages 1-16, July.
    289. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    290. Zhang, Hanyu & Dufour, Alfonso, 2024. "Managing portfolio risk during crisis times: A dynamic conditional correlation perspective," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 241-251.
    291. Richard Y. Chen, 2019. "The Fourier Transform Method for Volatility Functional Inference by Asynchronous Observations," Papers 1911.02205, arXiv.org.
    292. Wang, Yifu & Lu, Wanbo & Lin, Min-Bin & Ren, Rui & Härdle, Wolfgang Karl, 2024. "Cross-exchange crypto risk: A high-frequency dynamic network perspective," International Review of Financial Analysis, Elsevier, vol. 94(C).
    293. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    294. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    295. Ben Sita, Bernard, 2018. "Estimating the beta-return relationship by considering the sign and the magnitude of daily returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 28-35.
    296. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    297. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    298. Liu, Guangqiang & Wei, Yu & Chen, Yongfei & Yu, Jiang & Hu, Yang, 2018. "Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 288-297.
    299. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    300. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
    301. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
    302. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    303. Behfar, Stefan Kambiz, 2016. "Long memory behavior of returns after intraday financial jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 716-725.
    304. Dare, Wale & Fengler, Matthias, 2017. "Global estimation of realized spot volatility in the presence of price jumps," Economics Working Paper Series 1715, University of St. Gallen, School of Economics and Political Science.
    305. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
    306. Fabio Gobbi & Cecilia Mancini, 2006. "Identifying the covariation between the diffusion parts and the co-jumps given discrete observations," Papers math/0610621, arXiv.org, revised Jul 2008.
    307. Wang, Jying-Nan & Liu, Hung-Chun & Hsu, Yuan-Teng, 2024. "A U-shaped relationship between the crypto fear-greed index and the price synchronicity of cryptocurrencies," Finance Research Letters, Elsevier, vol. 59(C).
    308. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    309. Ishan Goel & Sukant Khurana, 2018. "A Bayesian measure of association that utilizes the underlying distributions of noise and information," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    310. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    311. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "Realized semibetas: Disentangling “good” and “bad” downside risks," Journal of Financial Economics, Elsevier, vol. 144(1), pages 227-246.
    312. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
    313. Neil Shephard, 2020. "An estimator for predictive regression: reliable inference for financial economics," Papers 2008.06130, arXiv.org.
    314. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    315. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.
    316. Phin, Andrew & Prono, Todd & Reeves, Jonathan J. & Saxena, Konark, 2022. "Shifts in beta and the TARP announcement," Finance Research Letters, Elsevier, vol. 47(PB).
    317. Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
    318. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    319. Mike Buckle & Jing Chen & Julian Williams, 2014. "How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 542-557, November.
    320. Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
    321. Papageorgiou, Nicolas & Reeves, Jonathan J. & Xie, Xuan, 2016. "Betas and the myth of market neutrality," International Journal of Forecasting, Elsevier, vol. 32(2), pages 548-558.
    322. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.
    323. Jeffrey R. Russell & Federico M. Bandi, 2004. "Microstructure noise, realized volatility, and optimal sampling," Econometric Society 2004 Latin American Meetings 220, Econometric Society.
    324. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).
    325. Amaya, Diego & Herrerias, Renata & Perez, Fernando & Vasquez, Aurelio, 2023. "Realized semibetas and international stock return predictability," Finance Research Letters, Elsevier, vol. 58(PC).
    326. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2023. "Volatility Estimation of Gaussian Ornstein–Uhlenbeck Processes of the Second Kind," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-17, March.

  29. B. Nielsen & N. Shephard, 2003. "Likelihood analysis of a first‐order autoregressive model with exponential innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 337-344, May.

    Cited by:

    1. Daniel Preve, "undated". "Linear programming-based estimators in nonnegative autoregression," GRU Working Paper Series GRU_2016_001, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    2. Preve, Daniel & Medeiros, Marcelo C., 2011. "Linear programming-based estimators in simple linear regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 128-136.
    3. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    4. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
    5. Ching-Kang Ing & Chiao-Yi Yang, 2014. "Predictor Selection for Positive Autoregressive Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 243-253, March.
    6. Marek Omelka & Šárka Hudecová & Natalie Neumeyer, 2021. "Maximum pseudo‐likelihood estimation based on estimated residuals in copula semiparametric models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1433-1473, December.
    7. Knight, Keith, 2003. "Asymptotic theory for M-estimators of boundaries," SFB 373 Discussion Papers 2003,37, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.

  30. Ole E. Barndorff‐Nielsen & Neil Shephard, 2003. "Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 277-295, June.

    Cited by:

    1. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    2. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    3. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    4. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
    5. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    6. Ivan Shaliastovich & George Tauchen, 2010. "Pricing of the Time-Change Risks," Working Papers 10-10, Duke University, Department of Economics.
    7. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
    8. Lancelot F. James, 2005. "Analysis of a Class of Likelihood Based Continuous Time Stochastic Volatility Models including Ornstein-Uhlenbeck Models in Financial Economics," Papers math/0503055, arXiv.org, revised Aug 2005.
    9. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
    10. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    11. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
    12. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    13. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    14. Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.
    15. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    16. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    17. Semere Habtemicael & Musie Ghebremichael & Indranil SenGupta, 2019. "Volatility and Variance Swap Using Superposition of the Barndorff-Nielsen and Shephard type Lévy Processes," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 75-92, June.
    18. Aubain Hilaire Nzokem, 2023. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process," JRFM, MDPI, vol. 16(1), pages 1-28, January.
    19. Mario Abundo & Enrica Pirozzi, 2019. "On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes," Mathematics, MDPI, vol. 7(10), pages 1-12, October.
    20. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    21. Abundo, Mario & Pirozzi, Enrica, 2018. "Integrated stationary Ornstein–Uhlenbeck process, and double integral processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 265-275.
    22. Gennady Gorin & John J. Vastola & Meichen Fang & Lior Pachter, 2022. "Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    23. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    24. Andersson, Patrik & Lagerås, Andreas N., 2013. "Optimal bond portfolios with fixed time to maturity," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 429-438.
    25. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    26. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    27. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
    28. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    29. Semere Habtemicael & Indranil Sengupta, 2016. "Pricing Covariance Swaps For Barndorff–Nielsen And Shephard Process Driven Financial Markets," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-32, September.
    30. He, Yue & Kawai, Reiichiro, 2022. "Super- and subdiffusive positions in fractional Klein–Kramers equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    31. Ewald, Christian & Zou, Yihan, 2021. "Stochastic volatility: A tale of co-jumps, non-normality, GMM and high frequency data," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 37-52.
    32. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    33. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    34. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    35. Shibin Zhang, 2011. "Transition Law-based Simulation of Generalized Inverse Gaussian Ornstein–Uhlenbeck Processes," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 619-656, September.
    36. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.

  31. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 2-25.
    See citations under working paper version above.
  32. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    See citations under working paper version above.
  33. Chib, Siddhartha & Shephard, Neil, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 325-327, July.

    Cited by:

    1. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    2. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," Economics Papers 2004-W20, Economics Group, Nuffield College, University of Oxford.

  34. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.

    Cited by:

    1. Sujay Mukhoti & Pritam Ranjan, 2019. "A new class of discrete-time stochastic volatility model with correlated errors," Applied Economics, Taylor & Francis Journals, vol. 51(3), pages 259-277, January.
    2. Antonio A. F. Santos, 2021. "Bayesian Estimation for High-Frequency Volatility Models in a Time Deformed Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 455-479, February.
    3. Hautsch, Nikolaus & Yang, Fuyu, 2010. "Bayesian inference in a stochastic volatility Nelson-Siegel Model," SFB 649 Discussion Papers 2010-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
    5. J. Beirlant & G. Claeskens & C. Croux & H. Degryse & H. Dewachter & G. Dhaene & J. Dhaene & I. Gijbels & M. Goovaerts & M. Hubert & F. Roodhooft & W. Schouten & M. Willekens, 2005. "Managing Uncertainty: Financial, Actuarial and Statistical Modeling," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(1), pages 23-48.
    6. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
    7. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    8. Faruk Selcuk, 2005. "Asymmetric stochastic volatility in emerging stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 867-874.
    9. Yong Li & Jun Yu, 2011. "Bayesian Hypothesis Testing in Latent Variable Models," Working Papers 11-2011, Singapore Management University, School of Economics.
    10. Robert J. Barro & Tao Jin, 2016. "Rare Events and Long-Run Risks," NBER Working Papers 21871, National Bureau of Economic Research, Inc.
    11. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    12. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    13. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    14. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    15. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    16. Joonwook Park & Wayne DeSarbo & John Liechty, 2008. "A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 451-472, September.
    17. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    18. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    19. Monica Billio & Roberto Casarin & Matteo Iacopini, 2018. "Bayesian Markov Switching Tensor Regression for Time-varying Networks," Working Papers 2018:14, Department of Economics, University of Venice "Ca' Foscari".
    20. Kirby, Chris, 2006. "Linear filtering for asymmetric stochastic volatility models," Economics Letters, Elsevier, vol. 92(2), pages 284-292, August.
    21. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    22. Lee, King Fuei, 2023. "Effects of Monetary Policy Frameworks on Stock Market Volatilities: An Empirical Study of Global Economies," MPRA Paper 119755, University Library of Munich, Germany.
    23. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    24. S. Bordignon & D. Raggi, 2008. "Volatility, Jumps and Predictability of Returns: a Sequential Analysis," Working Papers 636, Dipartimento Scienze Economiche, Universita' di Bologna.
    25. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    26. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    27. Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2018. "High-frequency Cash Flow Dynamics," Working Papers 120, Brandeis University, Department of Economics and International Business School.
    28. Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    29. Petra Fleischer & Ross Maller & Gernot Müller, 2011. "A Bayesian analysis of market information linkages among NAFTA countries using a multivariate stochastic volatility model," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 35(2), pages 123-148, April.
    30. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    31. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    32. Kobayashi, Masahito, 2009. "Testing for jumps in the stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2597-2608.
    33. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    34. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    35. Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2020. "Cash Flow News and Stock Price Dynamics," Journal of Finance, American Finance Association, vol. 75(4), pages 2221-2270, August.
    36. Angelos Alexopoulos & Petros Dellaportas & Omiros Papaspiliopoulos, 2019. "Bayesian prediction of jumps in large panels of time series data," Papers 1904.05312, arXiv.org, revised Apr 2021.
    37. Xu, Wan & Khachatryan, Hayk, 2015. "The Role of Integrated Pest Management Practices in the U.S. Nursery Industry: A Bayesian Hierarchical Poisson Approach," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196808, Southern Agricultural Economics Association.
    38. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    39. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    40. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Discrete-time stochastic volatility models and MCMC-based statistical inference," SFB 649 Discussion Papers 2008-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    41. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    42. Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
    43. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    44. Liyuan Chen & Paola Zerilli & Christopher F Baum, 2018. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Boston College Working Papers in Economics 953, Boston College Department of Economics.
    45. Ilias Tsiakas, 2004. "Analysis of the predictive ability of information accumulated over nights, weekends and holidays," Econometric Society 2004 Australasian Meetings 208, Econometric Society.
    46. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    47. Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
    48. Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
    49. Joshua Chan & Rodney Strachan, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," CAMA Working Papers 2012-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    50. Maddalena Cavicchioli, 2017. "Estimation and asymptotic covariance matrix for stochastic volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 437-452, August.
    51. Lopes, Hedibert F., 2014. "Particle learning for Bayesian non-parametric Markov Switching Stochastic Volatility model," DES - Working Papers. Statistics and Econometrics. WS ws142819, Universidad Carlos III de Madrid. Departamento de Estadística.
    52. Xiaodong Du & Cindy L. Yu & Dermot J. Hayes, 2009. "Speculation and Volatility Spillover in the Crude Oil and Agricultural Commodity Markets: A Bayesian Analysis," Center for Agricultural and Rural Development (CARD) Publications 09-wp491, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    53. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, January.
    54. Roberto Leon-Gonzalez, 2015. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 15-17, National Graduate Institute for Policy Studies.
    55. Emese Lazar & Shuyuan Qi & Radu Tunaru, 2020. "Measures of Model Risk in Continuous-time Finance Models," Papers 2010.08113, arXiv.org, revised Oct 2020.
    56. Lee, Eunhee & Han, Doo Bong & Ito, Shoichi & Rodolfo M. Nayga, Jr, 2015. "A common factor of stochastic volatilities between oil and commodity prices," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205771, Agricultural and Applied Economics Association.
    57. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2019. "Decomposing global yield curve co-movement," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 500-513.
    58. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    59. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    60. Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
    61. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    62. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution Models," CIRJE F-Series CIRJE-F-738, CIRJE, Faculty of Economics, University of Tokyo.
    63. Richard Anton Braun & Huiyu Li & John Stachurski, 2009. "Computing Densities: A Conditional Monte Carlo Estimator," CARF F-Series CARF-F-181, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    64. Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," MPRA Paper 118459, University Library of Munich, Germany.
    65. Asai, M. & Caporin, M. & McAleer, M.J., 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2012-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    66. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
    67. Laurent-Emmanuel Calvet & Adlai J. Fisher & Samuel B. Thompson, 2006. "Volatility Comovement: a multifrequency approach," Post-Print hal-00459667, HAL.
    68. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    69. Maciej Kostrzewski, 2016. "Bayesian SVLEDEJ Model for Detecting Jumps in Logarithmic Growth Rates of One Month Forward Gas Contract Prices," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(3), pages 161-179, September.
    70. Audrone Virbickaite & Hedibert F. Lopes & Maria Concepción Ausín & Pedro Galeano, 2018. "Particle Learning for Bayesian Semi-Parametric Stochastic Volatility Model," DEA Working Papers 88, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    71. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    72. Samar K. Guharay & Gaurav S. Thakur & Fred J. Goodman & Scott L. Rosen & Daniel Houser, 2016. "Integrated data-driven analytics to identify instability signatures in nonstationary financial time series," Applied Economics, Taylor & Francis Journals, vol. 48(18), pages 1678-1694, April.
    73. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
    74. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3386-3404, August.
    75. Lupu, Radu, 2011. "Shock transmission among the European Stock markets - Conferinta CRESTERE ECONOMICA SI SUSTENABILITATE SOCIALA. PROVOCARI SI PERSPECTIVE EUROPENE>," Institute for Economic Forecasting Conference Proceedings 101101, Institute for Economic Forecasting.
    76. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
    77. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    78. Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
    79. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    80. Fruhwirth-Schnatter, Sylvia & Fruhwirth, Rudolf, 2007. "Auxiliary mixture sampling with applications to logistic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3509-3528, April.
    81. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    82. David Neto & Sylvain Sardy, 2012. "Moments structure of ℓ 1 -stochastic volatility models," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(6), pages 1947-1952, October.
    83. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    84. Dufour, Jean-Marie & Valéry, Pascale, 2009. "Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 193-206, June.
    85. Radu Lupu, 2014. "Simultaneity of Tail Events for Dynamic Conditional Distributions of Stock Market Index Returns," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 49-64, December.
    86. Heejoon Han & Eunhee Lee, 2020. "Triple Regime Stochastic Volatility Model with Threshold and Leverage Effects," Korean Economic Review, Korean Economic Association, vol. 36, pages 481-509.
    87. Ren-Her Wang & John Aston & Cheng-Der Fuh, 2010. "The Role of Additional Information in Option Pricing: Estimation Issues for the State Space Model," Computational Economics, Springer;Society for Computational Economics, vol. 36(4), pages 283-307, December.
    88. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    89. Frédéric Karamé, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Post-Print hal-02296093, HAL.
    90. Audrone Virbickaite & Hedibert F. Lopes, 2018. "Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model," DEA Working Papers 89, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    91. Tian, Ping & Zhou, Hang & Zhou, Duotai, 2023. "Analysis about the Black-Scholes asset price under the regime-switching framework," International Review of Financial Analysis, Elsevier, vol. 88(C).
    92. Carlos A. Abanto‐Valle & Helio S. Migon & Hedibert F. Lopes, 2010. "Bayesian modeling of financial returns: A relationship between volatility and trading volume," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 172-193, March.
    93. A. Hachicha & F. Hachicha, 2021. "Analysis of the bitcoin stock market indexes using comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 56(2), pages 647-673, February.
    94. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    95. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    96. Nonejad, Nima, 2014. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," MPRA Paper 55662, University Library of Munich, Germany.
    97. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    98. Yuta Yamauchi & Yasuhiro Omori, 2020. "Dynamic Factor, Leverage and Realized Covariances in Multivariate Stochastic Volatility," CIRJE F-Series CIRJE-F-1158, CIRJE, Faculty of Economics, University of Tokyo.
    99. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    100. Praveen Kumar Tripathi & Manika Agarwal, 2024. "A Bayes Analysis of Random Walk Model Under Different Error Assumptions," Annals of Data Science, Springer, vol. 11(5), pages 1635-1652, October.
    101. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    102. Yong Li & Jun Yu, 2010. "A New Bayesian Unit Root Test in Stochastic Volatility Models," Working Papers 21-2010, Singapore Management University, School of Economics, revised Oct 2010.
    103. Nakajima Jouchi, 2013. "Stochastic volatility model with regime-switching skewness in heavy-tailed errors for exchange rate returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 499-520, December.
    104. Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    105. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    106. G. Dhaene, 2004. "Indirect Inference for Stochastic Volatility Models via the Log-Squared Observations," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(3), pages 421-440.
    107. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    108. Sergey Egiev, 2016. "On Persistence of Uncertainty Shocks," HSE Working papers WP BRP 144/EC/2016, National Research University Higher School of Economics.
    109. Jun Yu, 2004. "On leverage in a stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 497, Econometric Society.
    110. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    111. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    112. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    113. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    114. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    115. Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
    116. Istvan Barra & Siem Jan Koopman & Agnieszka Borowska, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute, revised 16 Feb 2018.
    117. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    118. Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
    119. Guharay, Samar K. & Thakur, Gaurav S. & Goodman, Fred J. & Rosen, Scott L. & Houser, Daniel, 2013. "Analysis of non-stationary dynamics in the financial system," Economics Letters, Elsevier, vol. 121(3), pages 454-457.
    120. Gloria Gonzalez-Rivera & Yun Luo, 2020. "A Truncated Mixture Transition Model for Interval-valued Time Series," Working Papers 202005, University of California at Riverside, Department of Economics.
    121. Nima Nonejad, 2013. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," CREATES Research Papers 2013-27, Department of Economics and Business Economics, Aarhus University.
    122. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2015. "Forecasting trends with asset prices," Papers 1504.03934, arXiv.org, revised Apr 2015.
    123. Kim C. Raath & Katherine B. Ensor, 2023. "Wavelet-L2E Stochastic Volatility Models: an Application to the Water-Energy Nexus," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 150-176, May.
    124. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    125. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    126. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    127. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.
    128. Chon, Sora & Kim, Jaeho, 2021. "Does the Financial Leverage Effect Depend on Volatility Regimes?," Finance Research Letters, Elsevier, vol. 39(C).
    129. Yong Li & Jun Yu, 2019. "An Improved Bayesian Unit Root Test in Stochastic Volatility Models," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 103-122, May.
    130. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    131. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2021. "Multiscale Stochastic Volatility Model with Heavy Tails and Leverage Effects," JRFM, MDPI, vol. 14(5), pages 1-28, May.
    132. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    133. Martin Iseringhausen, 2018. "The Time-Varying Asymmetry Of Exchange Rate Returns: A Stochastic Volatility – Stochastic Skewness Model," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 18/944, Ghent University, Faculty of Economics and Business Administration.
    134. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    135. Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
    136. Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Business School.
    137. Georgios Tsiotas, 2009. "On the use of non-linear transformations in Stochastic Volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 555-583, November.
    138. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2024. "Maximum likelihood estimation of latent Markov models using closed-form approximations," Journal of Econometrics, Elsevier, vol. 240(2).
    139. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
    140. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    141. Yuta Yamauchi & Yasuhiro Omori, 2020. "Dynamic factor, leverage and realized covariances in multivariate stochastic volatility," Papers 2011.06909, arXiv.org, revised Sep 2021.
    142. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    143. de Pinho, Frank M. & Franco, Glaura C. & Silva, Ralph S., 2016. "Modeling volatility using state space models with heavy tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 108-127.
    144. Sabiwalsky, Ralf, 2012. "Does Basel II pillar 3 risk exposure data help to identify risky banks?," SFB 649 Discussion Papers 2012-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    145. Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2016. "Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1393-1411, September.
    146. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    147. Hedibert F. Lopes & Nicholas G. Polson, 2016. "Particle Learning for Fat-Tailed Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1666-1691, December.
    148. Raanju R. Sundararajan & Wagner Barreto‐Souza, 2023. "Student‐t stochastic volatility model with composite likelihood EM‐algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 125-147, January.
    149. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    150. N. Balakrishna & Bovas Abraham & Ranjini Sivakumar, 2006. "Gamma stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 153-171.
    151. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    152. Olsson, Jimmy & Rydén, Tobias, 2008. "Asymptotic properties of particle filter-based maximum likelihood estimators for state space models," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 649-680, April.
    153. John M Maheu & Thomas H McCurdy, 2007. "Modeling foreign exchange rates with jumps," Working Papers tecipa-279, University of Toronto, Department of Economics.
    154. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    155. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    156. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    157. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    158. Gerlach, Richard & Tuyl, Frank, 2006. "MCMC methods for comparing stochastic volatility and GARCH models," International Journal of Forecasting, Elsevier, vol. 22(1), pages 91-107.
    159. Mr. Noureddine Krichene, 2003. "Modeling Stochastic Volatility with Application to Stock Returns," IMF Working Papers 2003/125, International Monetary Fund.
    160. Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
    161. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    162. Carlos A. Abanto‐Valle & Roland Langrock & Ming‐Hui Chen & Michel V. Cardoso, 2017. "Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 394-408, August.
    163. Yanhui Xi & Hui Peng & Yemei Qin, 2016. "Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-15, February.
    164. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    165. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    166. Ilias Tsiakas, 2010. "The Economic Gains Of Trading Stocks Around Holidays," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 1-26, March.
    167. Han, Chuan-Hsiang & Molina, German & Fouque, Jean-Pierre, 2014. "McMC estimation of multiscale stochastic volatility models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 1-11.
    168. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    169. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
    170. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2020. "On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin," Econometrics and Statistics, Elsevier, vol. 16(C), pages 69-90.
    171. Yuta Yamauchi & Yasuhiro Omori, 2021. "Dynamic Factor, Leverage and Realized Covariances in Multivariate Stochastic Volatility," CIRJE F-Series CIRJE-F-1176, CIRJE, Faculty of Economics, University of Tokyo.
    172. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
    173. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2006. "Stochastic Volatility, Trading Volume, and the Daily Flow of Information," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1551-1590, May.
    174. Zu, Yang & Boswijk, H. Peter, 2017. "Consistent nonparametric specification tests for stochastic volatility models based on the return distribution," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 53-75.
    175. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    176. Guerbyenne, Hafida & Hamdi, Fayçal & Hamrat, Malika, 2024. "The logGARCH stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 214(C).
    177. Jian Chen & Michael P Clements & Andrew Urquhart, 2024. "Modeling Price and Variance Jump Clustering Using the Marked Hawkes Process," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 743-772.
    178. Yufeng Han, 2011. "On the relation between the market risk premium and market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(22), pages 1711-1723.
    179. Dennis Kristensen, 2007. "Nonparametric Filtering of the Realised Spot Volatility: A Kernel-based Approach," CREATES Research Papers 2007-02, Department of Economics and Business Economics, Aarhus University.
    180. Siddhartha Chib & Minchul Shin & Fei Tan, 2023. "DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 69-111, January.
    181. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    182. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    183. Junli Cheng & Feng Lin, 2022. "The Dynamic Effects of Urban–Rural Income Inequality on Sustainable Economic Growth under Urbanization and Monetary Policy in China," Sustainability, MDPI, vol. 14(11), pages 1-23, June.
    184. Huang, Jing-Zhi & Ni, Jun & Xu, Li, 2022. "Leverage effect in cryptocurrency markets," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    185. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.
    186. Tomohiro Ando, 2008. "Measuring the baseline sales and the promotion effect for incense products: a Bayesian state-space modeling approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 763-780, December.
    187. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    188. Daichi Hiraki & Siddhartha Chib & Yasuhiro Omori, 2024. "Stochastic Volatility in Mean: Efficient Analysis by a Generalized Mixture Sampler," Papers 2404.13986, arXiv.org, revised Nov 2024.
    189. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    190. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    191. Delis, Manthos & Iosifidi, Maria & Tsionas, Mike G, 2017. "Endogenous bank risk and efficiency," European Journal of Operational Research, Elsevier, vol. 260(1), pages 376-387.
    192. Arthur T. Rego & Thiago R. dos Santos, 2018. "Non-Gaussian Stochastic Volatility Model with Jumps via Gibbs Sampler," Papers 1809.01501, arXiv.org, revised Oct 2018.
    193. Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," LIDAM Discussion Papers CORE 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    194. Langrock, Roland & MacDonald, Iain L. & Zucchini, Walter, 2012. "Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 147-161.
    195. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    196. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    197. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    198. Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
    199. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
    200. T. R. Santos, 2018. "A Bayesian GED-Gamma stochastic volatility model for return data: a marginal likelihood approach," Papers 1809.01489, arXiv.org.
    201. Xiaodong Du & Fengxia Dong, 2016. "Responses to market information and the impact on price volatility and trading volume: the case of Class III milk futures," Empirical Economics, Springer, vol. 50(2), pages 661-678, March.
    202. Wei Wei & Denis Pelletier, 2015. "A Jump-Diffusion Model with Stochastic Volatility and Durations," CREATES Research Papers 2015-34, Department of Economics and Business Economics, Aarhus University.
    203. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    204. Jeongeun Kim & David S. Stoffer, 2008. "Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 811-833, September.
    205. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    206. Dufrénot, Gilles & Keddad, Benjamin, 2014. "Spillover effects of the 2008 global financial crisis on the volatility of the Indian equity markets: Coupling or uncoupling? A study on sector-based data," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 17-32.
    207. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    208. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference (Revised in April 2006, subsequently published in "Journal of Econometrics", 140, 425-449, 2007. )," CARF F-Series CARF-F-011, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    209. Manabu Asai, 2005. "Comparison of MCMC Methods for Estimating Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 281-301, June.
    210. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    211. Chew Lian Chua & G. C. Lim & Penelope Smith, 2008. "A Bayesian Simulation Approach to Inference on a Multi-State Latent Factor Intensity Model," Melbourne Institute Working Paper Series wp2008n16, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    212. Jonathan R. Stroud & Michael S. Johannes, 2014. "Bayesian Modeling and Forecasting of 24-Hour High-Frequency Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1368-1384, December.
    213. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    214. Liu, Qingfu & Wong, Ieokhou & An, Yunbi & Zhang, Jinqing, 2014. "Asymmetric Information and Volatility Forecasting in Commodity Futures Markets," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 79-97.
    215. Xu, Bing & Ouenniche, Jamal, 2012. "A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices' volatility forecasting models," Energy Economics, Elsevier, vol. 34(2), pages 576-583.
    216. Robert Barro & Tao Jin, 2020. "Online Appendix to "Rare Events and Long-Run Risks"," Online Appendices 18-485, Review of Economic Dynamics.
    217. Osman Doğan & Süleyman Taşpınar & Anil K. Bera, 2021. "Bayesian estimation of stochastic tail index from high-frequency financial data," Empirical Economics, Springer, vol. 61(5), pages 2685-2711, November.
    218. Carlos A. Abanto-Valle & Hernán B. Garrafa-Aragón, 2019. "Threshold Stochastic Volatility Models with Heavy Tails:A Bayesian Approach," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 32-53.
    219. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    220. Sakaria, D.K. & Griffin, J.E., 2017. "On efficient Bayesian inference for models with stochastic volatility," Econometrics and Statistics, Elsevier, vol. 3(C), pages 23-33.
    221. Raggi, Davide & Bordignon, Silvano, 2006. "Comparing stochastic volatility models through Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1678-1699, April.
    222. Smith Daniel R, 2009. "Asymmetry in Stochastic Volatility Models: Threshold or Correlation?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-36, May.
    223. Gordon V. Chavez, 2019. "Dynamic tail inference with log-Laplace volatility," Papers 1901.02419, arXiv.org, revised Jul 2019.

  35. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    See citations under working paper version above.
  36. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.

    Cited by:

    1. Yu-Min Yen, 2013. "Testing Jumps via False Discovery Rate Control," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    2. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    3. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    4. Mattiussi, V. & Iori, G., 2006. "Currency futures volatility during the 1997 East Asian crisis: an application of Fourier analysis," Working Papers 06/09, Department of Economics, City University London.
    5. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2010. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," Working Papers 10-06, Duke University, Department of Economics.
    6. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. Andrea Bucci & Michele Palma & Chao Zhang, 2024. "Geometric Deep Learning for Realized Covariance Matrix Forecasting," Papers 2412.09517, arXiv.org.
    11. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Pigorsch, Uta, 2008. "Measuring and modeling risk using high-frequency data," SFB 649 Discussion Papers 2008-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Olga Cielinska & Andreas Joseph & Ujwal Shreyas & John Tanner & Michalis Vasios, 2017. "Gauging market dynamics using trade repository data: The case of the Swiss franc de-pegging," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Statistical implications of the new financial landscape, volume 43, Bank for International Settlements.
    13. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    14. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    16. Hashem Pesaran & Ambrogio Cesa-Bianchi & Alessandro Rebucci, 2014. "Uncertainty and Economic Activity: A Global Perspective," Cambridge Working Papers in Economics 1407, Faculty of Economics, University of Cambridge.
    17. Ehsan Azmoodeh & Esko Valkeila, 2013. "Spectral characterization of the quadratic variation of mixed Brownian–fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 97-112, July.
    18. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    19. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    20. Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
    21. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    22. Eleftheria Kafousaki & Stavros Degiannakis, 2023. "Forecasting VIX: the illusion of forecast evaluation criteria," Economics and Business Letters, Oviedo University Press, vol. 12(3), pages 231-240.
    23. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    24. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2020. "Forecasting value at risk with intra-day return curves," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1023-1038.
    25. Galbraith, John W. & KI[#x1e63]Inbay, Turgut, 2005. "Content horizons for conditional variance forecasts," International Journal of Forecasting, Elsevier, vol. 21(2), pages 249-260.
    26. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    27. LAHAYE, Jérôme & LAURENT, Sébastien & NEELY, Christopher J., 2011. "Jumps, cojumps and macro announcements," LIDAM Reprints CORE 2413, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    28. Yanwei Jia & Xun Yu Zhou, 2021. "Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach," Papers 2108.06655, arXiv.org, revised Feb 2022.
    29. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    30. Michel Beine & Jerome Lahaye & Sebastien Laurent & Christopher J. Neely & Franz C. Palm, 2007. "Central bank intervention and exchange rate volatility, its continuous and jump components," Working Papers 2006-031, Federal Reserve Bank of St. Louis.
    31. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    32. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    33. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    34. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    35. Majewski, A. A. & Bormetti, G. & Corsi, F., 2013. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Working Papers 13/11, Department of Economics, City University London.
    36. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    37. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    38. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    39. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    40. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    41. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    42. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    43. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    44. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    45. Jimmy E. Hilliard & Jitka Hilliard, 2012. "Matching non-synchronous observations in derivative markets: choosing windows and efficient estimators," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 49-60, September.
    46. Sutton, Maxwell & Vasnev, Andrey L. & Gerlach, Richard, 2019. "Mixed interval realized variance: A robust estimator of stock price volatility," Econometrics and Statistics, Elsevier, vol. 11(C), pages 43-62.
    47. Diebold, Francis X. & Strasser, Georg H., 2008. "On the correlation structure of microstructure noise in theory and practice," CFS Working Paper Series 2008/32, Center for Financial Studies (CFS).
    48. François-Éric Racicot & Raymond Théoret & Alain Coën, 2008. "Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 14(1), pages 112-124, February.
    49. Helmut Herwartz, 2006. "Econometric analysis of high frequency data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 89-104, March.
    50. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    51. Benjamin Y. Zhang & Hao Zhou & Haibin Zhu, 2005. "Explaining credit default swap spreads with the equity volatility and jump risks of individual firms," Finance and Economics Discussion Series 2005-63, Board of Governors of the Federal Reserve System (U.S.).
    52. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    53. Nonejad, Nima, 2017. "Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 131-154.
    54. Daniela Osterrieder & Daniel Ventosa-Santaulària & J. Eduardo Vera-Valdés, 2015. "Unbalanced Regressions and the Predictive Equation," CREATES Research Papers 2015-09, Department of Economics and Business Economics, Aarhus University.
    55. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    56. Maria Elvira Mancino & Simone Scotti & Giacomo Toscano, 2020. "Is the variance swap rate affine in the spot variance? Evidence from S&P500 data," Papers 2004.04015, arXiv.org.
    57. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    58. ANDERSEN, Torben G. & BOLLERSLEV, Tim & MEDDAHI, Nour, 2002. "Correcting the Errors : A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities," Cahiers de recherche 2002-21, Universite de Montreal, Departement de sciences economiques.
    59. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    60. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    61. Jing-zhi Huang & Hao Zhou, 2008. "Specification analysis of structural credit risk models," Finance and Economics Discussion Series 2008-55, Board of Governors of the Federal Reserve System (U.S.).
    62. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    63. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
    64. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    65. Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," CREATES Research Papers 2014-12, Department of Economics and Business Economics, Aarhus University.
    66. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    67. Gao, Yang & Leung, Henry & Satchell, Stephen, 2022. "Partial moment momentum," Journal of Banking & Finance, Elsevier, vol. 135(C).
    68. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    69. Chao YU & Xujie ZHAO, 2021. "Measuring the Jump Risk Contribution under Market Microstructure Noise – Evidence from Chinese Stock Market," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 32-47, December.
    70. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    71. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    72. Arnerić, Josip & Matković, Mario & Sorić, Petar, 2019. "Comparison of range-based volatility estimators against integrated volatility in European emerging markets," Finance Research Letters, Elsevier, vol. 28(C), pages 118-124.
    73. Wanidwaranan, Phasin & Padungsaksawasdi, Chaiyuth, 2020. "The effect of return jumps on herd behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    74. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022. "A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
    75. Ambrogio Cesa-Bianchi & M. Hashem Pesaran & Alessandro Rebucci, 2018. "Uncertainty and Economic Activity: A Multi-Country Perspective," NBER Working Papers 24325, National Bureau of Economic Research, Inc.
    76. Chen, Ying & Härdle, Wolfgang Karl & Pigorsch, Uta, 2010. "Localized Realized Volatility Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1376-1393.
    77. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    78. Bucci, Andrea, 2019. "Cholesky-ANN models for predicting multivariate realized volatility," MPRA Paper 95137, University Library of Munich, Germany.
    79. Rachidi Kotchoni, 2012. "Applications of the Characteristic Function Based Continuum GMM in Finance," Post-Print hal-00867795, HAL.
    80. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta & Riza Demirer, 2018. "Forecasting Stock Market (Realized) Volatility in the United Kingdom: Is There a Role for Economic Inequality?," Working Papers 201880, University of Pretoria, Department of Economics.
    81. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    82. Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
    83. Eric Jondeau & Jérôme Lahaye & Michael Rockinger, 2013. "Estimating the Price Impact of Trades in an High-Frequency Microstructure Model with Jumps," Swiss Finance Institute Research Paper Series 13-47, Swiss Finance Institute, revised Feb 2016.
    84. Ortas, E. & Salvador, M. & Moneva, J.M., 2015. "Improved beta modeling and forecasting: An unobserved component approach with conditional heteroscedastic disturbances," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 27-51.
    85. Cathy Ning & Dinghai Xu & Tony Wirjanto, 2014. "Is Volatility Clustering of Asset Returns Asymmetric?," Working Papers 050, Toronto Metropolitan University, Department of Economics.
    86. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    87. Kamiar Mohaddes & M. Hashem Pesaran, 2013. "One Hundred Years of Oil Income and the Iranian Economy: A Curse or a Blessing?," Working Papers 771, Economic Research Forum, revised Sep 2013.
    88. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    89. Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
    90. Cavusoglu, Nevin & Goldberg, Michael D. & Stillwagon, Josh, 2021. "Currency returns and downside risk: Debt, volatility, and the gap from benchmark values," Journal of Macroeconomics, Elsevier, vol. 68(C).
    91. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
    92. Yin Liao & Heather Anderson & Farshid Vahid, 2010. "Do Jumps Matter? Forecasting Multivariate Realized Volatility Allowing for Common Jumps," ANU Working Papers in Economics and Econometrics 2010-520, Australian National University, College of Business and Economics, School of Economics.
    93. Simon Clinet & Yoann Potiron, 2017. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Papers 1701.01185, arXiv.org, revised Jun 2018.
    94. Qi Wang & Zerong Wang, 2021. "VIX futures and its closed‐form pricing through an affine GARCH model with realized variance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 135-156, January.
    95. Yusaku Nishimura & Xuyi Dong & Bianxia Sun, 2021. "Trump's tweets: Sentiment, stock market volatility, and jumps," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 497-512, September.
    96. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    97. Jui‐Cheng Hung & Hung‐Chun Liu & J. Jimmy Yang, 2023. "Does the tail risk index matter in forecasting downside risk?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3451-3466, July.
    98. Bryan Lim & Stefan Zohren & Stephen Roberts, 2020. "Detecting Changes in Asset Co-Movement Using the Autoencoder Reconstruction Ratio," Papers 2002.02008, arXiv.org, revised Sep 2020.
    99. Marine Carrasco & Rachidi Kotchoni, 2015. "Adaptive Realized Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 757-797.
    100. Li, Shaoyu & Zheng, Tingguo, 2017. "Modeling spot rate using a realized stochastic volatility model with level effect and dynamic drift☆," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 200-221.
    101. Johnson, James A. & Medeiros, Marcelo C. & Paye, Bradley S., 2022. "Jumps in stock prices: New insights from old data," Journal of Financial Markets, Elsevier, vol. 60(C).
    102. Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
    103. Caloia, Francesco Giuseppe & Cipollini, Andrea & Muzzioli, Silvia, 2018. "Asymmetric semi-volatility spillover effects in EMU stock markets," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 221-230.
    104. Markopoulou, Chrysi E. & Skintzi, Vasiliki D. & Refenes, Apostolos-Paul N., 2016. "Realized hedge ratio: Predictability and hedging performance," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 121-133.
    105. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    106. Simon Clinet & Yoann Potiron, 2017. "Estimation for high-frequency data under parametric market microstructure noise," Papers 1712.01479, arXiv.org, revised Sep 2020.
    107. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
    108. Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Estimation of long memory in integrated variance," CREATES Research Papers 2011-11, Department of Economics and Business Economics, Aarhus University.
    109. Kshatriya, Saranya & Prasanna, Krishna, 2021. "Jump Interdependencies: Stochastic linkages among international stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    110. Triantafyllou, Athanasios & Dotsis, George, 2017. "Option-implied expectations in commodity markets and monetary policy," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 1-17.
    111. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
    112. Ceylan, Ozcan, 2012. "Time-Varying Volatility Asymmetry: A Conditioned HAR-RV(CJ) EGARCH-M Model," GIAM Working Papers 12-4, Galatasaray University Economic Research Center.
    113. Bart Frijns & Dimitris Margaritis, 2008. "Forecasting daily volatility with intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 523-540.
    114. Ao Kong & Hongliang Zhu & Robert Azencott, 2021. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 416-438, April.
    115. Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," JRFM, MDPI, vol. 8(3), pages 1-26, August.
    116. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.
    117. Christian Bontemps & Nour Meddahi, 2002. "Testing Normality: A GMM Approach," CIRANO Working Papers 2002s-63, CIRANO.
    118. de Vilder, Robin G. & Visser, Marcel P., 2007. "Volatility Proxies for Discrete Time Models," MPRA Paper 4917, University Library of Munich, Germany.
    119. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    120. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    121. Taoufik Bouezmarni & Jeroen Rombouts & Abderrahim Taamouti, 2009. "A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality," CIRANO Working Papers 2009s-28, CIRANO.
    122. Joshua C C Chan & Yong Song, 2017. "Measuring inflation expectations uncertainty using high-frequency data," CAMA Working Papers 2017-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    123. Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2012. "Return and Volatility Spillovers between Japanese and Chinese Stock Markets FAn Analysis of Overlapping Trading Hours with High-frequency Data," Discussion Papers in Economics and Business 12-01, Osaka University, Graduate School of Economics.
    124. Richard D. F. Harris & Jian Shen & Evarist Stoja, 2010. "The Limits to Minimum‐Variance Hedging," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 37(5‐6), pages 737-761, June.
    125. Jin, Miao & Liu, Yu-Jane & Meng, Juanjuan, 2019. "Fat-finger event and risk-taking behavior," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 126-143.
    126. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    127. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    128. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    129. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    130. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    131. Xiaoxi Liu & Jinming Xie, 2023. "Forecasting swap rate volatility with information from swaptions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(4), pages 455-479, April.
    132. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    133. Ranaldo, Angelo & de Magistris, Paolo Santucci, 2022. "Liquidity in the global currency market," Journal of Financial Economics, Elsevier, vol. 146(3), pages 859-883.
    134. Izzeldin, Marwan & Muradoğlu, Yaz Gülnur & Pappas, Vasileios & Petropoulou, Athina & Sivaprasad, Sheeja, 2023. "The impact of the Russian-Ukrainian war on global financial markets," International Review of Financial Analysis, Elsevier, vol. 87(C).
    135. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    136. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    137. Chunliang Deng & Xingfa Zhang & Yuan Li & Qiang Xiong, 2020. "Garch Model Test Using High-Frequency Data," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
    138. Liu, Yifan & Popova, Ivilina, 2023. "Threats to central bank independence and exchange rate volatility: High-frequency identification with Trump’s Fed tweets," Finance Research Letters, Elsevier, vol. 53(C).
    139. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    140. Chin Wen CHEONG & Lee Min CHERNG & Grace Lee Ching YAP, 2016. "Heterogeneous Market Hypothesis Evaluations using Various Jump-Robust Realized Volatility," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 50-64, December.
    141. Haselmann, Rainer & Herwartz, Helmut, 2008. "Portfolio performance and the Euro: Prospects for new potential EMU members," Journal of International Money and Finance, Elsevier, vol. 27(2), pages 314-330, March.
    142. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    143. Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
    144. Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2017. "Do International Investors Cause Stock Market Comovements? Comparing Responses of Cross-Listed Stocks between Accessible and Inaccessible Markets," Discussion Papers in Economics and Business 17-01, Osaka University, Graduate School of Economics.
    145. Abramov, Vyacheslav & Klebaner, Fima, 2006. "Forecasting and testing a non-constant volatility," MPRA Paper 207, University Library of Munich, Germany.
    146. Zhang, Hanyu & Dufour, Alfonso, 2019. "Modeling intraday volatility of European bond markets: A data filtering application," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 131-146.
    147. Brian Basvi, 2024. "Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 674-695, May.
    148. Arnerić Josip, 2020. "Realized density estimation using intraday prices," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 6(1), pages 1-9, May.
    149. Nishimura, Yusaku & Tsutsui, Yoshiro & Hirayama, Kenjiro, 2018. "Do international investors cause stock market spillovers? Comparing responses of cross-listed stocks between accessible and inaccessible markets," Economic Modelling, Elsevier, vol. 69(C), pages 237-248.
    150. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
    151. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2014. "A Robust Neighborhood Truncation Approach To Estimation Of Integrated Quarticity," Econometric Theory, Cambridge University Press, vol. 30(1), pages 3-59, February.
    152. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
    153. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    154. Adam E Clements & Christopher A Coleman-Fenn & Daniel R Smith, 2011. "Forecasting Equicorrelation," NCER Working Paper Series 72, National Centre for Econometric Research, revised 29 Aug 2011.
    155. Yin Liao, 2012. "Does Modeling Jumps Help? A Comparison of Realized Volatility Models for Risk Prediction," CAMA Working Papers 2012-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    156. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    157. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    158. Sheng, Lin Wen & Uddin, Gazi Salah & Sen, Ding & Hao, Zhu Shi, 2024. "The asymmetric volatility spillover across Shanghai, Hong Kong and the U.S. stock markets: A regime weighted measure and its forecast inference," International Review of Financial Analysis, Elsevier, vol. 91(C).
    159. LAURENT, Sébastien & VIOLANTE, Francesco, 2012. "Volatility forecasts evaluation and comparison," LIDAM Reprints CORE 2414, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    160. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    161. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    162. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    163. Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
    164. Gero Junike & Wim Schoutens & Hauke Stier, 2022. "Performance of advanced stock price models when it becomes exotic: an empirical study," Annals of Finance, Springer, vol. 18(1), pages 109-119, March.
    165. Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
    166. Prateek Sharma & Swati Sharma, 2015. "Forecasting gains of robust realized variance estimators: evidence from European stock markets," Economics Bulletin, AccessEcon, vol. 35(1), pages 61-69.
    167. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    168. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    169. Wang, Zijin & Chen, Peimin & Liu, Peng & Wu, Chunchi, 2024. "Volatility forecasts by clustering: Applications for VaR estimation," International Review of Economics & Finance, Elsevier, vol. 94(C).
    170. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    171. Nath, H. (Mindi) B. & Kim, Jae H. & Brooks, Robert D., 2012. "Realized dual-betas for leading Australian stocks: An evaluation of the estimation methods and the effect of the sampling interval," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 10-22.
    172. Murat Körs & Mehmet Baha Karan, 2023. "Stock exchange volatility forecasting under market stress with MIDAS regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 295-306, January.
    173. Nishimura, Yusaku & Sun, Bianxia, 2021. "President’s Tweets, US-China economic conflict and stock market Volatility: Evidence from China and G5 countries," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    174. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    175. Kerry W. Fendick, 2013. "Pricing and Hedging Derivative Securities with Unknown Local Volatilities," Papers 1309.6164, arXiv.org, revised Oct 2013.
    176. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    177. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
    178. Arnerić Josip & Poklepović Tea & Teai Juin Wen, 2018. "Neural Network Approach in Forecasting Realized Variance Using High-Frequency Data," Business Systems Research, Sciendo, vol. 9(2), pages 18-34, July.
    179. Trung H. Le & Apostolos Kourtis & Raphael Markellos, 2023. "Modeling skewness in portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 734-770, June.
    180. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    181. Braione, Manuela & Scholtes, Nicolas K., 2014. "Construction of value-at-risk forecasts under different distributional assumptions within a BEKK framework," LIDAM Discussion Papers CORE 2014059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    182. Kuang, Wei, 2022. "The economic value of high-frequency data in equity-oil hedge," Energy, Elsevier, vol. 239(PA).
    183. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    184. Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de Estadística.
    185. Silvia Miranda-Agrippino & Hélène Rey, 2015. "US Monetary Policy and the Global Financial Cycle," NBER Working Papers 21722, National Bureau of Economic Research, Inc.
    186. Huang, Alex YiHou, 2016. "Impacts of implied volatility on stock price realized jumps," Economic Systems, Elsevier, vol. 40(4), pages 622-630.
    187. Robin de Vilder & Marcel P. Visser, 2007. "Proxies for daily volatility," PSE Working Papers halshs-00588307, HAL.
    188. Ao Kong & Hongliang Zhu & Robert Azencott, 2019. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Papers 1912.07165, arXiv.org.
    189. Mapa, Dennis S., 2003. "A Range-Based GARCH Model for Forecasting Volatility," MPRA Paper 21323, University Library of Munich, Germany.
    190. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    191. I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
    192. Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
    193. Zhang, Zhikai & Wang, Yudong & Li, Bin, 2023. "Asymmetric spillover of geopolitical risk and oil price volatility: A global perspective," Resources Policy, Elsevier, vol. 83(C).
    194. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    195. Rey, Hélène & Miranda-Agrippino, Silvia, 2015. "World Asset Markets and the Global Financial Cycle," CEPR Discussion Papers 10936, C.E.P.R. Discussion Papers.
    196. Ahadzie, Richard Mawulawoe & Jeyasreedharan, Nagaratnam, 2020. "Trading volume and realized higher-order moments in the Australian stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    197. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta & Riza Demirer, 2022. "Forecasting stock market (realized) volatility in the United Kingdom: Is there a role of inequality?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2146-2152, April.
    198. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    199. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).
    200. Richard Mawulawoe Ahadzie & Nagaratnam Jeyasreedharan, 2024. "Higher‐order moments and asset pricing in the Australian stock market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 75-128, March.
    201. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    202. Brian Ning & Franco Ho Ting Lin & Sebastian Jaimungal, 2018. "Double Deep Q-Learning for Optimal Execution," Papers 1812.06600, arXiv.org, revised Jun 2020.
    203. Maria Čuljak & Josip Arnerić & Ante Žigman, 2022. "Is Jump Robust Two Times Scaled Estimator Superior among Realized Volatility Competitors?," Mathematics, MDPI, vol. 10(12), pages 1-11, June.
    204. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
    205. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    206. Biao Guo & Hai Lin, 2020. "Volatility and jump risk in option returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1767-1792, November.
    207. Mapa, Dennis S., 2004. "A Forecast Comparison of Financial Volatility Models: GARCH (1,1) is not Enough," MPRA Paper 21028, University Library of Munich, Germany.
    208. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    209. Jung, R.C. & Maderitsch, R., 2014. "Structural breaks in volatility spillovers between international financial markets: Contagion or mere interdependence?," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 331-342.
    210. Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
    211. Nevin Cavusoglu & Michael D. Goldberg & Joshua Stillwagon, 2019. "New Evidence on the Portfolio Balance Approach to Currency Returns," Working Papers Series 89, Institute for New Economic Thinking.
    212. Takuo Higashide & Katsuyuki Tanaka & Takuji Kinkyo & Shigeyuki Hamori, 2021. "New Dataset for Forecasting Realized Volatility: Is the Tokyo Stock Exchange Co-Location Dataset Helpful for Expansion of the Heterogeneous Autoregressive Model in the Japanese Stock Market?," JRFM, MDPI, vol. 14(5), pages 1-18, May.
    213. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    214. Pogorelova, Polina & Peresetsky, Anatoly, 2020. "Extracting the global stochastic trend from non-synchronous data on the volatility of financial indices," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 53-71.
    215. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    216. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    217. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    218. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    219. Bent Jesper Christensen & Olaf Posch & Michel van der Wel, 2014. "Estimating Dynamic Equilibrium Models Using Mixed Frequency Macro and Financial Data," CESifo Working Paper Series 5030, CESifo.
    220. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    221. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Duration-Based Volatility Estimation," Global COE Hi-Stat Discussion Paper Series gd08-034, Institute of Economic Research, Hitotsubashi University.
    222. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    223. Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
    224. Lucas Schneider & Johannes Stübinger, 2020. "Dispersion Trading Based on the Explanatory Power of S&P 500 Stock Returns," Mathematics, MDPI, vol. 8(9), pages 1-22, September.
    225. Kotkatvuori-Örnberg, Juha, 2016. "Dynamic conditional copula correlation and optimal hedge ratios with currency futures," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 60-69.
    226. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.
    227. Fulvio Corsi & Francesco Audrino, 2007. "Realized Correlation Tick-by-Tick," University of St. Gallen Department of Economics working paper series 2007 2007-02, Department of Economics, University of St. Gallen.
    228. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    229. Gao, Jun & Gao, Xiang & Gu, Chen, 2023. "Forecasting European stock volatility: The role of the UK," International Review of Financial Analysis, Elsevier, vol. 89(C).
    230. Kumar, Dilip, 2017. "Realized volatility transmission from crude oil to equity sectors: A study with economic significance analysis," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 149-167.
    231. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.

  37. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.

    Cited by:

    1. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    2. Mario Bonino & Matteo Camelia & Paolo Pigato, 2016. "A multivariate model for financial indices and an algorithm for detection of jumps in the volatility," Working Papers hal-01408495, HAL.
    3. Takaishi, Tetsuya, 2018. "Bias correction in the realized stochastic volatility model for daily volatility on the Tokyo Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 139-154.
    4. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    5. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    6. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    7. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    8. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    9. Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    10. Yoann Potiron & Per Mykland, 2015. "Estimation of integrated quadratic covariation with endogenous sampling times," Papers 1507.01033, arXiv.org, revised Nov 2016.
    11. Siamak Ghasemzadeh & Mojtaba Ganjali & Taban Baghfalaki, 2018. "Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 321-348, December.
    12. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    13. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    14. Gonçalo Faria & João Correia-da-Silva, 2011. "A Closed-Form Solution for Options with Ambiguity about Stochastic Volatility," FEP Working Papers 414, Universidade do Porto, Faculdade de Economia do Porto.
    15. Ronnie L. Loeffen & Pierre Patie, 2010. "Absolute ruin in the Ornstein-Uhlenbeck type risk model," Papers 1006.2712, arXiv.org.
    16. Marina Resta & Davide Sciutti, 2003. "Spot price dynamics in deregulated power markets," Econometrics 0312002, University Library of Munich, Germany.
    17. Madan, Dilip B. & Wang, King, 2021. "The structure of financial returns," Finance Research Letters, Elsevier, vol. 40(C).
    18. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    19. Degiannakis, Stavros & Floros, Christos, 2013. "Modeling CAC40 volatility using ultra-high frequency data," Research in International Business and Finance, Elsevier, vol. 28(C), pages 68-81.
    20. Ferland, Rene & Lalancette, Simon, 2006. "Dynamics of realized volatilities and correlations: An empirical study," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2109-2130, July.
    21. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    22. Jiang, Bibo & Lu, Ye & Park, Joon Y., 2018. "Testing for Stationarity at High Frequency," Working Papers 2018-09, University of Sydney, School of Economics.
    23. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    24. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    25. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    26. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    27. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    28. Darrel Duffie & Damir Filipović & Walter Schachermayer, 2002. "Affine Processes and Application in Finance," NBER Technical Working Papers 0281, National Bureau of Economic Research, Inc.
    29. Dimitrios Thomakos & Michail Koubouros, 2008. "The Role of Realized Volatility in the Athens Stock Exchange," Working Papers 0020, University of Peloponnese, Department of Economics.
    30. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    31. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    32. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    33. Jeroen V.K. Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," CREATES Research Papers 2009-07, Department of Economics and Business Economics, Aarhus University.
    34. Nicholas Apergis & Christina Christou & Stephen M. Miller, 2011. "Country and Industry Convergence of Equity Markets: International Evidence from Club Convergence and Clustering," Working Papers 1105, University of Nevada, Las Vegas , Department of Economics.
    35. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Post-Print hal-01474249, HAL.
    36. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    37. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    38. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    39. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    40. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    41. Viktor Todorov & George Tauchen & Iaryna Grynkiv, 2011. "Volatility Activity: Specification and Estimation," Working Papers 11-23, Duke University, Department of Economics.
    42. Bercu, Bernard & Proïa, Frédéric & Savy, Nicolas, 2014. "On Ornstein–Uhlenbeck driven by Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 36-44.
    43. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    44. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    45. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Nonparametric Density Estimation for Positive Time Series," Cahiers de recherche 06-09, HEC Montréal, Institut d'économie appliquée.
    46. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    47. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    48. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    49. Martin Schweizer & Danijel Zivoi & Mario Šikić, 2018. "Dynamic Mean–Variance Optimization Problems With Deterministic Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, March.
    50. Marco Minozzo & Silvia Centanni, 2012. "Monte Carlo likelihood inference for marked doubly stochastic Poisson processes with intensity driven by marked point processes," Working Papers 11/2012, University of Verona, Department of Economics.
    51. Lillestöl, Jostein, 2002. "Some crude approximation, calibration and estimation procedures for NIG-variates," SFB 373 Discussion Papers 2002,85, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    52. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    53. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    54. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
    55. Alvaro Cartea & Marcelo G. Figueroa & Helyette Geman, 2008. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Birkbeck Working Papers in Economics and Finance 0802, Birkbeck, Department of Economics, Mathematics & Statistics.
    56. John Cotter, 2004. "Realized volatility and minimum capital requirements," Money Macro and Finance (MMF) Research Group Conference 2003 20, Money Macro and Finance Research Group.
    57. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    58. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou, 2016. "Jumps and stochastic volatility in crude oil prices and advances in average option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1859-1873, December.
    59. Wei Wei & Asger Lunde, 2023. "Identifying Risk Factors and Their Premia: A Study on Electricity Prices," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1647-1679.
    60. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized Volatility or Price Range: Evidence from a discrete simulation of the continuous time diffusion process," MPRA Paper 80489, University Library of Munich, Germany.
    61. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," PIER Working Paper Archive 05-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    62. Ole E. Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2001. "Some recent developments in stochastic volatility modelling," Economics Papers 2001-W25, Economics Group, Nuffield College, University of Oxford.
    63. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    64. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
    65. Javier Mencía & Enrique Sentana, 2012. "Valuation of vix derivatives," Working Papers 1232, Banco de España.
    66. Fred Benth & Nils Detering, 2015. "Pricing and hedging Asian-style options on energy," Finance and Stochastics, Springer, vol. 19(4), pages 849-889, October.
    67. Evarist Stoja & Richard D. F. Harris & Fatih Yilmaz, 2010. "A Cyclical Model of Exchange Rate Volatility," Bristol Economics Discussion Papers 10/618, School of Economics, University of Bristol, UK.
    68. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    69. Amorino, Chiara & Gloter, Arnaud, 2020. "Unbiased truncated quadratic variation for volatility estimation in jump diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5888-5939.
    70. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    71. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    72. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.
    73. Lin, Xu & van Wijnbergen, Sweder, 2023. "The Social Cost of Carbon under Climate Volatility Risk," CEPR Discussion Papers 18210, C.E.P.R. Discussion Papers.
    74. Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes," Econometric Society 2004 North American Winter Meetings 405, Econometric Society.
    75. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2008. "Analysis of Fourier transform valuation formulas and applications," Papers 0809.3405, arXiv.org, revised Sep 2009.
    76. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    77. Ji Jung Im & Hyun Soo Lim & Sung sub Choi & Denis Nikitin, 2007. "Portfolio Selection under Parameter Uncertainty using a Predictive Distribution," Annals of Economics and Finance, Society for AEF, vol. 8(2), pages 305-312, November.
    78. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    79. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    80. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
    81. Ivan Shaliastovich & George Tauchen, 2010. "Pricing of the Time-Change Risks," Working Papers 10-10, Duke University, Department of Economics.
    82. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets," Papers 2011.04256, arXiv.org.
    83. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    84. Griffin, Jim & Steel, Mark F.J., 2008. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," MPRA Paper 11071, University Library of Munich, Germany.
    85. Carl Lindberg, 2008. "The estimation of the Barndorff‐Nielsen and Shephard model from daily data based on measures of trading intensity," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 277-289, July.
    86. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
    87. Zeddouk, Fadoua & Devolder, Pierre, 2019. "Mean reversion in stochastic mortality : why and how?," LIDAM Discussion Papers ISBA 2019018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    88. George Tauchen & Viktor Todorov, 2010. "Activity Signature Functions for High-Frequency Data Analysis," Working Papers 10-08, Duke University, Department of Economics.
    89. Giulia Di Nunno & Kęstutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From Constant to Rough: A Survey of Continuous Volatility Modeling," Mathematics, MDPI, vol. 11(19), pages 1-35, October.
    90. Liu, Bin & Zhou, Cheng & Zhang, Xinsheng, 2019. "A tail adaptive approach for change point detection," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 33-48.
    91. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    92. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    93. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    94. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    95. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    96. Härdle, Wolfgang Karl & Chen, Shi & Liang, Chong & Schienle, Melanie, 2018. "Time-varying Limit Order Book Networks," IRTG 1792 Discussion Papers 2018-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    97. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    98. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 591-616, September.
    99. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    100. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    101. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    102. Nour Meddahi & Eric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
    103. Sébastien Laurent & Shuping Shi, 2018. "Volatility Estimation and Jump Detection for drift-diffusion Processes," Working Papers halshs-01944449, HAL.
    104. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
    105. François-Éric Racicot & Raymond Théoret & Alain Coën, 2008. "Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 14(1), pages 112-124, February.
    106. Yasemin Ulu, 2020. "Volatility Distribution of the DJSTOXXE50 Index," Applied Economics and Finance, Redfame publishing, vol. 7(6), pages 101-107, December.
    107. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    108. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    109. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
    110. Florence Guillaume & Wim Schoutens, 2014. "Heston Model: The Variance Swap Calibration," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 76-89, April.
    111. D. Delpini & G. Bormetti, 2015. "Stochastic volatility with heterogeneous time scales," Quantitative Finance, Taylor & Francis Journals, vol. 15(10), pages 1597-1608, October.
    112. Shu Ling Chiang & Ming Shann Tsai, 2019. "Valuation of an option using non-parametric methods," Review of Derivatives Research, Springer, vol. 22(3), pages 419-447, October.
    113. Matthieu Garcin & Martino Grasselli, 2022. "Long versus short time scales: the rough dilemma and beyond," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 257-278, June.
    114. S. Ghasemzadeh & M. Ganjali & T. Baghfalaki, 2022. "Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1181-1202, December.
    115. Mariani, Maria C. & Tweneboah, Osei K., 2016. "Stochastic differential equations applied to the study of geophysical and financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 170-178.
    116. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    117. John Randal & Peter Thomson & Martin Lally, 2004. "Non-parametric estimation of historical volatility," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 427-440.
    118. Takuji Arai & Yuto Imai, 2024. "Option pricing for Barndorff-Nielsen and Shephard model by supervised deep learning," Papers 2402.00445, arXiv.org.
    119. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    120. Maria Elvira Mancino & Simone Scotti & Giacomo Toscano, 2020. "Is the variance swap rate affine in the spot variance? Evidence from S&P500 data," Papers 2004.04015, arXiv.org.
    121. Dinghai Xu, 2010. "A Threshold Stochastic Volatility Model with Realized Volatility," Working Papers 1003, University of Waterloo, Department of Economics, revised May 2010.
    122. ANDERSEN, Torben G. & BOLLERSLEV, Tim & MEDDAHI, Nour, 2002. "Correcting the Errors : A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities," Cahiers de recherche 2002-21, Universite de Montreal, Departement de sciences economiques.
    123. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    124. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    125. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
    126. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    127. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    128. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
    129. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    130. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2014. "Mixtures of skew-t factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 326-335.
    131. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    132. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
    133. Behme, Anita & Lindner, Alexander & Reker, Jana & Rivero, Victor, 2021. "Continuity properties and the support of killed exponential functionals," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 115-146.
    134. Erhan Bayraktar & Li Chen & H. Vincent Poor, 2005. "Consistency Problems for Jump-diffusion Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(2), pages 101-119.
    135. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    136. Fengler, Matthias & Melnikov, Alexander, 2017. "GARCH option pricing models with Meixner innovations," Economics Working Paper Series 1702, University of St. Gallen, School of Economics and Political Science.
    137. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    138. Michael Roberts & Indranil SenGupta, 2020. "Sequential hypothesis testing in machine learning, and crude oil price jump size detection," Papers 2004.08889, arXiv.org, revised Dec 2020.
    139. Marco Piccirilli & Tiziano Vargiolu, 2018. "Optimal Portfolio in Intraday Electricity Markets Modelled by L\'evy-Ornstein-Uhlenbeck Processes," Papers 1807.01979, arXiv.org.
    140. Bjørn Eraker & Ivan Shaliastovich, 2008. "An Equilibrium Guide To Designing Affine Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 519-543, October.
    141. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    142. Daisuke Nagakura & Toshiaki Watanabe, 2011. "A State Space Approach to Estimating the Integrated Variance under the Existence of Market Microstructure Noise," Global COE Hi-Stat Discussion Paper Series gd11-200, Institute of Economic Research, Hitotsubashi University.
    143. Luo, Jiaowan & Liu, Kai, 2008. "Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 864-895, May.
    144. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    145. Hanieh Panahi, 2016. "Model Selection Test for the Heavy-Tailed Distributions under Censored Samples with Application in Financial Data," IJFS, MDPI, vol. 4(4), pages 1-14, December.
    146. Roberto Leon-Gonzalez, 2015. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 15-17, National Graduate Institute for Policy Studies.
    147. Takuji Arai, 2015. "Local risk-minimization for Barndorff-Nielsen and Shephard models with volatility risk premium," Papers 1506.01477, arXiv.org.
    148. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    149. Wieger Hinderks & Andreas Wagner & Ralf Korn, 2018. "A structural Heath-Jarrow-Morton framework for consistent intraday, spot, and futures electricity prices," Papers 1803.08831, arXiv.org, revised Jan 2019.
    150. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    151. Patie, Pierre, 2005. "On a martingale associated to generalized Ornstein-Uhlenbeck processes and an application to finance," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 593-607, April.
    152. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
    153. Oak, Neeraj & Lawson, Daniel & Champneys, Alan, 2014. "Performance comparison of renewable incentive schemes using optimal control," Energy, Elsevier, vol. 64(C), pages 44-57.
    154. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    155. Roel C.A. Oomen, 2004. "Statistical Models for High Frequency Security Prices," Econometric Society 2004 North American Winter Meetings 77, Econometric Society.
    156. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    157. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    158. Rama Cont & Peter Tankov, 2009. "Constant proportion portfolio insurance in presence of jumps in asset prices," Post-Print hal-00445646, HAL.
    159. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    160. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    161. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    162. Korneev, Ivan & Zakharova, Anna & Semenov, Vladimir V., 2024. "Lévy noise-induced coherence resonance: Numerical study versus experiment," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    163. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    164. Ysusi Carla, 2006. "Detecting Jumps in High-Frequency Financial Series Using Multipower Variation," Working Papers 2006-10, Banco de México.
    165. Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," MPRA Paper 118459, University Library of Munich, Germany.
    166. Cathy Ning & Dinghai Xu & Tony Wirjanto, 2014. "Is Volatility Clustering of Asset Returns Asymmetric?," Working Papers 050, Toronto Metropolitan University, Department of Economics.
    167. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    168. Anita Behme, 2024. "Volatility modeling in a Markovian environment: Two Ornstein-Uhlenbeck-related approaches," Papers 2407.05866, arXiv.org.
    169. Fred Espen Benth & Heidar Eyjolfsson, 2015. "Representation and approximation of ambit fields in Hilbert space," Papers 1509.08272, arXiv.org.
    170. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
    171. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    172. Torben G. Andersen & Luca Benzoni, 2007. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification test for Affine Term Structure Models," NBER Working Papers 12962, National Bureau of Economic Research, Inc.
    173. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    174. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    175. Cartea, Álvaro & Meyer-Brandis, Thilo, 2009. "How Duration Between Trades of Underlying Securities Affects Option Prices," MPRA Paper 16179, University Library of Munich, Germany.
    176. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    177. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2019. "On long memory effects in the volatility measure of Cryptocurrencies," Finance Research Letters, Elsevier, vol. 28(C), pages 95-100.
    178. Dimitrios D. Thomakos & Michail S. Koubouros, 2005. "Realized Volatility and Asymmetries in the A.S.E. Returns," Finance 0507012, University Library of Munich, Germany, revised 17 Jan 2006.
    179. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    180. Gajda, J. & Wyłomańska, A. & Kumar, A., 2017. "Generalized fractional Laplace motion," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 101-109.
    181. Siddhartha Chib & Neil Shephard, 2001. "Comment on Garland B. Durham and A. Ronald Gallant's "Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes"," Economics Papers 2001-W26, Economics Group, Nuffield College, University of Oxford.
    182. Zhigang Tong, 2016. "Option pricing in stochastic volatility models driven by fractional Lévy processes," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 56-75.
    183. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    184. Takuji Arai & Ryoichi Suzuki, 2015. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Keio-IES Discussion Paper Series 2015-003, Institute for Economics Studies, Keio University.
    185. Mark Tippett, 2004. "Discussion of Interim Reporting Frequency and Financial Analysts’ Expenditures," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(1‐2), pages 199-207, January.
    186. José Fajardo & Ernesto Mordecki, 2005. "Duality and Derivative Pricing with Time-Changed Lévy Processes," IBMEC RJ Economics Discussion Papers 2005-12, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    187. Enrique Villamor & Pablo Olivares, 2020. "Pricing Exchange Options under Stochastic Correlation," Papers 2001.03967, arXiv.org.
    188. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    189. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    190. Bonomo, Marco & Garcia, René & Meddahi, Nour & Tédongap, Roméo, 2015. "The long and the short of the risk-return trade-off," Journal of Econometrics, Elsevier, vol. 187(2), pages 580-592.
    191. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    192. Enrique Villamor & Pablo Olivares, 2023. "Valuing Exchange Options under an Ornstein-Uhlenbeck Covariance Model," IJFS, MDPI, vol. 11(2), pages 1-24, March.
    193. Xianfei Hui & Baiqing Sun & Hui Jiang & Indranil SenGupta, 2021. "Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters," Papers 2101.08984, arXiv.org, revised Feb 2022.
    194. Bernd Hayo & Britta Niehof, 2013. "Studying International Spillovers in a New Keynesian Continuous Time Framework with Financial Markets," MAGKS Papers on Economics 201342, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    195. Friedrich Hubalek & Carlo Sgarra, 2008. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Papers 0807.1227, arXiv.org.
    196. Emanuel Derman & Kun Soo Park & Ward Whitt, 2010. "A stochastic-difference-equation model for hedge-fund returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 701-733.
    197. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    198. Stefano Iacus & Lorenzo Mercuri, 2015. "Implementation of Lévy CARMA model in Yuima package," Computational Statistics, Springer, vol. 30(4), pages 1111-1141, December.
    199. Rybalova, E. & Averyanov, V. & Lozi, R. & Strelkova, G., 2024. "Peculiarities of the spatio-temporal dynamics of a Hénon–Lozi map network in the presence of Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    200. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
    201. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    202. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.
    203. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    204. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    205. Semere Habtemicael & Musie Ghebremichael & Indranil SenGupta, 2019. "Volatility and Variance Swap Using Superposition of the Barndorff-Nielsen and Shephard type Lévy Processes," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 75-92, June.
    206. Javed Farrukh & Podgórski Krzysztof, 2014. "Leverage Effect for Volatility with Generalized Laplace Error," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 157-166, December.
    207. Michael Grabchak, 2021. "On the transition laws of p-tempered $$\alpha $$ α -stable OU-processes," Computational Statistics, Springer, vol. 36(2), pages 1415-1436, June.
    208. Imma Valentina Curato & Simona Sanfelici, 2019. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Papers 1910.06660, arXiv.org, revised Mar 2021.
    209. Peter Christoffersen & Steve Heston & Kris Jacobs, 2003. "Option Valuation with Conditional Skewness," CIRANO Working Papers 2003s-50, CIRANO.
    210. Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
    211. Matthieu Garcin & Martino Grasselli, 2020. "Long vs Short Time Scales: the Rough Dilemma and Beyond," Papers 2008.07822, arXiv.org, revised Nov 2021.
    212. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    213. Aubain Hilaire Nzokem, 2023. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process," JRFM, MDPI, vol. 16(1), pages 1-28, January.
    214. Hainaut, Donatien & Devolder, Pierre, 2008. "Mortality modelling with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 409-418, February.
    215. Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
    216. Nemat Safarov & Colin Atkinson, 2016. "Natural gas-fired power plants valuation and optimisation under Levy copulas and regime-switching," Papers 1607.01207, arXiv.org, revised Jul 2016.
    217. Christian Laudag'e & Florian Aichinger & Sascha Desmettre, 2023. "A Comparative Study of Factor Models for Different Periods of the Electricity Spot Price Market," Papers 2306.07731, arXiv.org, revised Apr 2024.
    218. Christian Bontemps & Nour Meddahi, 2002. "Testing Normality: A GMM Approach," CIRANO Working Papers 2002s-63, CIRANO.
    219. Olivares Pablo & Villamor Enrique, 2017. "Valuing Exchange Options Under an Ornstein-Uhlenbeck Covariance Model," Papers 1711.10013, arXiv.org.
    220. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    221. Stephen Thiele, 2020. "Modeling the conditional distribution of financial returns with asymmetric tails," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 46-60, January.
    222. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    223. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    224. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    225. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    226. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2019. "Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5113-5150.
    227. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    228. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    229. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    230. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.
    231. Robert Brooks & Robert Faff & Sirimon Treepongkaruna & Eliza Wu, 2015. "Do Sovereign Re-Ratings Destabilize Equity Markets during Financial Crises? New Evidence from Higher Return Moments," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 42(5-6), pages 777-799, June.
    232. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    233. Yipeng Yang & Allanus Tsoi, 2016. "A Level Set Analysis and A Nonparametric Regression on S&P 500 Daily Return," IJFS, MDPI, vol. 4(1), pages 1-24, February.
    234. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    235. Xiaojing Song & Thu Phuong Truong & Mark Tippett & John van der Burg, 2022. "The quantity theory of stock prices," The European Journal of Finance, Taylor & Francis Journals, vol. 28(17), pages 1685-1707, November.
    236. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    237. Fang, Libing & Qian, Yichuo & Chen, Ying & Yu, Honghai, 2018. "How does stock market volatility react to NVIX? Evidence from developed countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 490-499.
    238. Sylvia Frühwirth-Schnatter & Leopold Sögner, 2009. "Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 159-179, March.
    239. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    240. Claudia Kluppelberg & Thilo Meyer-Brandis & Andrea Schmidt, 2010. "Electricity spot price modelling with a view towards extreme spike risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 963-974.
    241. Fotopoulos, Stergios B., 2005. "Type G and spherical distributions on," Statistics & Probability Letters, Elsevier, vol. 72(1), pages 23-32, April.
    242. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    243. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    244. G. Mesters & S. J. Koopman & M. Ooms, 2016. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
    245. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    246. Fred Espen Benth & Steen Koekebakker, 2016. "Stochastic modeling of Supramax spot and forward freight rates," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(4), pages 391-413, December.
    247. Michael Schröder, 2015. "Discrete-Time Approximation of Functionals in Models of Ornstein–Uhlenbeck Type, with Applications to Finance," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 285-313, June.
    248. Indranil SenGupta & William Nganje & Erik Hanson, 2019. "Refinements of Barndorff-Nielsen and Shephard model: an analysis of crude oil price with machine learning," Papers 1911.13300, arXiv.org, revised Mar 2020.
    249. John Cotter, 2011. "Minimum Capital Requirement Calculations for UK Futures," Papers 1103.5416, arXiv.org.
    250. Michele Bianchi & Frank Fabozzi, 2015. "Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 243-273, August.
    251. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    252. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    253. Gennady Gorin & John J. Vastola & Meichen Fang & Lior Pachter, 2022. "Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    254. Karl Friedrich Hofmann & Thorsten Schulz, 2016. "A General Ornstein–Uhlenbeck Stochastic Volatility Model With Lévy Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-23, December.
    255. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    256. Thomas C. Chiang & Zhuo Qiao & Wing-Keung Wong, 2010. "New evidence on the relation between return volatility and trading volume," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 502-515.
    257. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    258. Brian Basvi, 2024. "Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 674-695, May.
    259. Brockman, Paul & Guo, Tao & Vivero, Maria Gabriela & Yu, Wayne, 2022. "Is idiosyncratic risk priced? The international evidence," Journal of Empirical Finance, Elsevier, vol. 66(C), pages 121-136.
    260. Godek, Paul E., 2015. "A simple model of market valuation and trend reversion for U.S. equities: 100 Years of bubbles, non-bubbles, and inverse-bubbles," Finance Research Letters, Elsevier, vol. 13(C), pages 29-35.
    261. Viktor Bezborodov & Luca Persio & Yuliya Mishura, 2019. "Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 331-366, March.
    262. Jan Kallsen & Richard Vierthauer, 2009. "Quadratic hedging in affine stochastic volatility models," Review of Derivatives Research, Springer, vol. 12(1), pages 3-27, April.
    263. Michael Roberts & Indranil SenGupta, 2019. "Infinitesimal generators for two-dimensional L\'evy process-driven hypothesis testing," Papers 1911.08412, arXiv.org.
    264. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    265. Friedrich Hubalek & Petra Posedel, 2011. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 917-932.
    266. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    267. Lingohr, Daniel & Müller, Gernot, 2019. "Stochastic modeling of intraday photovoltaic power generation," Energy Economics, Elsevier, vol. 81(C), pages 175-186.
    268. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Power Variation and Time Change," Economics Papers 2002-W24, Economics Group, Nuffield College, University of Oxford.
    269. Hansson, Fredrik & Rüdow Fors, Erik, 2009. "Get Shorty? - Market Impact of the 2008-09 U.K. Short Selling Ban," Working Papers in Economics 365, University of Gothenburg, Department of Economics.
    270. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
    271. Mencia, Javier F. & Sentana, Enrique, 2004. "Estimation and testing of dynamic models with generalised hyperbolic innovations," LSE Research Online Documents on Economics 24742, London School of Economics and Political Science, LSE Library.
    272. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.
    273. Chunsheng Ma, 2017. "Vector Stochastic Processes with Pólya-Type Correlation Structure," International Statistical Review, International Statistical Institute, vol. 85(2), pages 340-354, August.
    274. Gordon R. Richards, 2004. "A fractal forecasting model for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 586-601.
    275. Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
    276. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.
    277. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.
    278. Bufalo, Michele & Orlando, Giuseppe, 2023. "A three-factor stochastic model for forecasting production of energy materials," Finance Research Letters, Elsevier, vol. 51(C).
    279. Todorov, Viktor, 2019. "Nonparametric inference for the spectral measure of a bivariate pure-jump semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 419-451.
    280. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2017. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Finance and Stochastics, Springer, vol. 21(2), pages 551-592, April.
    281. da Fonseca, Regina C.B. & Figueiredo, Annibal & de Castro, Márcio T. & Mendes, Fábio M., 2013. "Generalized Ornstein–Uhlenbeck process by Doob’s theorem and the time evolution of financial prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1671-1680.
    282. Liudas Giraitis, 2004. "LARCH, Leverage, and Long Memory," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 177-210.
    283. Benth, Fred Espen & Taib, Che Mohd Imran Che, 2013. "On the speed towards the mean for continuous time autoregressive moving average processes with applications to energy markets," Energy Economics, Elsevier, vol. 40(C), pages 259-268.
    284. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, October.
    285. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    286. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    287. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    288. Leisen, Fabrizio & Mena, Ramsés H. & Palma, Freddy & Rossini, Luca, 2019. "On a flexible construction of a negative binomial model," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 1-8.
    289. Nemat Safarov & Colin Atkinson, 2017. "Natural Gas-Fired Power Plants Valuation And Optimization Under Lévy Copulas And Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-38, February.
    290. Pier Paolo Peirano & Damien Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," Post-Print hal-00734355, HAL.
    291. Jeanblanc, M. & Pitman, J. & Yor, M., 0. "Self-similar processes with independent increments associated with Lévy and Bessel processes," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 223-231, July.
    292. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    293. Taylor, Nicholas, 2007. "A note on the importance of overnight information in risk management models," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 161-180, January.
    294. Anne Brix & Asger Lunde, 2015. "Prediction-based estimating functions for stochastic volatility models with noisy data: comparison with a GMM alternative," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 433-465, October.
    295. Fengkai Yang, 2018. "A Stochastic EM Algorithm for Quantile and Censored Quantile Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 555-582, August.
    296. Boyi Li & Weixuan Xia, 2024. "Crypto Inverse-Power Options and Fractional Stochastic Volatility," Papers 2403.16006, arXiv.org, revised Sep 2024.
    297. Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
    298. Giancarlo Salirrosas Mart'inez, 2016. "Biased Roulette Wheel: A Quantitative Trading Strategy Approach," Papers 1609.09601, arXiv.org.
    299. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    300. Weiliang Lu & Alexis Arrigoni & Anatoliy Swishchuk & Stéphane Goutte, 2021. "Modelling of Fuel- and Energy-Switching Prices by Mean-Reverting Processes and Their Applications to Alberta Energy Markets," Mathematics, MDPI, vol. 9(7), pages 1-24, March.
    301. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    302. Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2016. "Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1393-1411, September.
    303. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    304. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
    305. Dai, Xianhua & Härdle, Wolfgang Karl & Yu, Keming, 2014. "Do maternal health problems influence child's worrying status? Evidence from British cohort study," SFB 649 Discussion Papers 2014-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    306. Petra Posedel Šimović & Azra Tafro, 2021. "Pricing the Volatility Risk Premium with a Discrete Stochastic Volatility Model," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    307. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    308. Gero Junike & Wim Schoutens & Hauke Stier, 2022. "Performance of advanced stock price models when it becomes exotic: an empirical study," Annals of Finance, Springer, vol. 18(1), pages 109-119, March.
    309. Pham, Viet Son & Chong, Carsten, 2018. "Volterra-type Ornstein–Uhlenbeck processes in space and time," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3082-3117.
    310. Shibin Zhang & Xinsheng Zhang, 2013. "A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 89-103, February.
    311. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2012. "An Empirical Evaluation of the Long-Run Risks Model for Asset Prices," Critical Finance Review, now publishers, vol. 1(1), pages 183-221, January.
    312. Barunik, Jozef & Barunikova, Michaela, 2015. "Revisiting the long memory dynamics of implied-realized volatility relation: A new evidence from wavelet band spectrum regression," FinMaP-Working Papers 43, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    313. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    314. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    315. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    316. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
    317. Behme, Anita & Di Tella, Paolo & Sideris, Apostolos, 2024. "On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    318. Capobianco, Enrico, 2004. "Multiscale stochastic dynamics in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 122-127.
    319. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
    320. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    321. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    322. Fred Espen Benth & Hanna Zdanowicz, 2016. "Pricing And Hedging Of Energy Spread Options And Volatility Modulated Volterra Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-22, February.
    323. Martino Bardi & Annalisa Cesaroni & Andrea Scotti, 2014. "Convergence in Multiscale Financial Models with Non-Gaussian Stochastic Volatility," Papers 1405.6514, arXiv.org.
    324. Lu, Jin-Ray & Yang, Ya-Huei, 2021. "Option valuations and asset demands and supplies," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 49-64.
    325. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    326. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    327. Sandya N. Kumari, 2020. "L¨¦vy Processes in Gold Option Modeling," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(2), pages 1-65, February.
    328. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
    329. Laetitia Badouraly Kassim & Jérôme Lelong & Imane Loumrhari, 2015. "Importance sampling for jump processes and applications to finance," Post-Print hal-00842362, HAL.
    330. Wan-Lun Wang & Luis M. Castro & Yen-Ting Chang & Tsung-I Lin, 2019. "Mixtures of restricted skew-t factor analyzers with common factor loadings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 445-480, June.
    331. Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
    332. Wergen, Gregor, 2014. "Modeling record-breaking stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 114-133.
    333. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts & Andrew Stuart, 2010. "Random‐weight particle filtering of continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 497-512, September.
    334. Tim Leung & Kevin W. Lu, 2023. "Monte Carlo Simulation for Trading Under a L\'evy-Driven Mean-Reverting Framework," Papers 2309.05512, arXiv.org, revised Jan 2024.
    335. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    336. Zdeněk Zmeškal & Dana Dluhošová & Karolina Lisztwanová & Antonín Pončík & Iveta Ratmanová, 2023. "Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy," Forecasting, MDPI, vol. 5(2), pages 1-19, May.
    337. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    338. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    339. E. Nicolato & D. Sloth, 2014. "Risk adjustments of option prices under time-changed dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 125-141, January.
    340. Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
    341. Reiichiro Kawai, 2013. "Local Asymptotic Normality Property for Ornstein–Uhlenbeck Processes with Jumps Under Discrete Sampling," Journal of Theoretical Probability, Springer, vol. 26(4), pages 932-967, December.
    342. Sergey S. Stepanov, 2009. "Resilience of Volatility," Papers 0911.5048, arXiv.org.
    343. Arai, Takuji & Imai, Yuto, 2024. "Monte Carlo simulation for Barndorff–Nielsen and Shephard model under change of measure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 223-234.
    344. Dinghai Xu & Yuying Li, 2010. "Empirical Evidence of the Leverage Effect in a Stochastic Volatility Model: A Realized Volatility Approach," Working Papers 1002, University of Waterloo, Department of Economics, revised May 2010.
    345. José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado & Mario Iván Contreras-Valdez, 2022. "COVID Asymmetric Impact on the Risk Premium of Developed and Emerging Countries’ Stock Markets," Mathematics, MDPI, vol. 10(9), pages 1-36, April.
    346. McCulloch, James, 2012. "Fractal market time," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 686-701.
    347. Shafiullah, Muhammad & Senthilkumar, Arunachalam & Lucey, Brian M. & Naeem, Muhammad Abubakr, 2024. "Deciphering asymmetric spillovers in US industries: Insights from higher-order moments," Research in International Business and Finance, Elsevier, vol. 70(PA).
    348. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously ( Revised in March 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2," CARF F-Series CARF-F-108, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    349. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    350. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    351. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    352. Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de Estadística.
    353. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    354. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    355. Wong, Woon K. & Tu, Anthony H., 2009. "Market imperfections and the information content of implied and realized volatility," Pacific-Basin Finance Journal, Elsevier, vol. 17(1), pages 58-79, January.
    356. Lan Zhang, 2012. "Implied and realized volatility: empirical model selection," Annals of Finance, Springer, vol. 8(2), pages 259-275, May.
    357. Takuji Arai, 2020. "Al\`os type decomposition formula for Barndorff-Nielsen and Shephard model," Papers 2005.07393, arXiv.org, revised Sep 2020.
    358. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    359. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.
    360. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    361. Marino, L. & Menozzi, S., 2023. "Weak well-posedness for a class of degenerate Lévy-driven SDEs with Hölder continuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 106-170.
    362. Fig-Talamanca, Gianna, 2009. "Testing volatility autocorrelation in the constant elasticity of variance stochastic volatility model," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2201-2218, April.
    363. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    364. Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
    365. Ching-Kang Ing & Chiao-Yi Yang, 2014. "Predictor Selection for Positive Autoregressive Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 243-253, March.
    366. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    367. Ziehaus Christina, 2012. "A note on optimal consumption and investment in a geometric Ornstein–Uhlenbeck market," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 269-280, August.
    368. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    369. Jensen Anders Tolver & Lange Theis, 2010. "On Convergence of the QMLE for Misspecified GARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-31, June.
    370. Palombini, Edgardo, 2003. "Volatility and liquidity in the Italian money market," MPRA Paper 42699, University Library of Munich, Germany.
    371. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    372. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
    373. Rønn-Nielsen, Anders & Stehr, Mads, 2022. "Extremes of Lévy-driven spatial random fields with regularly varying Lévy measure," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 19-49.
    374. Wan-Lun Wang & Min Liu & Tsung-I Lin, 2017. "Robust skew-t factor analysis models for handling missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 649-672, November.
    375. Michael Grabchak & Eliana Christou, 2021. "A note on calculating expected shortfall for discrete time stochastic volatility models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-16, December.
    376. Behme, Anita & Chong, Carsten & Klüppelberg, Claudia, 2015. "Superposition of COGARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1426-1469.
    377. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    378. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    379. Yukihiro Tsuzuki, 2013. "Pricing Bounds on Barrier Options (forthcoming in "Journal of Futures Markets")," CARF F-Series CARF-F-325, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    380. Josef Danv{e}k & J. Posp'iv{s}il, 2020. "Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models," Papers 2006.13181, arXiv.org.
    381. Alexandre F. Roch, 2008. "Viscosity Solutions and American Option Pricing in a Stochastic Volatility Model of the Ornstein-Uhlenbeck Type," Papers 0812.2444, arXiv.org.
    382. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    383. Suk Kim, Myung & Wang, Suojin, 2006. "On the applicability of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2210-2217, December.
    384. Shubham Ekapure & Nuruddin Jiruwala & Sohan Patnaik & Indranil SenGupta, 2021. "A data-science-driven short-term analysis of Amazon, Apple, Google, and Microsoft stocks," Papers 2107.14695, arXiv.org.
    385. Bakerman, Jordan & Pazdernik, Karl & Korkmaz, Gizem & Wilson, Alyson G., 2022. "Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest," International Journal of Forecasting, Elsevier, vol. 38(2), pages 648-661.
    386. Liudas Giraitis & Remigijus Leipus & Peter M Robinson & Donatas Surgailis, 2003. "LARCH, Leverage and Long Memory," STICERD - Econometrics Paper Series 460, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    387. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    388. Richard Hawkes & Paresh Date, 2007. "Medium‐term horizon volatility forecasting: A comparative study," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(6), pages 465-481, November.
    389. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    390. Christian E. Galarza & Luis M. Castro & Francisco Louzada & Victor H. Lachos, 2020. "Quantile regression for nonlinear mixed effects models: a likelihood based perspective," Statistical Papers, Springer, vol. 61(3), pages 1281-1307, June.
    391. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.
    392. Ulrich Horst & Wei Xu, 2019. "The Microstructure of Stochastic Volatility Models with Self-Exciting Jump Dynamics," Papers 1911.12969, arXiv.org.
    393. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    394. Ewald, Christian & Zou, Yihan, 2021. "Stochastic volatility: A tale of co-jumps, non-normality, GMM and high frequency data," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 37-52.
    395. Baule, Rainer & Shkel, David, 2021. "Model risk and model choice in the case of barrier options and bonus certificates," Journal of Banking & Finance, Elsevier, vol. 133(C).
    396. Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.
    397. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, October.
    398. Sio Chong U & Jacky So & Deng Ding & Lihong Liu, 2016. "An efficient Fourier expansion method for the calculation of value-at-risk: Contributions of extra-ordinary risks," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-27, March.
    399. Genon-Catalot, Valentine & Laredo, Catherine, 2006. "Leroux's method for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 222-243, February.
    400. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    401. Fan Jiang & Xin Zang & Jingping Yang, 2020. "Asymptotic expansion for the transition densities of stochastic differential equations driven by the gamma processes," Papers 2003.06218, arXiv.org.
    402. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    403. Yang-Ho Park, 2015. "The Effects of Asymmetric Volatility and Jumps on the Pricing of VIX Derivatives," Finance and Economics Discussion Series 2015-71, Board of Governors of the Federal Reserve System (U.S.).
    404. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    405. Schnurr Alexander & Woerner Jeannette H. C., 2011. "Well-balanced Lévy driven Ornstein–Uhlenbeck processes," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 343-357, December.
    406. Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
    407. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    408. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    409. Qian Guo & Huw Rhys & Xiaojing Song & Mark Tippett, 2016. "The Friedman rule and inflation targeting," The European Journal of Finance, Taylor & Francis Journals, vol. 22(14), pages 1414-1434, November.
    410. Stephen J. Taylor & Chi‐Feng Tzeng & Martin Widdicks, 2018. "Information about price and volatility jumps inferred from options prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1206-1226, October.
    411. S. Kuchuk-Iatsenko & Y. Mishura & Y. Munchak, 2016. "Application of Malliavin calculus to exact and approximate option pricing under stochastic volatility," Papers 1608.00230, arXiv.org.
    412. Bregantini, Daniele, 2013. "Moment-based estimation of stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4755-4764.
    413. Ulrich Hounyo & Rasmus T. Varneskov, 2018. "Inference for Local Distributions at High Sampling Frequencies: A Bootstrap Approach," CREATES Research Papers 2018-16, Department of Economics and Business Economics, Aarhus University.
    414. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    415. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.
    416. Dong, Xiaohui & Wang, Ming & Zhong, Guang-Yan & Yang, Fengzao & Duan, Weilong & Li, Jiang-Cheng & Xiong, Kezhao & Zeng, Chunhua, 2018. "Stochastic delayed kinetics of foraging colony system under non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 1-13.
    417. Vrins, Frédéric, 2016. "Characteristic function of time-inhomogeneous Lévy-driven Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 55-61.
    418. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    419. Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
    420. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    421. Adland, Roar & Benth, Fred Espen & Koekebakker, Steen, 2018. "Multivariate modeling and analysis of regional ocean freight rates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 194-221.
    422. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    423. Lee, Oesook, 2012. "V-uniform ergodicity of a continuous time asymmetric power GARCH(1,1) model," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 812-817.
    424. Maria P. Braun & Simos G. Meintanis & Viatcheslav B. Melas, 2008. "Optimal Design Approach to GMM Estimation of Parameters Based on Empirical Transforms," International Statistical Review, International Statistical Institute, vol. 76(3), pages 387-400, December.
    425. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    426. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    427. Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.
    428. Svetlozar Rachev & Stoyan Stoyanov & Frank J. Fabozzi, 2017. "Behavioral Finance Option Pricing Formulas Consistent with Rational Dynamic Asset Pricing," Papers 1710.03205, arXiv.org.
    429. Curato, Imma Valentina, 2019. "Estimation of the stochastic leverage effect using the Fourier transform method," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3207-3238.
    430. Pakkanen, Mikko S. & Sottinen, Tommi & Yazigi, Adil, 2017. "On the conditional small ball property of multivariate Lévy-driven moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 749-782.
    431. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    432. Ignatieva, Katja & Wong, Patrick, 2022. "Modelling high frequency crude oil dynamics using affine and non-affine jump–diffusion models," Energy Economics, Elsevier, vol. 108(C).
    433. Chiara Amorino & Arnaud Gloter, 2021. "Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 61-148, April.
    434. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    435. Nicola Cufaro Petroni & Piergiacomo Sabino, 2019. "Fast Pricing of Energy Derivatives with Mean-reverting Jump-diffusion Processes," Papers 1908.03137, arXiv.org, revised Mar 2020.
    436. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
    437. Emawtee Bissoondoyal-Bheenick & Robert Brooks & Samantha Hum & Sirimon Treepongkaruna, 2011. "Sovereign rating changes and realized volatility in Asian foreign exchange markets during the Asian crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 21(13), pages 997-1003.
    438. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "The effects of sovereign rating drifts on financial return distributions: Evidence from the European Union," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 5-20.
    439. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    440. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    441. T. R. Hurd, 2009. "Credit risk modeling using time-changed Brownian motion," Papers 0904.2376, arXiv.org.
    442. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    443. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    444. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    445. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    446. Dilip Madan, 2009. "A tale of two volatilities," Review of Derivatives Research, Springer, vol. 12(3), pages 213-230, October.
    447. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    448. Abdelrazeq, Ibrahim, 2015. "Model verification for Lévy-driven Ornstein–Uhlenbeck processes with estimated parameters," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 26-35.
    449. Peter Bank & Selim Gökay, 2016. "Superreplication when trading at market indifference prices," Finance and Stochastics, Springer, vol. 20(1), pages 153-182, January.
    450. Fan, Jianqing & Fan, Yingying & Jiang, Jiancheng, 2007. "Dynamic Integration of Time- and State-Domain Methods for Volatility Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 618-631, June.
    451. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    452. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    453. Belomestny, Denis & Panov, Vladimir, 2013. "Abelian theorems for stochastic volatility models with application to the estimation of jump activity," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 15-44.
    454. Xianfei Hui & Baiqing Sun & Hui Jiang & Yan Zhou, 2022. "Modeling dynamic volatility under uncertain environment with fuzziness and randomness," Papers 2204.12657, arXiv.org, revised Oct 2022.
    455. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    456. Tomáš Tichý, 2006. "Model Dependency of the Digital Option Replication – Replication under an Incomplete Model (in English)," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(7-8), pages 361-379, July.
    457. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2015. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Papers 1503.08589, arXiv.org, revised Jan 2016.
    458. Li, Long & Bao, Si & Chen, Jing-Chao & Jiang, Tao, 2019. "A method to get a more stationary process and its application in finance with high-frequency data of Chinese index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1405-1417.
    459. Zorana Grbac & David Krief & Peter Tankov, 2018. "Long-time trajectorial large deviations for affine stochastic volatility models and application to variance reduction for option pricing," Papers 1809.06153, arXiv.org.
    460. Nikola Gradojevic & Dragan Kukolj & Ramazan Gencay, 2011. "Clustering and Classification in Option Pricing," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 109-128, October.
    461. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    462. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    463. Yanhui Mi, 2016. "A modified stochastic volatility model based on Gamma Ornstein–Uhlenbeck process and option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-16, June.
    464. Kawai Reiichiro & Masuda Hiroki, 2011. "Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes," Monte Carlo Methods and Applications, De Gruyter, vol. 17(3), pages 279-300, January.
    465. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    466. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.
    467. Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2008. "Modeling the leverage effect with copulas and realized volatility," Finance Research Letters, Elsevier, vol. 5(4), pages 221-227, December.
    468. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    469. Alexander Kushpel, 2015. "Pricing of high-dimensional options," Papers 1510.07221, arXiv.org.
    470. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    471. Akira Yamazaki, 2015. "Asset Pricing With Non-Geometric Type Of Dividends," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-38, December.
    472. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
    473. Takuji Arai & Yuto Imai, 2023. "Monte Carlo simulation for Barndorff-Nielsen and Shephard model under change of measure," Papers 2306.05750, arXiv.org.
    474. Michele Nguyen & Almut E. D. Veraart, 2017. "Spatio-temporal Ornstein–Uhlenbeck Processes: Theory, Simulation and Statistical Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 46-80, March.
    475. Shuddhasattwa Rafiq & Ruhul Salim, 2014. "Does oil price volatility matter for Asian emerging economies?," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 417-441.
    476. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    477. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    478. Cantia, Catalin & Tunaru, Radu, 2017. "A factor model for joint default probabilities. Pricing of CDS, index swaps and index tranches," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 21-35.
    479. Jan Kallsen & Paul Krühner, 2015. "On a Heath–Jarrow–Morton approach for stock options," Finance and Stochastics, Springer, vol. 19(3), pages 583-615, July.
    480. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
    481. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    482. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.
    483. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    484. Albeverio, Sergio & Smii, Boubaker, 2015. "Asymptotic expansions for SDE’s with small multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 1009-1031.
    485. John Crosby, 2008. "Pricing a class of exotic commodity options in a multi-factor jump-diffusion model," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 471-483.
    486. Ali Aghamohammadi, 2018. "Bayesian analysis of dynamic panel data by penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 91-108, March.
    487. A. Szimayer & R. Maller, 2004. "Testing for Mean Reversion in Processes of Ornstein-Uhlenbeck Type," Statistical Inference for Stochastic Processes, Springer, vol. 7(2), pages 95-113, May.
    488. Yuan Li & Kaimon Miyachi & Kenichiro Shiraya & Akira Yamazaki, 2019. "Approximation Method Using Black-Scholes Formula for Barrier Option Pricing under Lévy Models," CARF F-Series CARF-F-454, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jun 2021.
    489. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
    490. Jeffrey R. Russell & Federico M. Bandi, 2004. "Microstructure noise, realized volatility, and optimal sampling," Econometric Society 2004 Latin American Meetings 220, Econometric Society.
    491. Maghyereh, Aktham & Awartani, Basel & Abdoh, Hussein, 2022. "Asymmetric risk transfer in global equity markets: An extended sample that includes the COVID pandemic period," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    492. Ivanovski, Zoran & Stojanovski, Toni & Narasanov, Zoran, 2015. "Volatility And Kurtosis Of Daily Stock Returns At Mse," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 6(2), pages 209-221.
    493. Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
    494. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    495. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    496. Benth, Fred Espen & Rüdiger, Barbara & Süss, Andre, 2018. "Ornstein–Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 461-486.
    497. Fred Espen Benth & Hanna Zdanowicz, 2014. "Pricing and hedging of energy spread options and volatility modulated Volterra processes," Papers 1409.5801, arXiv.org.
    498. Lindström, Erik & Ströjby, Jonas & Brodén, Mats & Wiktorsson, Magnus & Holst, Jan, 2008. "Sequential calibration of options," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2877-2891, February.
    499. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.
    500. Kallsen, Jan & Muhle-Karbe, Johannes, 2010. "Exponentially affine martingales, affine measure changes and exponential moments of affine processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 163-181, February.

  38. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    See citations under working paper version above.
  39. Michael K. Pitt & Neil Shephard, 1999. "Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 63-85, January.
    See citations under working paper version above.
  40. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    See citations under working paper version above.
  41. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    See citations under working paper version above.
  42. Aurora Manrique & Neil Shephard, 1998. "Simulation-based likelihood inference for limited dependent processes," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 174-202.

    Cited by:

    1. Hautsch, Nikolaus & Pohlmeier, Winfried, 2001. "Econometric Analysis of Financial Transaction Data: Pitfalls and Opportunities," CoFE Discussion Papers 01/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    2. BAUWENS, Luc & LUBRANO, Michel, 2007. "Bayesian inference in dynamic disequilibrium models: an application to the Polish credit market," LIDAM Reprints CORE 1918, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    4. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "Determinants of bid and ask quotes and implications for the cost of trading," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 656-678, September.
    5. Hasbrouck, Joel, 1999. "Security bid/ask dynamics with discreteness and clustering: Simple strategies for modeling and estimation1," Journal of Financial Markets, Elsevier, vol. 2(1), pages 1-28, February.
    6. Harvey, Andew & Liao, Yin, 2023. "Dynamic Tobit models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 72-83.
    7. Edwige Burdeau, 2015. "Assessing dynamics of credit supply and demand for French SMEs, an estimation based on the Bank Lending Survey," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Indicators to support monetary and financial stability analysis: data sources and statistical methodologies, volume 39, Bank for International Settlements.
    8. Douc, R. & Fort, G. & Moulines, E. & Priouret, P., 2009. "Forgetting the initial distribution for Hidden Markov Models," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1235-1256, April.
    9. Joel Hasbrouck, 1998. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-076, New York University, Leonard N. Stern School of Business-.
    10. A. E. Brockwell & N. H. Chan & P. K. Lee, 2003. "A class of models for aggregated traffic volume time series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 417-430, October.

  43. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.

    Cited by:

    1. Amélie Charles & Olivier Darné & Laurent Ferrara, 2014. "Does the Great Recession imply the end of the Great Moderation? International evidence," Working Papers hal-04141344, HAL.
    2. Atkinson, Anthony C. & Riani, Marco & Corbellini, Aldo, 2021. "The box-cox transformation: review and extensions," LSE Research Online Documents on Economics 103537, London School of Economics and Political Science, LSE Library.
    3. Čίžek, Pavel & Härdle, Wolfgang Karl, 2006. "Robust econometrics," SFB 649 Discussion Papers 2006-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Marczak, Martyna & Proietti, Tommaso, 2015. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113137, Verein für Socialpolitik / German Economic Association.
    5. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    6. Amélie Charles & Olivier Darné, 0. "Econometric history of the growth–volatility relationship in the USA: 1919–2017," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 0, pages 1-24.
    7. Oesterreich Maciej, 2020. "On the Method of Identification of Atypical Observations in Time Series," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 1-16, June.
    8. Byungsoo Kim & Junmo Song & Changryong Baek, 2021. "Robust test for structural instability in dynamic factor models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 821-853, August.
    9. Vujić Sunčica & Koopman Siem Jan & Commandeur J.F., 2012. "Economic Trends and Cycles in Crime: A Study for England and Wales," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(6), pages 652-677, December.
    10. Vujić, Sunčica & Commandeur, Jacques J.F. & Koopman, Siem Jan, 2016. "Intervention time series analysis of crime rates: The case of sentence reform in Virginia," Economic Modelling, Elsevier, vol. 57(C), pages 311-323.
    11. Pelagatti, Matteo M., 2011. "State Space Methods in Ox/SsfPack," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i03).
    12. Ooms, M. & Franses, Ph.H.B.F., 1998. "A seasonal periodic long memory model for monthly river flows," Econometric Institute Research Papers EI 9842, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Suncica Vujic & Jacques Commandeur & Siem Jan Koopman, 2012. "Structural Intervention Time Series Analysis of Crime Rates: The Impact of Sentence Reform in Virginia," Tinbergen Institute Discussion Papers 12-007/4, Tinbergen Institute.
    14. Jianqing Fan & Yuan Ke & Yuan Liao, 2016. "Augmented Factor Models with Applications to Validating Market Risk Factors and Forecasting Bond Risk Premia," Papers 1603.07041, arXiv.org, revised Sep 2018.
    15. Jonathan Dark & Xibin Zhang & Nan Qu, 2010. "Influence diagnostics for multivariate GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 278-291, July.
    16. Tommaso Proietti, 2003. "Leave‐K‐Out Diagnostics In State‐Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 221-236, March.
    17. Manuel Salvador & Pilar Gargallo, 2003. "Automatic selective intervention in dynamic linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1161-1184.

  44. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.

    Cited by:

    1. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 1999. "Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting Than You Think," Center for Financial Institutions Working Papers 00-28, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Jiang, G.J. & van der Sluis, P.J., 2000. "Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates," Discussion Paper 2000-36, Tilburg University, Center for Economic Research.
    3. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    4. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
    5. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    6. Faruk Selcuk, 2005. "Asymmetric stochastic volatility in emerging stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 867-874.
    7. Paolo Girardello & Orietta Nicolis & Giovanni Tondini, 2003. "Comparing Conditional Variance Models: Theory and Empirical Evidence," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 177-206, September.
    8. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1995. "Estimation of Stochastic Volatility Models with Diagnostics," Working Papers 95-36, Duke University, Department of Economics.
    12. Heejoon Han & Na Kyeong Lee, 2018. "Modeling the Dynamics between Stock Price and Dividend: An Endogenous Regime Switching Approach," Korean Economic Review, Korean Economic Association, vol. 34, pages 213-235.
    13. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    14. Hwang, Soosung & Satchell, Stephen E., 2000. "Market risk and the concept of fundamental volatility: Measuring volatility across asset and derivative markets and testing for the impact of derivatives markets on financial markets," Journal of Banking & Finance, Elsevier, vol. 24(5), pages 759-785, May.
    15. Shang, Yuhuang & Liu, Lulu, 2017. "An extension of stochastic volatility model with mixed frequency information," Economics Letters, Elsevier, vol. 155(C), pages 144-148.
    16. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    17. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    18. Asai, Manabu & McAleer, Michael & de Veiga, Bernardo, 2008. "Portfolio single index (PSI) multivariate conditional and stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 209-214.
    19. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    20. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    21. Anders Johansson, 2009. "Stochastic volatility and time-varying country risk in emerging markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 337-363.
    22. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    23. Bartolucci, F. & De Luca, G., 2003. "Likelihood-based inference for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 445-449, March.
    24. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
    25. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    26. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    27. Breitung, Jorg & Hafner, Christian, 2016. "A simple model for now-casting volatility series," LIDAM Reprints ISBA 2016040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    28. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    29. Casas, Isabel, 2019. "Exploring option pricing and hedging via volatility asymmetry," DES - Working Papers. Statistics and Econometrics. WS 28234, Universidad Carlos III de Madrid. Departamento de Estadística.
    30. Ardia, David & Hoogerheide, Lennart F., 2014. "GARCH models for daily stock returns: Impact of estimation frequency on Value-at-Risk and Expected Shortfall forecasts," Economics Letters, Elsevier, vol. 123(2), pages 187-190.
    31. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    32. Virbickaite, Audrone & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian Predictive Distributions of Oil Returns Using Mixed Data Sampling Volatility Models," Working Papers 2023:7, Örebro University, School of Business.
    33. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    34. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    35. Kobayashi, Masahito, 2009. "Testing for jumps in the stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2597-2608.
    36. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    37. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    38. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    39. Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2012. "On Geometric Ergodicity of Skewed - SVCHARME models," Papers 1209.1544, arXiv.org.
    40. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    41. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    42. Hang Qian, 2014. "A Flexible State Space Model And Its Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 79-88, March.
    43. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    44. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Discrete-time stochastic volatility models and MCMC-based statistical inference," SFB 649 Discussion Papers 2008-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    45. Rasmus Tangsgaard Varneskov & Pierre Perron, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," CREATES Research Papers 2011-26, Department of Economics and Business Economics, Aarhus University.
    46. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    47. P. de Zea Bermudez & J. Miguel Marín & Helena Veiga, 2020. "Data cloning estimation for asymmetric stochastic volatility models," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1057-1074, November.
    48. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    49. Michael W. Brandt & Qiang Kang, 2002. "On the Relationship Between the Conditional Mean and Volatility of Stock Returns: A Latent VAR Approach," NBER Working Papers 9056, National Bureau of Economic Research, Inc.
    50. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    51. Maddalena Cavicchioli, 2017. "Estimation and asymptotic covariance matrix for stochastic volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 437-452, August.
    52. G Sandmann & Siem Jan Koopman, 1996. "Maximum Likelihood Estimation of Stochastic Volatility Models," FMG Discussion Papers dp248, Financial Markets Group.
    53. Pieter J. van der Sluis, 1998. "Structural Stability Tests with Unknown Breakpoint for the Efficient Method of Moments with Application to Stochastic Volatility Models," Tinbergen Institute Discussion Papers 98-055/4, Tinbergen Institute.
    54. Hong, Hui & Bian, Zhicun & Chen, Naiwei, 2020. "Leverage effect on stochastic volatility for option pricing in Hong Kong: A simulation and empirical study," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    55. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    56. Fahad Waqas Mir & Nousheen Tariq Bhutta, 2024. "Impact of return and volatility spillover from banking industry to other industries: An evidence from Pakistan," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1680-1695, April.
    57. Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
    58. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    59. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for A Nonlinear and Non-Gaussian State-Space Model with Correlated Errors," CARF F-Series CARF-F-104, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    60. Asai, M. & Caporin, M. & McAleer, M.J., 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2012-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    61. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    62. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    63. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    64. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    65. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    66. Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.
    67. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    68. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    69. Ibrahim Chowdhury & Lucio Sarno, 2004. "Time‐Varying Volatility in the Foreign Exchange Market: New Evidence on its Persistence and on Currency Spillovers," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 759-793, June.
    70. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    71. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    72. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    73. Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2021. "Systematic credit risk in securitised mortgage portfolios," Journal of Banking & Finance, Elsevier, vol. 122(C).
    74. Song, Shijia & Li, Handong, 2023. "A method for predicting VaR by aggregating generalized distributions driven by the dynamic conditional score," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 203-214.
    75. Neha Saini & Anil Kumar Mittal, 2019. "On the predictive ability of GARCH and SV models of volatility: An empirical test on the SENSEX index," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(4), pages 1-5.
    76. Heejoon Han & Eunhee Lee, 2020. "Triple Regime Stochastic Volatility Model with Threshold and Leverage Effects," Korean Economic Review, Korean Economic Association, vol. 36, pages 481-509.
    77. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    78. Tomasz Skoczylas, 2015. "Bivariate GARCH models for single asset returns," Working Papers 2015-03, Faculty of Economic Sciences, University of Warsaw.
    79. Li, Yong & Liu, Xiaobin & Zeng, Tao & Yu, Jun, 2018. "A Posterior-Based Wald-Type Statistic for Hypothesis Testing," Economics and Statistics Working Papers 8-2018, Singapore Management University, School of Economics.
    80. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
    81. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    82. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
    83. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    84. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    85. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    86. Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Documentos de Trabajo del ICAE 2016-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    87. Mauro Bernardi & Leopoldo Catania, 2015. "The Model Confidence Set package for R," CEIS Research Paper 362, Tor Vergata University, CEIS, revised 17 Nov 2015.
    88. Brandt, Michael W. & Kang, Qiang, 2004. "On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach," Journal of Financial Economics, Elsevier, vol. 72(2), pages 217-257, May.
    89. Jun Yu, 2004. "On leverage in a stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 497, Econometric Society.
    90. Ozturk, Serda Selin & Richard, Jean-Francois, 2015. "Stochastic volatility and leverage: Application to a panel of S&P500 stocks," Finance Research Letters, Elsevier, vol. 12(C), pages 67-76.
    91. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    92. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    93. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    94. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
    95. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    96. Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
    97. Paolo Chirico, 2024. "Iterative QML estimation for asymmetric stochastic volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 885-900, July.
    98. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    99. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    100. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    101. Pérez, Ana & Ruiz, Esther & Veiga, Helena, 2009. "A note on the properties of power-transformed returns in long-memory stochastic volatility models with leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3593-3600, August.
    102. van der Sluis Pieter J., 1997. "EmmPack 1.01: C/C++ Code for Use with Ox for Estimation of Univariate Stochastic Volatility Models with the Efficient Method of Moments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(3), pages 1-20, October.
    103. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    104. Mao, Xiuping & Ruiz, Esther & Veiga, Helena, 2017. "Threshold stochastic volatility: Properties and forecasting," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1105-1123.
    105. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 637-668, September.
    106. Hoang Nguyen & Trong-Nghia Nguyen & Minh-Ngoc Tran, 2023. "A dynamic leverage stochastic volatility model," Applied Economics Letters, Taylor & Francis Journals, vol. 30(1), pages 97-102, January.
    107. Florescu, Ionuţ & Pãsãricã, Cristian Gabriel, 2009. "A study about the existence of the leverage effect in stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 419-432.
    108. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.
    109. Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
    110. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    111. Márcio Laurini, 2012. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," IBMEC RJ Economics Discussion Papers 2012-02, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    112. Helena Veiga, 2009. "Financial Stylized Facts and the Taylor-Effect in Stochastic Volatility Models," Economics Bulletin, AccessEcon, vol. 29(1), pages 265-276.
    113. Pascale VALERY (HEC-Montreal) & Jean-Marie Dufour (University of Montreal), 2004. "A simple estimation method and finite-sample inference for a stochastic volatility model," Econometric Society 2004 North American Summer Meetings 153, Econometric Society.
    114. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    115. Travis Sapp, 2009. "Estimating continuous-time stochastic volatility models of the short-term interest rate: a comparison of the generalized method of moments and the Kalman filter," Review of Quantitative Finance and Accounting, Springer, vol. 33(4), pages 303-326, November.
    116. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    117. Kawakatsu, Hiroyuki, 2007. "Specification and estimation of discrete time quadratic stochastic volatility models," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 424-442, June.
    118. Selçuk, Faruk, 2004. "Free float and stochastic volatility: the experience of a small open economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 693-700.
    119. Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
    120. Gungor, Sermin & Luger, Richard, 2020. "Small-sample tests for stock return predictability with possibly non-stationary regressors and GARCH-type effects," Journal of Econometrics, Elsevier, vol. 218(2), pages 750-770.
    121. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    122. Rodríguez, Mª José, 2009. "GARCH models with leverage effect : differences and similarities," DES - Working Papers. Statistics and Econometrics. WS ws090302, Universidad Carlos III de Madrid. Departamento de Estadística.
    123. Malik, Sheheryar & Pitt, Michael K., 2009. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Economic Research Papers 271302, University of Warwick - Department of Economics.
    124. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    125. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    126. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    127. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
    128. Veiga, Helena, 2006. "Modelling long-memory volatilities with leverage effect: ALMSV versus FIEGARCH," DES - Working Papers. Statistics and Econometrics. WS ws066016, Universidad Carlos III de Madrid. Departamento de Estadística.
    129. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    130. João Pedro Coli de Souza Monteneri Nacinben & Márcio Laurini, 2024. "Multivariate Stochastic Volatility Modeling via Integrated Nested Laplace Approximations: A Multifactor Extension," Econometrics, MDPI, vol. 12(1), pages 1-28, February.
    131. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    132. Lee, Cheol Woo & Kang, Kyu Ho, 2023. "Estimating and testing skewness in a stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 445-467.
    133. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    134. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    135. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    136. Dinghai Xu & Yuying Li, 2010. "Empirical Evidence of the Leverage Effect in a Stochastic Volatility Model: A Realized Volatility Approach," Working Papers 1002, University of Waterloo, Department of Economics, revised May 2010.
    137. Yanhui Xi & Hui Peng & Yemei Qin, 2016. "Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-15, February.
    138. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    139. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    140. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    141. Sun, Licheng, 2005. "Regime shifts in interest rate volatility," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 418-434, June.
    142. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
    143. Aycan HEPSAG, 2016. "Asymmetric stochastic volatility in central and eastern European stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(607), S), pages 135-144, Summer.
    144. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
    145. Veiga, Helena, 2006. "A two factor long memory stochastic volatility model," DES - Working Papers. Statistics and Econometrics. WS ws061303, Universidad Carlos III de Madrid. Departamento de Estadística.
    146. Reyes-García, Nallely Jacqueline & Venegas-Martínez, Francisco & Cruz-Aké, Salvador, 2018. "Un análisis comparativo entre GARCH-M, EGARCH y PJ-RS-EV para modelar la volatilidad de Índice de precios y cotizaciones de la Bolsa Mexicana de Valores [A Comparative Analysis among GARCH-M, EGARC," MPRA Paper 84304, University Library of Munich, Germany.
    147. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    148. Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
    149. George J. Jiang & Pieter J. van der Sluis, 1998. "Pricing Stock Options under Stochastic Volatility and Stochastic Interest Rates with Efficient Method of Moments Estimation," Tinbergen Institute Discussion Papers 98-067/4, Tinbergen Institute.
    150. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    151. López-Herrera, Francisco & Ortiz-Arango, Francisco & Venegas-Martínez, Francisco, 2011. "Modelado de la volatilidad del Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores con cambios markovianos de régimen," Sección de Estudios de Posgrado e Investigación de la Escuela Superios de Economía del Instituto Politécnico Nacional, in: Perrotini-Hernández, Ignacio (ed.), Crecimiento y Desarrollo Económico en México, volume 1, chapter 10, pages 153-164, Escuela Superior de Economía, Instituto Politécnico Nacional.
    152. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    153. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
    154. Himadri Ghosh & Bishal Gurung & Prajneshu, 2015. "Kalman filter-based modelling and forecasting of stochastic volatility with threshold," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 492-507, March.
    155. Sinha, Pankaj & Agnihotri, Shalini, 2014. "Sensitivity of Value at Risk estimation to NonNormality of returns and Market capitalization," MPRA Paper 56307, University Library of Munich, Germany, revised 26 May 2014.
    156. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    157. Felicia Ramona Birău, 2012. "Stochastic Volatility Models For Financial Time Series Analysis," Anale. Seria Stiinte Economice. Timisoara, Faculty of Economics, Tibiscus University in Timisoara, vol. 0, pages 472-475, November.
    158. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    159. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
    160. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    161. Darjus Hosszejni & Gregor Kastner, 2019. "Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage," Papers 1901.11491, arXiv.org, revised Nov 2019.
    162. Kin-Yip Ho & Ka Cheng Tsui, 2004. "Volatility Dynamics of the Tokyo Stock Exchange: A Sectoral Analysis based on the Multivariate GARCH Approach," Money Macro and Finance (MMF) Research Group Conference 2004 12, Money Macro and Finance Research Group.
    163. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2004. "How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations," Econometric Society 2004 Latin American Meetings 198, Econometric Society.
    164. Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
    165. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    166. Hashem Zarafat & Sascha Liebhardt & Mustafa Hakan Eratalay, 2022. "Do ESG Ratings Reduce the Asymmetry Behavior in Volatility?," JRFM, MDPI, vol. 15(8), pages 1-32, July.
    167. Li, Yifan, 2020. "Nearly unbiased estimation of sample skewness," Economics Letters, Elsevier, vol. 192(C).
    168. Darjus Hosszejni & Gregor Kastner, 2019. "Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol," Papers 1906.12123, arXiv.org, revised Feb 2021.
    169. Artiach, Miguel, 2012. "Leverage, skewness and amplitude asymmetric cycles," MPRA Paper 41267, University Library of Munich, Germany.
    170. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    171. Romero, Eva, 2024. "Fitting complex stochastic volatility models using Laplace approximation," DES - Working Papers. Statistics and Econometrics. WS 43947, Universidad Carlos III de Madrid. Departamento de Estadística.
    172. Saranya, K. & Prasanna, P. Krishna, 2018. "Estimating stochastic volatility with jumps and asymmetry in Asian markets," Finance Research Letters, Elsevier, vol. 25(C), pages 145-153.
    173. Bogdan Dima & Ștefana Maria Dima, 2024. "The non-linear impact of monetary policy on shifts in economic policy uncertainty: evidence from the United States of America," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 51(3), pages 755-781, August.
    174. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    175. Wei Wei & Denis Pelletier, 2015. "A Jump-Diffusion Model with Stochastic Volatility and Durations," CREATES Research Papers 2015-34, Department of Economics and Business Economics, Aarhus University.
    176. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
    177. Zhu, Hui-Ming & Li, ZhaoLai & You, WanHai & Zeng, Zhaofa, 2015. "Revisiting the asymmetric dynamic dependence of stock returns: Evidence from a quantile autoregression model," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 142-153.
    178. Tu, Anthony H. & Wang, Ming-Chun, 2007. "The innovations of e-mini contracts and futures price volatility components: The empirical investigation of S&P 500 stock index futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 198-211, April.
    179. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    180. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference (Revised in April 2006, subsequently published in "Journal of Econometrics", 140, 425-449, 2007. )," CARF F-Series CARF-F-011, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    181. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for Asymmetric Stochastic Volatility Models (Published in "Computational Statistics and Data Analysis", 52-6, 2892-2910. February 2008. )," CARF F-Series CARF-F-103, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    182. Tomasz Skoczylas, 2015. "Log-volatility enhanced GARCH models for single asset returns," Bank i Kredyt, Narodowy Bank Polski, vol. 46(5), pages 411-432.
    183. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    184. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    185. Sucarrat, Genaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    186. Carles Bret'o, 2013. "On idiosyncratic stochasticity of financial leverage effects," Papers 1312.5496, arXiv.org.
    187. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
    188. Omar Abbara & Mauricio Zevallos, 2022. "Maximum Likelihood Inference for Asymmetric Stochastic Volatility Models," Econometrics, MDPI, vol. 11(1), pages 1-18, December.
    189. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2007. "How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(5‐6), pages 1002-1024, June.
    190. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    191. Yacine Ait-Sahalia & Robert Kimmel, 2004. "Maximum Likelihood Estimation of Stochastic Volatility Models," NBER Working Papers 10579, National Bureau of Economic Research, Inc.
    192. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.
    193. Sakaria, D.K. & Griffin, J.E., 2017. "On efficient Bayesian inference for models with stochastic volatility," Econometrics and Statistics, Elsevier, vol. 3(C), pages 23-33.
    194. Smith Daniel R, 2009. "Asymmetry in Stochastic Volatility Models: Threshold or Correlation?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-36, May.
    195. Romero, Eva, 2024. "A stochastic volatility model for volatility asymmetry and propagation," DES - Working Papers. Statistics and Econometrics. WS 43887, Universidad Carlos III de Madrid. Departamento de Estadística.
    196. María García Centeno & Román Mínguez Salido, 2009. "Estimation of Asymmetric Stochastic Volatility Models for Stock-Exchange Index Returns," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(1), pages 71-87, February.
    197. Manabu Asai & Michael McAleer, 2005. "Dynamic Asymmetric Leverage in Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 317-332.
    198. Vo, Minh & Cohen, Michael & Boulter, Terry, 2015. "Asymmetric risk and return: Evidence from the Australian Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 558-573.
    199. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.

  45. Shephard, Neil, 1994. "Local scale models : State space alternative to integrated GARCH processes," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 181-202.

    Cited by:

    1. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    2. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    3. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Uhlig, H.F.H.V.S., 1996. "Bayesian Vector Autoregressions with Stochastic Volatility," Other publications TiSEM 4fd55395-6830-46a2-9d18-e, Tilburg University, School of Economics and Management.
    5. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    6. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    7. Roberto Leon-Gonzalez & Blessings Majon, 2024. "Approximate Factor Models with a Common Multiplicative Factor for Stochastic Volatility," GRIPS Discussion Papers 24-02, National Graduate Institute for Policy Studies.
    8. Bakshi, Gurdip & Skoulakis, Georgios, 2010. "Do subjective expectations explain asset pricing puzzles?," Journal of Financial Economics, Elsevier, vol. 98(3), pages 462-477, December.
    9. Ferrante, Marco & Vidoni, Paolo, 1999. "A Gaussian-generalized inverse Gaussian finite-dimensional filter," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 165-176, November.
    10. Vidoni Paolo, 2004. "Constructing Non-linear Gaussian Time Series by Means of a Simplified State Space Representation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
    11. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Inference under Sampling from Scale Mixtures of Normals," Other publications TiSEM 10be2f67-1679-4828-bba6-7, Tilburg University, School of Economics and Management.
    12. Gurdip Bakshi, 2009. "Du subjectiv expectations explain asset pricing puzzles?," 2009 Meeting Papers 1234, Society for Economic Dynamics.
    13. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    14. Kim, Dukpa, 2014. "Maximum likelihood estimation for vector autoregressions with multivariate stochastic volatility," Economics Letters, Elsevier, vol. 123(3), pages 282-286.
    15. Kostas Triantafyllopoulos, 2009. "Inference of Dynamic Generalized Linear Models: On‐Line Computation and Appraisal," International Statistical Review, International Statistical Institute, vol. 77(3), pages 430-450, December.
    16. Uhlig, H.F.H.V.S., 1996. "Bayesian Vector Autoregressions with Stochastic Volatility," Discussion Paper 1996-09, Tilburg University, Center for Economic Research.
    17. de Pinho, Frank M. & Franco, Glaura C. & Silva, Ralph S., 2016. "Modeling volatility using state space models with heavy tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 108-127.
    18. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    19. Ferrante, Marco & Vidoni, Paolo, 1998. "Finite dimensional filters for nonlinear stochastic difference equations with multiplicative noises," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 69-81, September.
    20. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    21. Sio Chong U & Jacky So & Deng Ding & Lihong Liu, 2016. "An efficient Fourier expansion method for the calculation of value-at-risk: Contributions of extra-ordinary risks," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-27, March.
    22. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    23. Carmen Fernandez & Mark F J Steel, 1999. "Bayesian Regression Analysis with scale mixtures of normals," Edinburgh School of Economics Discussion Paper Series 27, Edinburgh School of Economics, University of Edinburgh.
    24. Ferrante, Marco & Frigo, Nadia, 2009. "Particle filtering approximations for a Gaussian-generalized inverse Gaussian model," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 442-449, February.

  46. Shephard, Neil & Kim, Sangjoon, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 406-410, October.

    Cited by:

    1. Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
    2. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    3. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    4. Pezzo, Rosanna & Uberti, Mariacristina, 2006. "Approaches to forecasting volatility: Models and their performances for emerging equity markets," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 556-565.
    5. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.

  47. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.

    Cited by:

    1. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    2. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 1999. "Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting Than You Think," Center for Financial Institutions Working Papers 00-28, Wharton School Center for Financial Institutions, University of Pennsylvania.
    3. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    4. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
    5. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
    6. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    7. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    8. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702, September.
    9. Salima El Kolei, 2013. "Parametric estimation of hidden stochastic model by contrast minimization and deconvolution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1031-1081, November.
    10. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    11. Hasanov, Akram Shavkatovich & Burkhanov, Aktam Usmanovich & Usmonov, Bunyod & Khajimuratov, Nizomjon Shukurullaevich & Khurramova, Madina Mansur qizi, 2024. "The role of sudden variance shifts in predicting volatility in bioenergy crop markets under structural breaks," Energy, Elsevier, vol. 293(C).
    12. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    13. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    14. Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
    15. Johansson, Anders C., 2010. "Asian sovereign debt and country risk," Pacific-Basin Finance Journal, Elsevier, vol. 18(4), pages 335-350, September.
    16. Hwai-Chung Ho, 2007. "Estimation errors of the Sharpe ratio for long-memory stochastic volatility models," Papers math/0702812, arXiv.org.
    17. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    18. Paolo Girardello & Orietta Nicolis & Giovanni Tondini, 2003. "Comparing Conditional Variance Models: Theory and Empirical Evidence," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 177-206, September.
    19. Robert Kollmann, 2015. "Risk sharing in a world economy with uncertainty shocks," CAMA Working Papers 2015-44, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    21. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    22. Guanyu Hu & Ming-Hui Chen & Nalini Ravishanker, 2023. "Bayesian analysis of spherically parameterized dynamic multivariate stochastic volatility models," Computational Statistics, Springer, vol. 38(2), pages 845-869, June.
    23. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
    24. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1995. "Estimation of Stochastic Volatility Models with Diagnostics," Working Papers 95-36, Duke University, Department of Economics.
    25. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    26. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in dairy markets," Papers 2104.12707, arXiv.org.
    27. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    28. Hwang, Soosung & Satchell, Stephen E., 2000. "Market risk and the concept of fundamental volatility: Measuring volatility across asset and derivative markets and testing for the impact of derivatives markets on financial markets," Journal of Banking & Finance, Elsevier, vol. 24(5), pages 759-785, May.
    29. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    30. Francis E. Warnock & Veronica C. Warnock, 2000. "The declining volatility of U.S. employment: was Arthur Burns right?," International Finance Discussion Papers 677, Board of Governors of the Federal Reserve System (U.S.).
    31. Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
    32. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    33. Arteche, Josu & García-Enríquez, Javier, 2017. "Singular Spectrum Analysis for signal extraction in Stochastic Volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 85-98.
    34. Matthieu Lemoine, 2006. "Annex A5 : A model of the stochastic convergence between euro area business cycles," Working Papers hal-00972793, HAL.
    35. Pesaran, M. Hashem & Zaffaroni, Paolo, 2005. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi-Asset Volatility Models for Risk Management," CEPR Discussion Papers 5279, C.E.P.R. Discussion Papers.
    36. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    37. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    38. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    39. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
    40. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    41. Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
    42. Asai, Manabu & McAleer, Michael & de Veiga, Bernardo, 2008. "Portfolio single index (PSI) multivariate conditional and stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 209-214.
    43. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
    44. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    45. Huang, Wen & Huang, Zhuo & Matei, Marius & Wang, Tianyi, 2012. "Price Volatility Forecast for Agricultural Commodity Futures: The Role of High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 83-103, December.
    46. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Nonparametric Density Estimation for Positive Time Series," Cahiers de recherche 06-09, HEC Montréal, Institut d'économie appliquée.
    47. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    48. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    49. Klodiana Istrefi & Sarah Mouabbi, 2017. "Subjective interest rate uncertainty and the macroeconomy : a cross-country analysis," Rue de la Banque, Banque de France, issue 48, september.
    50. Kirby, Chris, 2006. "Linear filtering for asymmetric stochastic volatility models," Economics Letters, Elsevier, vol. 92(2), pages 284-292, August.
    51. Haakon Kavli & Kevin Kotzé, 2014. "Spillovers in Exchange Rates and the Effects of Global Shocks on Emerging Market Currencies," South African Journal of Economics, Economic Society of South Africa, vol. 82(2), pages 209-238, June.
    52. David McMillan, 2001. "Common stochastic volatility trend in European exchange rates," Applied Economics Letters, Taylor & Francis Journals, vol. 8(9), pages 605-608.
    53. Antonio Díaz & Carlos Esparcia, 2021. "Dynamic optimal portfolio choice under time-varying risk aversion," International Economics, CEPII research center, issue 166, pages 1-22.
    54. Sirimon Treepongkaruna & Robert Brooks & Stephen Gray, 2012. "Do trading hours affect volatility links in the foreign exchange market?," Australian Journal of Management, Australian School of Business, vol. 37(1), pages 7-27, April.
    55. Guilherme Valle Moura & João Frois Caldeira & André Santos, 2014. "Seleção De Carteiras Utilizando O Modelofama-French-Carhart," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 117, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    56. Bedendo, Mascia & Campolongo, Francesca & Joossens, Elisabeth & Saita, Francesco, 2010. "Pricing multiasset equity options: How relevant is the dependence function?," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 788-801, April.
    57. Anders Johansson, 2009. "Stochastic volatility and time-varying country risk in emerging markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 337-363.
    58. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
    59. Cayetano, Gea, 2007. "Studying the Properties of the Correlation Trades," MPRA Paper 22318, University Library of Munich, Germany.
    60. Süleyman Taşpınar & Osman DoĞan & Jiyoung Chae & Anil K. Bera, 2021. "Bayesian Inference in Spatial Stochastic Volatility Models: An Application to House Price Returns in Chicago," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1243-1272, October.
    61. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    62. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    63. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    64. Andres, P. & Harvey, A., 2012. "The Dyanamic Location/Scale Model: with applications to intra-day financial data," Cambridge Working Papers in Economics 1240, Faculty of Economics, University of Cambridge.
    65. Hafner, Christian M. & Herwartz, Helmut, 2006. "Volatility impulse responses for multivariate GARCH models: An exchange rate illustration," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 719-740, August.
    66. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
    67. Francis X. Diebold & Jose A. Lopez, 1995. "Measuring Volatility Dynamics," NBER Technical Working Papers 0173, National Bureau of Economic Research, Inc.
    68. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    69. Matteo Pelagatti & Giacomo Sbrana, 2020. "Estimating high dimensional multivariate stochastic volatility models," Working Papers 428, University of Milano-Bicocca, Department of Economics, revised Jan 2020.
    70. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    71. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
    72. Harvey, Andrew & Streibel, Mariane, 1998. "Testing for a slowly changing level with special reference to stochastic volatility," Journal of Econometrics, Elsevier, vol. 87(1), pages 167-189, August.
    73. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    74. Yun-Huan Lee & Tsai-Hung Fan, 2006. "Bootstrapping prediction intervals on stochastic volatility models," Applied Economics Letters, Taylor & Francis Journals, vol. 13(1), pages 41-45.
    75. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    76. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    77. Li, Dan & Drovandi, Christopher & Clements, Adam, 2024. "Outlier-robust methods for forecasting realized covariance matrices," International Journal of Forecasting, Elsevier, vol. 40(1), pages 392-408.
    78. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
    79. Fu, Junhui, 2014. "Multi-objective hedging model with the third central moment and the capital budget," Economic Modelling, Elsevier, vol. 36(C), pages 213-219.
    80. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    81. Arteche González, Jesús María, 2002. "Gaussian Semiparametric Estimation in Long Memory in Stochastic Volatility and Signal Plus Noise Models," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    82. Hidalgo, Javier & Zaffaroni, Paolo, 2007. "A goodness-of-fit test for ARCH([infinity]) models," Journal of Econometrics, Elsevier, vol. 141(2), pages 835-875, December.
    83. Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    84. Kevin Sheppard & Andrew J. Patton, 2008. "Evaluating Volatility and Correlation Forecasts," Economics Series Working Papers 2008fe22, University of Oxford, Department of Economics.
    85. Hafner, C. & Preminger, A., 2010. "Deciding between GARCH and Stochastic Volatility via Strong Decision Rules," LIDAM Reprints ISBA 2010032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    86. Hafner, Christian & Manner H., 2012. "Dynamic stochastic copula models: Estimation, inference and applications," LIDAM Reprints ISBA 2012022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    87. Monica Billio & Maddalena Cavicchioli, 2013. "�Markov Switching Models for Volatility: Filtering, Approximation and Duality�," Working Papers 2013:24, Department of Economics, University of Venice "Ca' Foscari".
    88. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    89. Shay Kee Tan & Kok Haur Ng & Jennifer So-Kuen Chan, 2022. "Predicting Returns, Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models," Mathematics, MDPI, vol. 11(1), pages 1-24, December.
    90. Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1999. "Stochastic Volatility: Univariate and Multivariate Extensions," CIRANO Working Papers 99s-26, CIRANO.
    91. Petra Fleischer & Ross Maller & Gernot Müller, 2011. "A Bayesian analysis of market information linkages among NAFTA countries using a multivariate stochastic volatility model," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 35(2), pages 123-148, April.
    92. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    93. Chen, J. & Kobayashi, M. & McAleer, M.J., 2017. "Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models," Econometric Institute Research Papers TI 2017-022/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    94. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    95. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    96. Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468, arXiv.org, revised Nov 2017.
    97. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    98. Maki, Daiki, 2015. "Wild bootstrap testing for cointegration in an ESTAR error correction model," Economic Modelling, Elsevier, vol. 47(C), pages 292-298.
    99. Athanassiou, Emmanuel & Kollias, Christos & Syriopoulos, Theodore, 2006. "Dynamic volatility and external security related shocks: The case of the Athens Stock Exchange," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(5), pages 411-424, December.
    100. Alejandro Islas Camargo & Francisco Venegas Martínez, 2003. "Pricing Derivatives Securities with Prior Information on Long- Memory Volatility," Economía Mexicana NUEVA ÉPOCA, CIDE, División de Economía, vol. 0(1), pages 103-134, January-J.
    101. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    102. Weber, Enzo, 2013. "Simultaneous stochastic volatility transmission across American equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(1), pages 53-60.
    103. Sébastien Fries & Jean‐Stéphane Mésonnier & Sarah Mouabbi & Jean‐Paul Renne, 2018. "National natural rates of interest and the single monetary policy in the euro area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 763-779, September.
    104. Antonis Demos, 2002. "Moments and dynamic structure of a time-varying parameter stochastic volatility in mean model," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 345-357, June.
    105. Croux, Christophe & Renault, Eric & Werker, Bas, 2004. "Dynamic factor models," Journal of Econometrics, Elsevier, vol. 119(2), pages 223-230, April.
    106. Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2014. "No Arbitrage Priors, Drifting Volatilities, and the Term Structure of Interest Rates," CEPR Discussion Papers 9848, C.E.P.R. Discussion Papers.
    107. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    108. Michel Beine & Charles S. Bos & Sébastien Laurent, 2007. "The Impact of Central Bank FX Interventions on Currency Components," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 154-183.
    109. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    110. Shephard, N. & Pitt, M.K., 1995. "Likelihood Analysis of Non-Gaussian Parameter-Driven Models," Economics Papers 108, Economics Group, Nuffield College, University of Oxford.
    111. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    112. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    113. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: An Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    114. Nour Meddahi & Eric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
    115. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    116. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    117. Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2012. "On Geometric Ergodicity of Skewed - SVCHARME models," Papers 1209.1544, arXiv.org.
    118. Daniel B. Nelson, 1994. "Asymptotic Filtering Theory for Multivariate ARCH Models," NBER Technical Working Papers 0162, National Bureau of Economic Research, Inc.
    119. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," CARF F-Series CARF-F-198, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    120. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    121. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    122. John Randal & Peter Thomson & Martin Lally, 2004. "Non-parametric estimation of historical volatility," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 427-440.
    123. Giovanni Gallipoli & Gianluigi Pelloni, 2013. "Macroeconomic Effects of Job Reallocations: A Survey," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 5(2), pages 127-176, December.
    124. Deb, Partha, 1997. "Finite sample properties of the ARCH class of models with stochastic volatility," Economics Letters, Elsevier, vol. 55(1), pages 27-34, August.
    125. Hang Qian, 2014. "A Flexible State Space Model And Its Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 79-88, March.
    126. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    127. K. Triantafyllopoulos, 2007. "Covariance estimation for multivariate conditionally Gaussian dynamic linear models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(8), pages 551-569.
    128. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Discrete-time stochastic volatility models and MCMC-based statistical inference," SFB 649 Discussion Papers 2008-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    129. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    130. Philip Arestis, 2004. "Is there a trade-off between inflation variability and output-gap variability in the EMU countries?," National Institute of Economic and Social Research (NIESR) Discussion Papers 238, National Institute of Economic and Social Research.
    131. Rodríguez, Alejandro, 2010. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," DES - Working Papers. Statistics and Econometrics. WS ws100301, Universidad Carlos III de Madrid. Departamento de Estadística.
    132. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    133. HAFNER, Christian & HERWARTZ, Helmut, 2001. "Volatility impulse response functions for multivariate GARCH models," LIDAM Discussion Papers CORE 2001039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    134. Christian Grimme & Steffen Henzel & Elisabeth Wieland, 2014. "Inflation uncertainty revisited: a proposal for robust measurement," Empirical Economics, Springer, vol. 47(4), pages 1497-1523, December.
    135. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    136. Viviana Fernández, 2003. "Interest Rate Volatility and Nominalization," Documentos de Trabajo 153, Centro de Economía Aplicada, Universidad de Chile.
    137. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    138. Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    139. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    140. Celso Brunetti & Christopher L. Gilbert, 1999. "Bivariate FIGARCH and Fractional Cointegration," Working Papers 408, Queen Mary University of London, School of Economics and Finance.
    141. M. Shabani & M. Magris & George Tzagkarakis & J. Kanniainen & A. Iosifidis, 2023. "Predicting the state of synchronization of financial time series using cross recurrence plots," Post-Print hal-04415269, HAL.
    142. Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.
    143. Jang Hyung Cho & Robert T. Daigler, 2012. "An unbiased autoregressive conditional intraday seasonal variance filtering process," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 231-247, October.
    144. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    145. PREMINGER Arie & STORTI Giuseppe, 2017. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," LIDAM Discussion Papers CORE 2017015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    146. Almeida, Carlos & Czado, Claudia, 2012. "Efficient Bayesian inference for stochastic time-varying copula models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1511-1527.
    147. Fabio Fornari & Antonio Mele, 1997. "Weak convergence and distributional assumptions for a general class of nonliner arch models," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 205-227.
    148. P. de Zea Bermudez & J. Miguel Marín & Helena Veiga, 2020. "Data cloning estimation for asymmetric stochastic volatility models," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1057-1074, November.
    149. Anderson, Heather M. & Vahid, Farshid, 2007. "Forecasting the Volatility of Australian Stock Returns: Do Common Factors Help?," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 76-90, January.
    150. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    151. Pérez, Ana, 1999. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," DES - Working Papers. Statistics and Econometrics. WS 6360, Universidad Carlos III de Madrid. Departamento de Estadística.
    152. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    153. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    154. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    155. Michael W. Brandt & Qiang Kang, 2002. "On the Relationship Between the Conditional Mean and Volatility of Stock Returns: A Latent VAR Approach," NBER Working Papers 9056, National Bureau of Economic Research, Inc.
    156. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2010. "Block Structure Multivariate Stochastic Volatility Models," Working Papers in Economics 10/24, University of Canterbury, Department of Economics and Finance.
    157. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    158. Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
    159. Lien, Donald & Wilson, Bradley K., 2001. "Multiperiod hedging in the presence of stochastic volatility," International Review of Financial Analysis, Elsevier, vol. 10(4), pages 395-406.
    160. Harvey, A. & Chakravarty, T., 2008. "Beta-t-(E)GARCH," Cambridge Working Papers in Economics 0840, Faculty of Economics, University of Cambridge.
    161. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    162. Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
    163. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2016. "Testing for a Common Volatility Process and Information Spillovers in Bivariate Financial Time Series Models," Documentos de Trabajo del ICAE 2016-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    164. G Sandmann & Siem Jan Koopman, 1996. "Maximum Likelihood Estimation of Stochastic Volatility Models," FMG Discussion Papers dp248, Financial Markets Group.
    165. Gulten Mero & Serge Darolles & Gaëlle Le Fol, 2015. "Financial Market Liquidity: Who Is Acting Strategically?," THEMA Working Papers 2015-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    166. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    167. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series 497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    168. Berument, Hakan & Yalcin, Yeliz & Yildirim, Julide, 2009. "The effect of inflation uncertainty on inflation: Stochastic volatility in mean model within a dynamic framework," Economic Modelling, Elsevier, vol. 26(6), pages 1201-1207, November.
    169. Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
    170. Dominik Bertsche & Robin Braun, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2018-03, Department of Economics, University of Konstanz.
    171. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    172. Soyer, Refik & Tanyeri, Kadir, 2006. "Bayesian portfolio selection with multi-variate random variance models," European Journal of Operational Research, Elsevier, vol. 171(3), pages 977-990, June.
    173. Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
    174. Anton Koshelev, 2021. "FX Market Volatility," Papers 2104.14190, arXiv.org.
    175. Araújo, Fabio & Issler, João Victor & Fernandes, Marcelo, 2005. "Estimating the stochastic discount factor without a utility function," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 583, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    176. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.
    177. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    178. Minheng Xiao, 2022. "Data-Driven Risk Measurement by SV-GARCH-EVT Model," Papers 2201.09434, arXiv.org, revised Dec 2024.
    179. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    180. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    181. Liu, Xiaochun, 2021. "On fiscal and monetary policy-induced macroeconomic volatility dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    182. James M. Nason & Gregor W. Smith, 2021. "UK inflation forecasts since the thirteenth century," CAMA Working Papers 2021-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    183. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Inference under Sampling from Scale Mixtures of Normals," Other publications TiSEM 10be2f67-1679-4828-bba6-7, Tilburg University, School of Economics and Management.
    184. Huiling Yuan & Yong Zhou & Zhiyuan Zhang & Xiangyu Cui, 2019. "Forecasting security's volatility using low-frequency historical data, high-frequency historical data and option-implied volatility," Papers 1907.02666, arXiv.org.
    185. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    186. Dennis Alvaro & Ángel Guillén & Gabriel Rodríguez, 2017. "Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(1), pages 71-103, February.
    187. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
    188. Charles S. Bos & Phillip Gould, 2007. "Dynamic Correlations and Optimal Hedge Ratios," Tinbergen Institute Discussion Papers 07-025/4, Tinbergen Institute.
    189. David G. McMillan & Isabel Ruiz, 2009. "Volatility dynamics in three euro exchange rates: correlations, spillovers and commonality," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 1(1), pages 64-74.
    190. Asai, M. & Caporin, M. & McAleer, M.J., 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2012-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    191. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    192. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    193. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    194. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    195. Laurent-Emmanuel Calvet & Adlai J. Fisher & Samuel B. Thompson, 2006. "Volatility Comovement: a multifrequency approach," Post-Print hal-00459667, HAL.
    196. Chang, Kook-Hyun & Kim, Myung-Jig, 2001. "Jumps and time-varying correlations in daily foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 611-637, October.
    197. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    198. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    199. Chan, Leo & Lien, Donald, 2002. "Measuring the impacts of cash settlement: A stochastic volatility approach," International Review of Economics & Finance, Elsevier, vol. 11(3), pages 251-263.
    200. Morar Triandafil, Cristina & Brezeanu, Petre & Huidumac, Catalin & Morar Triandafil, Adrian, 2011. "The Drivers of the CEE Exchange Rate Volatility - Empirical Perspective in the context of the Recent Financial Crisis," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 212-229, March.
    201. Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
    202. Audrone Virbickaite & Hedibert F. Lopes & Maria Concepción Ausín & Pedro Galeano, 2018. "Particle Learning for Bayesian Semi-Parametric Stochastic Volatility Model," DEA Working Papers 88, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    203. Berganza, Juan Carlos & Broto, Carmen, 2012. "Flexible inflation targets, forex interventions and exchange rate volatility in emerging countries," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 428-444.
    204. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    205. Ramaprasad Bhar & Damien Lee, 2018. "Alternative characterization of volatility of short-term interest rate," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-15, June.
    206. Kim, Dongwhan & Kang, Kyu Ho, 2021. "Conditional value-at-risk forecasts of an optimal foreign currency portfolio," International Journal of Forecasting, Elsevier, vol. 37(2), pages 838-861.
    207. Andrea Cipollini & George Kapetanios, 2004. "A Stochastic Variance Factor Model for Large Datasets and an Application to S&P Data," Working Papers 506, Queen Mary University of London, School of Economics and Finance.
    208. Fung, Ka Wai Terence & Lau, Chi Keung Marco & Chan, Kwok Ho, 2013. "The Conditional CAPM, Cross-Section Returns and Stochastic Volatility," MPRA Paper 52469, University Library of Munich, Germany.
    209. Barigozzi, Matteo & Hallin, Mark, 2015. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," LSE Research Online Documents on Economics 60980, London School of Economics and Political Science, LSE Library.
    210. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
    211. Arnaud Doucet & Vladislav Tadić, 2003. "Parameter estimation in general state-space models using particle methods," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 409-422, June.
    212. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    213. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    214. Ana Babus & Casper G. de Vries, 2010. "Global Stochastic Properties of Dynamic Models and their Linear Approximations," Tinbergen Institute Discussion Papers 10-081/2, Tinbergen Institute.
    215. Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
    216. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    217. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    218. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    219. Denis Pelletier, 2004. "Regime Switching for Dynamic Correlations," Econometric Society 2004 North American Summer Meetings 230, Econometric Society.
    220. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    221. Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1995. "Models and Priors for Multivariate Stochastic Volatility," CIRANO Working Papers 95s-18, CIRANO.
    222. Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.
    223. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    224. George Athanasopoulos & Heather M. Anderson & Farshid Vahid, 2007. "Nonlinear autoregressive leading indicator models of output in G-7 countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 63-87.
    225. Frédéric Karamé, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Post-Print hal-02296093, HAL.
    226. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    227. Mostafa Shabani & Martin Magris & George Tzagkarakis & Juho Kanniainen & Alexandros Iosifidis, 2022. "Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots," Papers 2210.14605, arXiv.org, revised Nov 2022.
    228. David McMillan & Isabel Ruiz & Alan Speight, 2010. "Correlations and spillovers among three euro rates: evidence using realised variance," The European Journal of Finance, Taylor & Francis Journals, vol. 16(8), pages 753-767.
    229. Jaroslava HLOUSKOVA & Kurt SCHMIDHEINY & Martin WAGNER, 2004. "Multistep Predictions for Multivariate GARCH Models: Closed Form Solution and the Value for Portfolio Management," Cahiers de Recherches Economiques du Département d'économie 04.10, Université de Lausanne, Faculté des HEC, Département d’économie.
    230. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    231. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    232. Poncela, Pilar, 2015. "Small versus big-data factor extraction in Dynamic Factor Models: An empirical assessment," DES - Working Papers. Statistics and Econometrics. WS ws1502, Universidad Carlos III de Madrid. Departamento de Estadística.
    233. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    234. Jaroslava Hlouskova & Kurt Schmidheiny & Martin Wagner, 2002. "Multistep Predictions from Multivariate ARMA-GARCH: Models and their Value for Portfolio Management," Diskussionsschriften dp0212, Universitaet Bern, Departement Volkswirtschaft.
    235. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    236. Scott I. White & Adam E. Clements & Stan Hurn, 2004. "Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility," Econometric Society 2004 Australasian Meetings 46, Econometric Society.
    237. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    238. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
    239. Chen, Ying & Härdle, Wolfgang & Jeong, Seok-Oh, 2008. "Nonparametric Risk Management With Generalized Hyperbolic Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 910-923.
    240. Martínez Ibáñez, Oscar & Olmo, José, 2008. "A nonlinear threshold model for the dependence of extremes of stationary sequences," Working Papers 2072/5361, Universitat Rovira i Virgili, Department of Economics.
    241. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
    242. Yong Li & Jun Yu, 2010. "A New Bayesian Unit Root Test in Stochastic Volatility Models," Working Papers 21-2010, Singapore Management University, School of Economics, revised Oct 2010.
    243. Christou, Costas & Swamy, P. A. V. B. & Tavlas, George S., 1998. "A general framework for predicting returns from multiple currency investments," Journal of Economic Dynamics and Control, Elsevier, vol. 22(7), pages 977-1000, May.
    244. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 1998. "Information and volatility linkages in the stock, bond, and money markets," Journal of Financial Economics, Elsevier, vol. 49(1), pages 111-137, July.
    245. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    246. Koedijk, Kees & Kool, Clemens & Nissen, Francois, 1998. "Real interest rates and shifts in macroeconomic volatility," Journal of Empirical Finance, Elsevier, vol. 5(3), pages 241-261, September.
    247. Arthur Charpentier, 2015. "Prévision avec des copules en finance," Working Papers hal-01151233, HAL.
    248. Christian Bontemps & Nour Meddahi, 2002. "Testing Normality: A GMM Approach," CIRANO Working Papers 2002s-63, CIRANO.
    249. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    250. Mike So & K. Lam & W. K. Li, 1999. "Forecasting exchange rate volatility using autoregressive random variance model," Applied Financial Economics, Taylor & Francis Journals, vol. 9(6), pages 583-591.
    251. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    252. Pasricha, Gurnain Kaur, 2006. "Kalman Filter and its Economic Applications," MPRA Paper 22734, University Library of Munich, Germany.
    253. Yuichi Nagahara, 2003. "Non‐Gaussian Filter and Smoother Based on the Pearson Distribution System," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(6), pages 721-738, November.
    254. Martina Danielova Zaharieva & Mark Trede & Bernd Wilfling, 2017. "Bayesian semiparametric multivariate stochastic volatility with an application to international stock-market co-movements," CQE Working Papers 6217, Center for Quantitative Economics (CQE), University of Muenster.
    255. Messow, Philip & Krämer, Walter, 2013. "Spurious persistence in stochastic volatility," Economics Letters, Elsevier, vol. 121(2), pages 221-223.
    256. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    257. Pitt, Michael K., 2002. "Smooth particle filters for likelihood evaluation and maximisation," Economic Research Papers 269464, University of Warwick - Department of Economics.
    258. Sergey Egiev, 2016. "On Persistence of Uncertainty Shocks," HSE Working papers WP BRP 144/EC/2016, National Research University Higher School of Economics.
    259. Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
    260. Sirimon Treepongkaruna & Stephen Gray, 2009. "Information and volatility links in the foreign exchange market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(2), pages 385-405, June.
    261. Brandt, Michael W. & Kang, Qiang, 2004. "On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach," Journal of Financial Economics, Elsevier, vol. 72(2), pages 217-257, May.
    262. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    263. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    264. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    265. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    266. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    267. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
    268. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    269. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in international dairy commodity markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(3), pages 704-728, July.
    270. M. Berument & Yeliz Yalcin & Julide Yildirim, 2011. "The inflation and inflation uncertainty relationship for Turkey: a dynamic framework," Empirical Economics, Springer, vol. 41(2), pages 293-309, October.
    271. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    272. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    273. Brandt, Michael W. & Wu, Tao, 2002. "Cross-sectional tests of deterministic volatility functions," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 525-550, December.
    274. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    275. van der Sluis Pieter J., 1997. "EmmPack 1.01: C/C++ Code for Use with Ox for Estimation of Univariate Stochastic Volatility Models with the Efficient Method of Moments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(3), pages 1-20, October.
    276. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    277. Wink Junior, Marcos Vinício & Pereira, Pedro Luiz Valls, 2011. "Modeling and Forecasting of Realized Volatility: Evidence from Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(2), December.
    278. Kim C. Raath & Katherine B. Ensor, 2023. "Wavelet-L2E Stochastic Volatility Models: an Application to the Water-Energy Nexus," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 150-176, May.
    279. Johanna F. Ziegel & Fabian Kruger & Alexander Jordan & Fernando Fasciati, 2017. "Murphy Diagrams: Forecast Evaluation of Expected Shortfall," Papers 1705.04537, arXiv.org.
    280. Carmen Fernandez & Mark F J Steel, 1998. "On the dangers of modelling through continuous distributions: A Bayesian perspective," Edinburgh School of Economics Discussion Paper Series 22, Edinburgh School of Economics, University of Edinburgh.
    281. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    282. Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
    283. Wright, Jonathan H, 1999. "Testing for a Unit Root in the Volatility of Asset Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 309-318, May-June.
    284. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
    285. Takao Asano & Xiaojing Cai & Ryuta Sakemoto, 2023. "Time-varying ambiguity shocks and business cycles," KIER Working Papers 1094, Kyoto University, Institute of Economic Research.
    286. Chan, Leo & Lien, Donald, 2003. "Using high, low, open, and closing prices to estimate the effects of cash settlement on futures prices," International Review of Financial Analysis, Elsevier, vol. 12(1), pages 35-47.
    287. Mohamadou L. Fadi & Yongsheng Wang, 2014. "Common Stochastic Volatility in International Real Estate Market," Journal of Reviews on Global Economics, Lifescience Global, vol. 3, pages 131-139.
    288. Chadha, Jagjit S. & Nolan, Charles, 2001. "Inflation Targeting, Transparency and Interest Rate Volatility: Ditching Monetary Mystique in the U.K," Journal of Macroeconomics, Elsevier, vol. 23(3), pages 349-366, July.
    289. Christian N. Brinch, 2008. "Simulated Maximum Likelihood using Tilted Importance Sampling," Discussion Papers 540, Statistics Norway, Research Department.
    290. Ester Ruiz & Fernando Lorenzo, 1998. "The relation between the level and uncertainty of inflation," Documentos de Trabajo (working papers) 0698, Department of Economics - dECON.
    291. S. Avouyi-Dovi & G. Horny & P. Sevestre, 2015. "The stability of short-term interest rates pass-through in the euro area during the financial market and sovereign debt crises," Working papers 547, Banque de France.
    292. Brandt, Michael W. & Jones, Christopher S., 2005. "Bayesian range-based estimation of stochastic volatility models," Finance Research Letters, Elsevier, vol. 2(4), pages 201-209, December.
    293. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    294. Kim, Dukpa, 2014. "Maximum likelihood estimation for vector autoregressions with multivariate stochastic volatility," Economics Letters, Elsevier, vol. 123(3), pages 282-286.
    295. Yong Li & Jun Yu, 2019. "An Improved Bayesian Unit Root Test in Stochastic Volatility Models," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 103-122, May.
    296. Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
    297. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
    298. Carmen Broto, 2012. "The effectiveness of forex interventions in four Latin American countries," Working Papers 1226, Banco de España.
    299. Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
    300. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    301. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    302. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2021. "Multiscale Stochastic Volatility Model with Heavy Tails and Leverage Effects," JRFM, MDPI, vol. 14(5), pages 1-28, May.
    303. Márcio Laurini, 2012. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," IBMEC RJ Economics Discussion Papers 2012-02, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    304. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    305. Philip Arestis & Kostas Mouratidis, 2004. "Credibility of European Monetary System Interest Rate Policies: A Markov Regime‐Switching Approach," Manchester School, University of Manchester, vol. 72(1), pages 1-23, January.
    306. Angela Black & David McMillan, 2004. "Long run trends and volatility spillovers in daily exchange rates," Applied Financial Economics, Taylor & Francis Journals, vol. 14(12), pages 895-907.
    307. Pascale VALERY (HEC-Montreal) & Jean-Marie Dufour (University of Montreal), 2004. "A simple estimation method and finite-sample inference for a stochastic volatility model," Econometric Society 2004 North American Summer Meetings 153, Econometric Society.
    308. Luwen Zhang & Li Wang, 2023. "Generalized Method of Moments Estimation of Realized Stochastic Volatility Model," JRFM, MDPI, vol. 16(8), pages 1-12, August.
    309. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    310. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2024. "Maximum likelihood estimation of latent Markov models using closed-form approximations," Journal of Econometrics, Elsevier, vol. 240(2).
    311. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    312. Travis Sapp, 2009. "Estimating continuous-time stochastic volatility models of the short-term interest rate: a comparison of the generalized method of moments and the Kalman filter," Review of Quantitative Finance and Accounting, Springer, vol. 33(4), pages 303-326, November.
    313. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    314. Kunkler, Michael & MacDonald, Ronald, 2016. "Idiosyncratic variation of the US Dollar," Economics Letters, Elsevier, vol. 144(C), pages 7-9.
    315. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    316. Engle III, Robert F., 2003. "Risk and Volatility: Econometric Models and Financial Practice," Nobel Prize in Economics documents 2003-4, Nobel Prize Committee.
    317. Busetti, F. & Harvey, A., 2008. "When is a copula constant? A test for changing relationships," Cambridge Working Papers in Economics 0841, Faculty of Economics, University of Cambridge.
    318. de Pinho, Frank M. & Franco, Glaura C. & Silva, Ralph S., 2016. "Modeling volatility using state space models with heavy tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 108-127.
    319. Pop, Raluca Elena, 2012. "Herd behavior towards the market index: evidence from Romanian stock exchange," MPRA Paper 51595, University Library of Munich, Germany.
    320. Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
    321. Christian Dunis & Jason Laws & Stephane Chauvin, 2003. "FX volatility forecasts and the informational content of market data for volatility," The European Journal of Finance, Taylor & Francis Journals, vol. 9(3), pages 242-272.
    322. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    323. Nishino, Haruhisa & Kakamu, Kazuhiko, 2015. "A random walk stochastic volatility model for income inequality," Japan and the World Economy, Elsevier, vol. 36(C), pages 21-28.
    324. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Smoothing volatility targeting," Papers 2212.07288, arXiv.org.
    325. Raanju R. Sundararajan & Wagner Barreto‐Souza, 2023. "Student‐t stochastic volatility model with composite likelihood EM‐algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 125-147, January.
    326. Huisman, Ronald & Van der Sar, Nico L. & Zwinkels, Remco C.J., 2021. "Volatility expectations and disagreement," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 379-393.
    327. Ram Bhar & Carl Chiarella & Toan Pham, 2000. "Modeling the Currency Forward Risk Premium: Theory and Evidence," Research Paper Series 41, Quantitative Finance Research Centre, University of Technology, Sydney.
    328. Malik, Sheheryar & Pitt, Michael K., 2009. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Economic Research Papers 271302, University of Warwick - Department of Economics.
    329. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
    330. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    331. Occhino, Filippo & Pescatori, Andrea, 2015. "Debt overhang in a business cycle model," European Economic Review, Elsevier, vol. 73(C), pages 58-84.
    332. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    333. N. Balakrishna & Bovas Abraham & Ranjini Sivakumar, 2006. "Gamma stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 153-171.
    334. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Generalized Dynamic Factor Model + GARCH Exploiting Multivariate Information for Univariate Prediction," LEM Papers Series 2006/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    335. Dridi, Ramdan & Renault, Eric, 2000. "Semi-parametric indirect inference," LSE Research Online Documents on Economics 6864, London School of Economics and Political Science, LSE Library.
    336. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    337. Mustafa Caglayan & Ozge Kandemir & Kostas Mouratidis, 2012. "The Impact of Inflation Uncertainty on Economic Growth: A MRS-IV Approach," Working Papers 2012025, The University of Sheffield, Department of Economics.
    338. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    339. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    340. Joan del Castillo & Juan-Pablo Ortega, 2011. "Hedging of time discrete auto-regressive stochastic volatility options," Papers 1110.6322, arXiv.org.
    341. Hwai-Chung Ho, 2022. "Forecasting the distribution of long-horizon returns with time-varying volatility," Papers 2201.07457, arXiv.org.
    342. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    343. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    344. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    345. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    346. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
    347. Bertram, William K., 2008. "Measuring time dependent volatility and cross-sectional correlation in Australian equity returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3183-3191.
    348. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Liquidity, surprise volume and return premia in the oil market," Energy Economics, Elsevier, vol. 77(C), pages 93-104.
    349. Murat Körs & Mehmet Baha Karan, 2023. "Stock exchange volatility forecasting under market stress with MIDAS regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 295-306, January.
    350. Siem Jan Koopman & Charles S. Bos, 2002. "Time Series Models with a Common Stochastic Variance for Analysing Economic Time Series," Tinbergen Institute Discussion Papers 02-113/4, Tinbergen Institute.
    351. Fung, Ka Wai Terence & Lau, Chi Keung Marco & Chan, Kwok Ho, 2014. "The conditional equity premium, cross-sectional returns and stochastic volatility," Economic Modelling, Elsevier, vol. 38(C), pages 316-327.
    352. Mohamadou Fadiga & Yongsheng Wang, 2009. "A multivariate unobserved component analysis of US housing market," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(1), pages 13-26, January.
    353. Mr. Noureddine Krichene, 2003. "Modeling Stochastic Volatility with Application to Stock Returns," IMF Working Papers 2003/125, International Monetary Fund.
    354. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    355. Alin Sima, 2008. "Stylized Facts and Discrete Stochastic Volatility Models," Advances in Economic and Financial Research - DOFIN Working Paper Series 10, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    356. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, October.
    357. Lien, Donald & Tse, Yiu Kuen, 2006. "A survey on physical delivery versus cash settlement in futures contracts," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 15-29.
    358. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    359. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    360. Nasir, Muhammad Ali & Naidoo, Lutchmee & Shahbaz, Muhammad & Amoo, Nii, 2018. "Implications of oil prices shocks for the major emerging economies: A comparative analysis of BRICS," Energy Economics, Elsevier, vol. 76(C), pages 76-88.
    361. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    362. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    363. Berument, M. Hakan & Yalcin, Yeliz & Yildirim, Julide, 2012. "Inflation and inflation uncertainty: A dynamic framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4816-4826.
    364. Nobuaki Hamaguchi & Silvio Miyazaki & Leonardo Correia, 2014. "State Space Application to Recent Automobile Sector Triangle Trade between Japan and Latin America," Discussion Paper Series DP2014-05, Research Institute for Economics & Business Administration, Kobe University.
    365. Pasquale Tridico & Riccardo Pariboni, 2017. "Structural Change, Aggregate Demand And The Decline Of Labour Productivity: A Comparative Perspective," Departmental Working Papers of Economics - University 'Roma Tre' 0221, Department of Economics - University Roma Tre.
    366. Serda S. Öztürk & Thanasis Stengos, 2017. "A Multivariate Stochastic Volatility Model Applied to a Panel of S&P500 Stocks in Different Industries," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 479-490, September.
    367. Feng, Yuanhua & Yu, Keming, 2006. "Nonparametric estimation of time-varying covariance matrix in a slowly changing vector random walk model," MPRA Paper 1597, University Library of Munich, Germany.
    368. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    369. Tian, Shuairu & Hamori, Shigeyuki, 2016. "Time-varying price shock transmission and volatility spillover in foreign exchange, bond, equity, and commodity markets: Evidence from the United States," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 163-171.
    370. Marçal, Emerson F. & Valls Pereira, Pedro L., 2008. "Testando A Hipótese De Contágio A Partir De Modelos Multivariados De Volatilidade [Testing the contagion hypotheses using multivariate volatility models]," MPRA Paper 10356, University Library of Munich, Germany.
    371. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    372. A Lee & N Whiteley, 2018. "Variance estimation in the particle filter," Biometrika, Biometrika Trust, vol. 105(3), pages 609-625.
    373. Sun, Licheng, 2005. "Regime shifts in interest rate volatility," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 418-434, June.
    374. David S. Bates, 2003. "Maximum Likelihood Estimation of Latent Affine Processes," NBER Working Papers 9673, National Bureau of Economic Research, Inc.
    375. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2020. "On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin," Econometrics and Statistics, Elsevier, vol. 16(C), pages 69-90.
    376. Pan, Qi & Li, Yong, 2013. "Testing volatility persistence on Markov switching stochastic volatility models," Economic Modelling, Elsevier, vol. 35(C), pages 45-50.
    377. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    378. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    379. Hardiyanto, A.V., 2007. "Daily Rp/USD stochastic volatility and the policy implication lesson," Journal of Asian Economics, Elsevier, vol. 18(1), pages 237-256, February.
    380. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    381. Mikhail Chernov & Eric Ghysels, 1998. "What Data Should Be Used to Price Options?," CIRANO Working Papers 98s-22, CIRANO.
    382. Ding, Liang & Vo, Minh, 2012. "Exchange rates and oil prices: A multivariate stochastic volatility analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 15-37.
    383. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.
    384. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    385. Reyes-García, Nallely Jacqueline & Venegas-Martínez, Francisco & Cruz-Aké, Salvador, 2018. "Un análisis comparativo entre GARCH-M, EGARCH y PJ-RS-EV para modelar la volatilidad de Índice de precios y cotizaciones de la Bolsa Mexicana de Valores [A Comparative Analysis among GARCH-M, EGARC," MPRA Paper 84304, University Library of Munich, Germany.
    386. Fleming, Jeff & Ostdiek, Barbara, 1999. "The impact of energy derivatives on the crude oil market," Energy Economics, Elsevier, vol. 21(2), pages 135-167, April.
    387. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    388. Pezzo, Rosanna & Uberti, Mariacristina, 2006. "Approaches to forecasting volatility: Models and their performances for emerging equity markets," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 556-565.
    389. Mardi Dungey & Diana Zhumabekova, 2001. "Factor analysis of a model of stock market returns using simulation-based estimation techniques," Pacific Basin Working Paper Series 2001-08, Federal Reserve Bank of San Francisco.
    390. González-Hermosillo, Brenda & Johnson, Christian, 2017. "Transmission of financial stress in Europe: The pivotal role of Italy and Spain, but not Greece," Journal of Economics and Business, Elsevier, vol. 90(C), pages 49-64.
    391. Philippe Charlot & Vêlayoudom Marimoutou, 2008. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model," Working Papers halshs-00285866, HAL.
    392. Dalla, Violetta & Giraitis, Liudas & Hidalgo, Javier, 2006. "Consistent estimation of the memory parameter for nonlinear time series," LSE Research Online Documents on Economics 6813, London School of Economics and Political Science, LSE Library.
    393. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2009. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working Papers 0905, University of Nevada, Las Vegas , Department of Economics.
    394. Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
    395. Gan, Li & Hsiao, Cheng & Xu, Shu, 2014. "Model specification test with correlated but not cointegrated variables," Journal of Econometrics, Elsevier, vol. 178(P1), pages 80-85.
    396. Eymen Errais & Dhikra Bahri, 2016. "Is Standard Deviation a Good Measure of Volatility? the Case of African Markets with Price Limits," Annals of Economics and Finance, Society for AEF, vol. 17(1), pages 145-165, May.
    397. Solibakke, Per Bjarte, 2001. "A stochastic volatility model specification with diagnostics for thinly traded equity markets," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 385-406, December.
    398. Hafner, C.M. & Herwartz, H., 2002. "Testing for vector autoregressive dynamics under heteroskedasticity," Econometric Institute Research Papers EI 2002-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    399. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    400. Guerbyenne, Hafida & Hamdi, Fayçal & Hamrat, Malika, 2024. "The logGARCH stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 214(C).
    401. Chirico, Paolo, 2014. "Modelli strutturali e Filtri di Kalman per serie storiche univariate. Teoria ed applicazioni con Gretl," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201401, University of Turin.
    402. Rodríguez, Gabriel & Vassallo, Renato & Castillo B., Paul, 2023. "Effects of external shocks on macroeconomic fluctuations in Pacific Alliance countries," Economic Modelling, Elsevier, vol. 124(C).
    403. Fernandez, Viviana, 2004. "Interest rate risk in an emerging economy," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(5), pages 678-709, December.
    404. Yufeng Han, 2011. "On the relation between the market risk premium and market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(22), pages 1711-1723.
    405. Pascual, Lorenzo, 2000. "Forecasting returns and volatilities in GARCH processes using the bootstrap," DES - Working Papers. Statistics and Econometrics. WS 10059, Universidad Carlos III de Madrid. Departamento de Estadística.
    406. Chen, Yi-Ting, 2012. "A simple approach to standardized-residuals-based higher-moment tests," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 427-453.
    407. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    408. Andersen, Torben G. & Sorensen, Bent E., 1997. "GMM and QML asymptotic standard deviations in stochastic volatility models: Comments on Ruiz (1994)," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 397-403.
    409. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    410. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    411. Viceira, Luis & Chacko, George, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," CEPR Discussion Papers 4913, C.E.P.R. Discussion Papers.
    412. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    413. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
    414. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    415. Cagnone, Silvia & Bartolucci, Francesco, 2013. "Adaptive quadrature for likelihood inference on dynamic latent variable models for time-series and panel data," MPRA Paper 51037, University Library of Munich, Germany.
    416. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    417. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.
    418. Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
    419. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    420. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    421. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    422. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    423. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    424. Richard G. Anderson & Charles S. Gascon, 2009. "Estimating U.S. output growth with vintage data in a state-space framework," Review, Federal Reserve Bank of St. Louis, vol. 91(Jul), pages 349-370.
    425. Gabriel Rodríguez & Renato Vassallo, 2022. "Time Evolution of External Shocks on Macroeconomic Fluctuations in Pacific Alliance Countries: Empirical Application using TVP-VAR-SV Models," Documentos de Trabajo / Working Papers 2022-508, Departamento de Economía - Pontificia Universidad Católica del Perú.
    426. Davide De Gaetano, 2017. "A Bootstrap Bias Correction Of Long Run Fourth Order Moment Estimation In The Cusum Of Squares Test," Departmental Working Papers of Economics - University 'Roma Tre' 0220, Department of Economics - University Roma Tre.
    427. Esparcia, Carlos & Diaz, Antonio & Alonso, Daniel, 2023. "How important is green awareness in energy investment decisions? An environmentally-based rebalancing portfolio study," Energy Economics, Elsevier, vol. 128(C).
    428. Michael P Clements & Ana Beatriz Galvao, 2017. "Data Revisions and Real-time Probabilistic Forecasting of Macroeconomic Variables," ICMA Centre Discussion Papers in Finance icma-dp2017-01, Henley Business School, University of Reading.
    429. Dinghai Xu & John Knight, 2013. "Stochastic volatility model under a discrete mixture-of-normal specification," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(2), pages 216-239, April.
    430. Alfredo García Hiernaux & José Casals Carro & Miguel Jerez, 2005. "Fast estimation methods for time series models in state-space form," Documentos de Trabajo del ICAE 0504, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    431. Ender Demir & Ka Wai Terence Fung & Zhou Lu, 2016. "Capital Asset Pricing Model and Stochastic Volatility: A Case Study of India," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(1), pages 52-65, January.
    432. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    433. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    434. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    435. Matthieu Lemoine, 2005. "A model of the stochastic convergence between business cycles," Documents de Travail de l'OFCE 2005-05, Observatoire Francais des Conjonctures Economiques (OFCE).
    436. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2004. "How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations," Econometric Society 2004 Latin American Meetings 198, Econometric Society.
    437. Nigel Meade & Gerry Salkin, 2000. "The selection of multinational equity portfolios: forecasting models and estimation risk," The European Journal of Finance, Taylor & Francis Journals, vol. 6(3), pages 259-279.
    438. Acatrinei, Marius & Gorun, Adrian & Marcu, Nicu, 2013. "A DCC-GARCH Model To Estimate the Risk to the Capital Market in Romania," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 136-148, March.
    439. Masaru Chiba & Masahito Kobayashi, 2013. "Testing for a Single-Factor Stochastic Volatility in Bivariate Series," JRFM, MDPI, vol. 6(1), pages 1-31, December.
    440. Pérez, Ana, 2001. "Properties of the sample autocorrelations in autoregressive stochastic volatllity models," DES - Working Papers. Statistics and Econometrics. WS ws011208, Universidad Carlos III de Madrid. Departamento de Estadística.
    441. Mr. Marcus Pramor & Ms. Natalia T. Tamirisa, 2006. "Common Volatility Trends in the Central and Eastern European Currencies and the Euro," IMF Working Papers 2006/206, International Monetary Fund.
    442. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    443. Wilfredo Palma & Mauricio Zevallos, 2004. "Analysis of the correlation structure of square time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 529-550, July.
    444. Robert Kollmann, 2016. "Risk Sharing, the Exchange Rate and Net Foreign Assets in a World Economy with Uncertainty Shocks," 2016 Meeting Papers 721, Society for Economic Dynamics.
    445. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    446. Tims, B. & Mahieu, R.J., 2003. "A Range-Based Multivariate Model for Exchange Rate Volatility," ERIM Report Series Research in Management ERS-2003-022-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    447. Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
    448. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    449. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    450. Carmen Fernandez & Mark F J Steel, 1999. "Bayesian Regression Analysis with scale mixtures of normals," Edinburgh School of Economics Discussion Paper Series 27, Edinburgh School of Economics, University of Edinburgh.
    451. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    452. Shieh-Liang Chen & Shian-Chang Huang & Yi-Mien Lin, 2007. "Using multivariate stochastic volatility models to investigate the interactions among NASDAQ and major Asian stock indices," Applied Economics Letters, Taylor & Francis Journals, vol. 14(2), pages 127-133.
    453. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    454. Ming Lin & Changjiang Liu & Linlin Niu, 2013. "Bayesian Estimation of Wishart Autoregressive Stochastic Volatility Model," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    455. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    456. Wang, Nianling & Lou, Zhusheng, 2023. "Sequential Bayesian analysis for semiparametric stochastic volatility model with applications," Economic Modelling, Elsevier, vol. 123(C).
    457. Yuanhua Feng & Jan Beran & Sebastian Letmathe & Sucharita Ghosh, 2020. "Fractionally integrated Log-GARCH with application to value at risk and expected shortfall," Working Papers CIE 137, Paderborn University, CIE Center for International Economics.
    458. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    459. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    460. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    461. Ahsan, Md. Nazmul & Dufour, Jean-Marie, 2021. "Simple estimators and inference for higher-order stochastic volatility models," Journal of Econometrics, Elsevier, vol. 224(1), pages 181-197.
    462. Viviana Fernández, 2002. "How Sensitive is Volatility to Exchange Rate Regimes?," Documentos de Trabajo 135, Centro de Economía Aplicada, Universidad de Chile.
    463. So, Mike K.P. & Kwok, Susanna W.Y., 2006. "A multivariate long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 450-464.
    464. Jonathan Manton & Anton Muscatelli & Vikram Krishnamurthy & Stan Hurn, "undated". "Modelling Stock Market Excess Returns by Markov Modulated Gaussian Noise," Working Papers 9806, Business School - Economics, University of Glasgow.
    465. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    466. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    467. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    468. Silvia S.W. Lui, 2006. "An Empirical Study of Asian Stock Volatility Using Stochastic Volatility Factor Model: Factor Analysis and Forecasting," Working Papers 581, Queen Mary University of London, School of Economics and Finance.
    469. Jeongeun Kim & David S. Stoffer, 2008. "Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 811-833, September.
    470. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    471. Tu, Anthony H. & Wang, Ming-Chun, 2007. "The innovations of e-mini contracts and futures price volatility components: The empirical investigation of S&P 500 stock index futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 198-211, April.
    472. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    473. Xuan Yao & Xiaofeng Hui & Kaican Kang, 2021. "Can night trading sessions improve forecasting performance of gold futures' volatility in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 849-860, August.
    474. Kondo, Koji, 1997. "Statistical analysis of foreign exchange rates: application of cointegration model and regime-switching stochastic volatility model," ISU General Staff Papers 1997010108000012997, Iowa State University, Department of Economics.
    475. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference (Revised in April 2006, subsequently published in "Journal of Econometrics", 140, 425-449, 2007. )," CARF F-Series CARF-F-011, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    476. Díaz, Antonio & Esparcia, Carlos & López, Raquel, 2022. "The diversifying role of socially responsible investments during the COVID-19 crisis: A risk management and portfolio performance analysis," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 39-60.
    477. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    478. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    479. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    480. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    481. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    482. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    483. Charles S. Bos & Siem Jan Koopman, 2010. "Models with Time-varying Mean and Variance: A Robust Analysis of U.S. Industrial Production," Tinbergen Institute Discussion Papers 10-017/4, Tinbergen Institute.
    484. Gannon, Gerard, 2005. "Simultaneous volatility transmissions and spillover effects: U.S. and Hong Kong stock and futures markets," International Review of Financial Analysis, Elsevier, vol. 14(3), pages 326-336.
    485. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    486. Sucarrat, Genaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    487. George Chacko & Peter Tufano & Geoffrey Verter, 2000. "Cephalon, Inc. Taking Risk Management Theory Seriously," NBER Working Papers 7748, National Bureau of Economic Research, Inc.
    488. Mora Galán, Alberto & Pérez, Ana, 2004. "Stochastic volatility models and the Taylor effect," DES - Working Papers. Statistics and Econometrics. WS ws046315, Universidad Carlos III de Madrid. Departamento de Estadística.
    489. Alva, Kenedy, 2009. "Modelling intra-daily volatility by functional data analysis: an empirical application to the spanish stock market," DES - Working Papers. Statistics and Econometrics. WS ws092809, Universidad Carlos III de Madrid. Departamento de Estadística.
    490. Fabio Busetti & Silvestro di Sanzo, 2011. "Bootstrap LR tests of stationarity, common trends and cointegration," Temi di discussione (Economic working papers) 799, Bank of Italy, Economic Research and International Relations Area.
    491. Jin-Yu Zhang & Zhong-Tian Chen & Yong Li, 2019. "Bayesian Testing for Leverage Effect in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1153-1164, March.
    492. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2007. "How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(5‐6), pages 1002-1024, June.
    493. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    494. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    495. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    496. Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
    497. Shanker, Latha, 2017. "New indices of adequate and excess speculation and their relationship with volatility in the crude oil futures market," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 18-35.
    498. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    499. Moura, Guilherme V. & Santos, André A.P. & Ruiz, Esther, 2020. "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 118(C).
    500. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    501. Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "Roughness in spot variance? A GMM approach for estimation of fractional log-normal stochastic volatility models using realized measures," CREATES Research Papers 2020-12, Department of Economics and Business Economics, Aarhus University.
    502. Perry Sadorsky, 2005. "Stochastic volatility forecasting and risk management," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 121-135.
    503. Engle, Robert, 2001. "Financial econometrics - A new discipline with new methods," Journal of Econometrics, Elsevier, vol. 100(1), pages 53-56, January.
    504. Yun, Jaeho, 2011. "The role of time-varying jump risk premia in pricing stock index options," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 833-846.
    505. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.
    506. Gordon V. Chavez, 2019. "Dynamic tail inference with log-Laplace volatility," Papers 1901.02419, arXiv.org, revised Jul 2019.

  48. Shephard, Neil, 1993. "Fitting Nonlinear Time-Series Models with Applications to Stochastic Variance Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 135-152, Suppl. De.

    Cited by:

    1. Jiang, George J., 1998. "Jump-diffusion model of exchange rate dynamics : estimation via indirect inference," Research Report 98A40, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    3. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
    4. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. König, Heinz & Lechner, Michael, 1994. "Some recent developments in microeconometrics: A survey," ZEW Discussion Papers 94-12, ZEW - Leibniz Centre for European Economic Research.
    6. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    7. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    8. Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
    9. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3386-3404, August.
    10. Neil Shephard & Gabriele Fiorentini & Enrique Sentana, 2003. "Likelihood-based estimation of latent generalised ARCH structures," FMG Discussion Papers dp453, Financial Markets Group.
    11. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    12. Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.
    13. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    14. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    15. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    16. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    17. Wright, Jonathan H, 1999. "Testing for a Unit Root in the Volatility of Asset Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 309-318, May-June.
    18. S. Avouyi-Dovi & G. Horny & P. Sevestre, 2015. "The stability of short-term interest rates pass-through in the euro area during the financial market and sovereign debt crises," Working papers 547, Banque de France.
    19. Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
    20. Márcio Laurini, 2012. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," IBMEC RJ Economics Discussion Papers 2012-02, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    21. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    22. Będowska-Sójka, Barbara & Kliber, Agata, 2022. "Can cryptocurrencies hedge oil price fluctuations? A pandemic perspective," Energy Economics, Elsevier, vol. 115(C).
    23. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    24. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    25. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.
    26. Joel Hasbrouck, 1998. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-076, New York University, Leonard N. Stern School of Business-.
    27. Tims, B. & Mahieu, R.J., 2003. "A Range-Based Multivariate Model for Exchange Rate Volatility," ERIM Report Series Research in Management ERS-2003-022-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    28. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    29. Lee, Lung-fei, 1999. "Estimation of dynamic and ARCH Tobit models," Journal of Econometrics, Elsevier, vol. 92(2), pages 355-390, October.
    30. Kliber, Agata & Będowska-Sójka, Barbara, 2024. "Proof-of-work versus proof-of-stake coins as possible hedges against green and dirty energy," Energy Economics, Elsevier, vol. 138(C).
    31. Lee, Lung-Fei, 1997. "Simulation estimation of dynamic switching regression and dynamic disequilibrium models -- some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 78(2), pages 179-184, June.

  49. Shephard, Neil, 1993. "Distribution of the ML Estimator of an MA(1) and a local level model," Econometric Theory, Cambridge University Press, vol. 9(3), pages 377-401, June.

    Cited by:

    1. Vougas, Dimitrios V., 2008. "New exact ML estimation and inference for a Gaussian MA(1) process," Economics Letters, Elsevier, vol. 99(1), pages 172-176, April.
    2. Gary Koop & Herman K. van Dijk & Henk Hoek, 1997. "Testing for Integration using Evolving Trend and Seasonals Models: A Bayesian Approach," Tinbergen Institute Discussion Papers 97-078/4, Tinbergen Institute.
    3. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Dordonnat, Virginie & Koopman, Siem Jan & Ooms, Marius, 2012. "Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3134-3152.
    5. James H. Stock & Mark W. Watson, 1996. "Asymptotically Median Unbiased Estimation of Coefficient Variance in a Time Varying Parameter Model," NBER Technical Working Papers 0201, National Bureau of Economic Research, Inc.
    6. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    7. Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
    8. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," OFRC Working Papers Series 2004fe20, Oxford Financial Research Centre.

  50. Shephard, N.G., 1991. "From Characteristic Function to Distribution Function: A Simple Framework for the Theory," Econometric Theory, Cambridge University Press, vol. 7(4), pages 519-529, December.

    Cited by:

    1. Xiaolin Luo & Pavel V. Shevchenko, 2009. "Computing Tails of Compound Distributions Using Direct Numerical Integration," Papers 0904.0830, arXiv.org, revised Feb 2010.
    2. Matieyendou Lamboni, 2023. "On Exact Distribution for Multivariate Weighted Distributions and Classification," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    3. Olkhov, Victor, 2021. "Three Remarks On Asset Pricing," MPRA Paper 109238, University Library of Munich, Germany.
    4. Wei W. Simi & Xiaoli Wang, 2013. "Time‐changed Lévy jump processes with GARCH model on reverse convertibles," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 206-212, November.
    5. Olkhov, Victor, 2023. "The Market-Based Probability of Stock Returns," MPRA Paper 116234, University Library of Munich, Germany.
    6. Victor Olkhov, 2022. "Price and Payoff Autocorrelations in a Multi-Period Consumption-Based Asset Pricing Model," Papers 2204.07506, arXiv.org, revised Mar 2024.
    7. Victor Olkhov, 2022. "Market-Based Price Autocorrelation," Papers 2202.09323, arXiv.org, revised Feb 2024.
    8. Peter Reinhard Hansen & Chen Tong, 2024. "Convolution-t Distributions," Papers 2404.00864, arXiv.org.
    9. Zhylyevskyy, Oleksandr, 2009. "A Fast Fourier Transform Technique for Pricing American Options Under Stochastic Volatility," Staff General Research Papers Archive 13112, Iowa State University, Department of Economics.
    10. Simi, Wei W. & Wang, Xiaoli, 2013. "Time-changed Lévy jump processes with GARCH model on reverse convertibles," Review of Financial Economics, Elsevier, vol. 22(4), pages 206-212.
    11. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.
    12. Victor Olkhov, 2024. "Expressions of Market-Based Correlations Between Prices and Returns of Two Assets," Papers 2412.13172, arXiv.org.
    13. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    14. Olkhov, Victor, 2022. "The Market-Based Asset Price Probability," MPRA Paper 115382, University Library of Munich, Germany, revised 16 Nov 2022.
    15. Zhylyevskyy, Oleksandr, 2012. "Joint Characteristic Function of Stock Log-Price and Squared Volatility in the Bates Model and Its Asset Pricing Applications," Staff General Research Papers Archive 35559, Iowa State University, Department of Economics.
    16. Carl Chiarella & Susanne Griebsch & Boda Kang, 2013. "Investigating Time-Efficient Methods to Price Compound Options in the Heston Model," Research Paper Series 328, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Simon A. Broda & Raymond Kan, 2013. "On Distributions of Ratios," UvA-Econometrics Working Papers 13-10, Universiteit van Amsterdam, Dept. of Econometrics.
    18. Griebsch, Susanne & Wystup, Uwe, 2008. "On the valuation of fader and discrete barrier options in Heston's Stochastic Volatility Model," CPQF Working Paper Series 17, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
    19. Olkhov, Victor, 2023. "The Market-Based Statistics of “Actual” Returns of Investors," MPRA Paper 116896, University Library of Munich, Germany.
    20. Trimborn, Simon & Härdle, Wolfgang Karl, 2016. "CRIX or evaluating blockchain based currencies," SFB 649 Discussion Papers 2016-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. Victor Olkhov, 2023. "Economic Complexity Limits Accuracy of Price Probability Predictions by Gaussian Distributions," Papers 2309.02447, arXiv.org, revised Apr 2024.
    22. Olkhov, Victor, 2021. "Theoretical Economics and the Second-Order Economic Theory. What is it?," MPRA Paper 110893, University Library of Munich, Germany.
    23. Naman Krishna Pande & Puneet Pasricha & Arun Kumar & Arvind Kumar Gupta, 2024. "European Option Pricing in Regime Switching Framework via Physics-Informed Residual Learning," Papers 2410.10474, arXiv.org.
    24. Todorov, Viktor, 2022. "Nonparametric jump variation measures from options," Journal of Econometrics, Elsevier, vol. 230(2), pages 255-280.
    25. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    26. Forrester, Peter J., 2024. "On the gamma difference distribution," Statistics & Probability Letters, Elsevier, vol. 211(C).
    27. Olkhov, Victor, 2022. "Introduction of the Market-Based Price Autocorrelation," MPRA Paper 112003, University Library of Munich, Germany.
    28. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2020. "A Put-Call Transformation of the Exchange Option Problem under Stochastic Volatility and Jump Diffusion Dynamics," Papers 2002.10194, arXiv.org.
    29. Zhang, Le & Schmidt, Wolfgang M., 2016. "An approximation of small-time probability density functions in a general jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 741-758.
    30. Carl Chiarella & Jonathan Ziveyi, 2011. "Two Stochastic Volatility Processes - American Option Pricing," Research Paper Series 292, Quantitative Finance Research Centre, University of Technology, Sydney.
    31. Thomas Adolfsson & Carl Chiarella & Andrew Ziogas & Jonathan Ziveyi, 2013. "Representation and Numerical Approximation of American Option Prices under Heston Stochastic Volatility Dynamics," Research Paper Series 327, Quantitative Finance Research Centre, University of Technology, Sydney.
    32. Nati Twito & Moshe Idan & Jason L. Speyer, 2021. "Maximum Conditional Probability Stochastic Controller for Linear Systems with Additive Cauchy Noises," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 393-414, December.
    33. Olkhov, Victor, 2022. "Price and Payoff Autocorrelations in the Consumption-Based Asset Pricing Model," MPRA Paper 112255, University Library of Munich, Germany.
    34. Mijanović, Andjela & Popović, Božidar V. & Witkovský, Viktor, 2023. "A numerical inversion of the bivariate characteristic function," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    35. Zhiwei Su & Xingchun Wang, 2019. "Pricing executive stock options with averaging features under the Heston–Nandi GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1056-1084, September.
    36. Reza Aghazadeh Ayoubi & Umberto Spagnolini, 2022. "Performance of Dense Wireless Networks in 5G and beyond Using Stochastic Geometry," Mathematics, MDPI, vol. 10(7), pages 1-30, April.
    37. Susanne Griebsch, 2013. "The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques," Review of Derivatives Research, Springer, vol. 16(2), pages 135-165, July.
    38. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
    39. Ziming Dong & Dan Tang & Xingchun Wang, 2023. "Pricing vulnerable basket spread options with liquidity risk," Review of Derivatives Research, Springer, vol. 26(1), pages 23-50, April.
    40. Wang, Xingchun, 2022. "Pricing vulnerable options with stochastic liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    41. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    42. Yin Shu & Qianmei Feng & David W. Coit, 2015. "Life distribution analysis based on Lévy subordinators for degradation with random jumps," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 483-492, September.
    43. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.

  51. N. G. Shephard & A. C. Harvey, 1990. "On The Probability Of Estimating A Deterministic Component In The Local Level Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 339-347, July.

    Cited by:

    1. Fabrice Collard & Sujoy Mukerji & Kevin Sheppard & Jean-Marc Tallon, 2018. "Ambiguity and the historical equity premium," Post-Print halshs-01886571, HAL.
    2. Tae‐Hwan Kim & Stephan Pfaffenzeller & Tony Rayner & Paul Newbold, 2003. "Testing for Linear Trend with Application to Relative Primary Commodity Prices," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(5), pages 539-551, September.
    3. Gourieroux, Christian & Jasiak, Joann, 2010. "Inference for Noisy Long Run Component Process," MPRA Paper 98987, University Library of Munich, Germany.
    4. Ravi Bansal & Amir Yaron, 2000. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," NBER Working Papers 8059, National Bureau of Economic Research, Inc.
    5. Guido Bulligan & Lorenzo Burlon & Davide Delle Monache & Andrea Silvestrini, 2017. "Real and financial cycles: estimates using unobserved component models for the Italian economy," Questioni di Economia e Finanza (Occasional Papers) 382, Bank of Italy, Economic Research and International Relations Area.
    6. Nasir, Muhammad Ali, 2021. "Zero Lower Bound and negative interest rates: Choices for monetary policy in the UK," Journal of Policy Modeling, Elsevier, vol. 43(1), pages 200-229.
    7. Agbeyegbe, Terence D., 2020. "Bayesian analysis of output gap in Barbados," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    8. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2009. "Survey Data as Coicident or Leading Indicators," Economics Working Papers ECO2009/19, European University Institute.
    9. Marczak, Martyna & Proietti, Tommaso, 2015. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113137, Verein für Socialpolitik / German Economic Association.
    10. Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
    11. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2022. "An Alternative Estimation Method for Time-Varying Parameter Models," Econometrics, MDPI, vol. 10(2), pages 1-27, April.
    12. Grammig, Joachim & Küchlin, Eva-Maria, 2017. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," CFR Working Papers 17-01, University of Cologne, Centre for Financial Research (CFR).
    13. Lars Lochstoer & Harjoat S. Bhamra, 2009. "Return Predictability and Labor Market Frictions in a Real Business Cycle Model," 2009 Meeting Papers 1257, Society for Economic Dynamics.
    14. George M. Constantinides & Anisha Ghosh, 2008. "Asset Pricing Tests with Long Run Risks in Consumption Growth," NBER Working Papers 14543, National Bureau of Economic Research, Inc.
    15. Robert B. Barsky & J. Bradford De Long, 1992. "Why Does the Stock Market Fluctuate?," NBER Working Papers 3995, National Bureau of Economic Research, Inc.
    16. Buncic, Daniel, 2024. "Econometric issues in the estimation of the natural rate of interest," Economic Modelling, Elsevier, vol. 132(C).
    17. Satchell, Steve & Timmermann, Allan, 1995. "On the optimality of adaptive expectations: Muth revisited," International Journal of Forecasting, Elsevier, vol. 11(3), pages 407-416, September.
    18. Tommaso Proietti, 2004. "Temporal Disaggregation by State Space Methods: Dynamic Regression Methods Revisited," Econometrics 0411011, University Library of Munich, Germany.
    19. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.
    20. Fabio Trojani & Markus Leippold & Paolo Vanini, 2005. "Learning and Asset Prices under Ambiguous Information," University of St. Gallen Department of Economics working paper series 2005 2005-03, Department of Economics, University of St. Gallen.
    21. Kellard, Neil & Wohar, Mark E., 2006. "On the prevalence of trends in primary commodity prices," Journal of Development Economics, Elsevier, vol. 79(1), pages 146-167, February.
    22. Georg Kaltenbrunner & Lars Lochstoer, 2007. "Long-Run Risk through Consumption Smoothing," 2007 Meeting Papers 25, Society for Economic Dynamics.
    23. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2010. "Explaining asset pricing puzzles associated with the 1987 market crash," Working Paper Series WP-2010-10, Federal Reserve Bank of Chicago.
    24. Marc K. Francke & Siem Jan Koopman & Aart F. De Vos, 2010. "Likelihood functions for state space models with diffuse initial conditions," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 407-414, November.
    25. Cecilia Frale, "undated". "Do Surveys Help in Macroeconomic Variables Disaggregation and Estimation?," Working Papers wp2008-2, Department of the Treasury, Ministry of the Economy and of Finance.
    26. Newbold, Paul & Leybourne, Stephen & Wohar, Mark E., 2001. "Trend-stationarity, difference-stationarity, or neither: further diagnostic tests with an application to U.S. Real GNP, 1875-1993," Journal of Economics and Business, Elsevier, vol. 53(1), pages 85-102.
    27. Daniel Buncic, 2020. "Econometric issues with Laubach and Williams' estimates of the natural rate of interest," Papers 2002.11583, arXiv.org, revised Aug 2020.
    28. Kim, Chang-Jin & Kim, Jaeho, 2013. "The `Pile-up Problem' in Trend-Cycle Decomposition of Real GDP: Classical and Bayesian Perspectives," MPRA Paper 51118, University Library of Munich, Germany.
    29. Grammig, Joachim & Küchlin, Eva-Maria, 2018. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," Journal of Econometrics, Elsevier, vol. 205(1), pages 6-33.
    30. Kellard, Neil & Mark E Wohar, 2003. "Trends and Persistence in Primary Commodity Prices," Royal Economic Society Annual Conference 2003 118, Royal Economic Society.
    31. James H. Stock & Mark W. Watson, 1996. "Asymptotically Median Unbiased Estimation of Coefficient Variance in a Time Varying Parameter Model," NBER Technical Working Papers 0201, National Bureau of Economic Research, Inc.
    32. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    33. Sevan Gulesserian & Mohitosh Kejriwal, 2014. "On the power of bootstrap tests for stationarity: a Monte Carlo comparison," Empirical Economics, Springer, vol. 46(3), pages 973-998, May.
    34. Yang, Wei, 2011. "Long-run risk in durable consumption," Journal of Financial Economics, Elsevier, vol. 102(1), pages 45-61, October.
    35. Hsu, Po-Hsuan, 2009. "Technological innovations and aggregate risk premiums," Journal of Financial Economics, Elsevier, vol. 94(2), pages 264-279, November.
    36. Han, Yang & Liu, Zehao & Ma, Jun, 2020. "Growth cycles and business cycles of the Chinese economy through the lens of the unobserved components model," China Economic Review, Elsevier, vol. 63(C).
    37. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    38. Banerjee, A. & Malik, S., 2012. "The changing role of expectations in US monetary policy: A new look using the Livingston Survey," Working papers 376, Banque de France.
    39. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2017. "An Alternative Estimation Method of a Time-Varying Parameter Model," Papers 1707.06837, arXiv.org, revised Dec 2017.
    40. Massimiliano De Santis, 2005. "Interpreting Aggregate Stock Market Behavior: How Far Can the Standard Model Go?," Money Macro and Finance (MMF) Research Group Conference 2005 5, Money Macro and Finance Research Group.
    41. De Santis Massimiliano, 2010. "Demystifying the Equity Premium," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-33, May.
    42. Caterina Schiavoni & Siem Jan Koopman & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "Time-varying state correlations in state space models and their estimation via indirect inference," Tinbergen Institute Discussion Papers 21-020/III, Tinbergen Institute.
    43. Grammig, Joachim & Küchlin, Eva-Maria, 2017. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," CFS Working Paper Series 572, Center for Financial Studies (CFS).
    44. Sanjoy Sinha & Abdus Sattar, 2015. "Inference in semi-parametric spline mixed models for longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 377-395, December.

Books

  1. Koopman, Siem Jan & Shephard, Neil (ed.), 2015. "Unobserved Components and Time Series Econometrics," OUP Catalogue, Oxford University Press, number 9780199683666.

    Cited by:

    1. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
    2. Elmar Mertens & James M. Nason, 2018. "Inflation and professional forecast dynamics: an evaluation of stickiness, persistence, and volatility," BIS Working Papers 713, Bank for International Settlements.
    3. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    4. Juan R. Hernández, 2024. "Covered interest parity: a forecasting approach to estimate the neutral band," BIS Working Papers 1206, Bank for International Settlements.
    5. Saeed Zaman, 2021. "A Unified Framework to Estimate Macroeconomic Stars," Working Papers 21-23R2, Federal Reserve Bank of Cleveland, revised 31 May 2024.
    6. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    7. Yunjong Eo & Luis Uzeda & Benjamin Wong, 2022. "Understanding trend inflation through the lens of the goods and services sectors," CAMA Working Papers 2022-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Łukasz Lenart & Mateusz Pipień, 2017. "Non-Parametric Test for the Existence of the Common Deterministic Cycle: The Case of the Selected European Countries," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 201-241, September.
    9. Łukasz Lenart, 2018. "Bayesian inference for deterministic cycle with time-varying amplitude: the case of growth cycle in European countries," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(3), pages 233-262, September.

  2. Castle, Jennifer & Shephard, Neil (ed.), 2009. "The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry," OUP Catalogue, Oxford University Press, number 9780199237197.

    Cited by:

    1. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    2. Josh R. Stillwagon, 2014. "Non-Linear Exchange Rate Relationships: An Automated Model Selection Approach with Indicator Saturation," Working Papers 1405, Trinity College, Department of Economics.
    3. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
    4. Laurent Callot & Johannes Tang Kristensen, 2016. "Regularized Estimation of Structural Instability in Factor Models: The US Macroeconomy and the Great Moderation," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 437-479, Emerald Group Publishing Limited.
    5. Olivier Darne & Amelie Charles, 2020. "Nowcasting GDP growth using data reduction methods: Evidence for the French economy," Economics Bulletin, AccessEcon, vol. 40(3), pages 2431-2439.
    6. Marçal, Emerson Fernandes & Zimmermann, Beatrice & de Prince, Diogo & Merlin, Giovanni, 2018. "Assessing interdependence among countries' fundamentals and its implications for exchange rate misalignment estimates: An empirical exercise based on GVAR," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 72(4), December.
    7. Carlomagno, Guillermo, 2014. "The pairwise approach to model a large set of disaggregates with common trends," DES - Working Papers. Statistics and Econometrics. WS ws141309, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Josh Ryan-Collins, 2015. "Is Monetary Financing Inflationary? A Case Study of the Canadian Economy, 1935-75," Economics Working Paper Archive wp_848, Levy Economics Institute.
    9. Nektarios Aslanidis & Luke Hartigan, 2016. "Is the Assumption of Linearity in Factor Models too Strong in Practice?," Discussion Papers 2016-03, School of Economics, The University of New South Wales.
    10. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damages," Working Papers 2020-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    11. David Zimmer, 2015. "Asymmetric dependence in house prices: evidence from USA and international data," Empirical Economics, Springer, vol. 49(1), pages 161-183, August.
    12. Hendry David F & Mizon Grayham E, 2011. "Econometric Modelling of Time Series with Outlying Observations," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-26, February.
    13. Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
    14. Ramos Francia Manuel & Noriega Antonio E. & Rodríguez-Pérez Cid Alonso, 2015. "The Use of Monetary Aggregates as Indicators of the Future Evolution of Consumer Prices: Monetary Growth and Inflation Target," Working Papers 2015-14, Banco de México.
    15. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    16. Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.
    17. Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009," CREATES Research Papers 2011-28, Department of Economics and Business Economics, Aarhus University.
    18. Rita Duarte, 2009. "The dynamic effects of shocks to wages and prices in the United States and the Euro Area," Working Papers w200915, Banco de Portugal, Economics and Research Department.
    19. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    20. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
    21. Baiardi, Donatella & Morana, Claudio, 2021. "Climate change awareness: Empirical evidence for the European Union," Energy Economics, Elsevier, vol. 96(C).
    22. Hartigan, Luke & Morley, James, 2019. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," Working Papers 2019-10, University of Sydney, School of Economics, revised Nov 2019.
    23. Marczak, Martyna & Proietti, Tommaso, 2015. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113137, Verein für Socialpolitik / German Economic Association.
    24. Ahumada, H. & Cornejo, M., 2016. "Forecasting food prices: The case of corn, soybeans and wheat," International Journal of Forecasting, Elsevier, vol. 32(3), pages 838-848.
    25. Adam Gersl & Petr Jakubik & Tomas Konecny & Jakub Seidler, 2013. "Dynamic Stress Testing: The Framework for Assessing the Resilience of the Banking Sector Used by the Czech National Bank," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(6), pages 505-536, December.
    26. Marcin Błażejowski & Paweł Kufel & Jacek Kwiatkowski, 2020. "Model simplification and variable selection: A replication of the UK inflation model by Hendry (2001)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 645-652, August.
    27. Bates, Brandon J. & Plagborg-Møller, Mikkel & Stock, James H. & Watson, Mark W., 2013. "Consistent Factor Estimation in Dynamic Factor Models with Structural Instability," Scholarly Articles 28469786, Harvard University Department of Economics.
    28. Søren Johansen & Bent Nielsen, 2011. "Asymptotic theory for iterated one-step Huber-skip estimators," Discussion Papers 11-29, University of Copenhagen. Department of Economics.
    29. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "The analysis of marked and weighted empirical processes of estimated residuals," CREATES Research Papers 2019-06, Department of Economics and Business Economics, Aarhus University.
    30. Tom Kornstad & Ragnar Nymoen & Terje Skjerpen, 2012. "Macroeconomic shocks and the probability of being employed," Discussion Papers 675, Statistics Norway, Research Department.
    31. Michael P. Clements, 2014. "Forecast Uncertainty- Ex Ante and Ex Post : U.S. Inflation and Output Growth," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 206-216, April.
    32. Cunha, Ronan & Pereira, Pedro L. Valls, 2015. "Automatic model selection for forecasting Brazilian stock returns," Textos para discussão 398, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    33. Kevin S. Nell, 2018. "Conditional Divergence in the Post-1989 Globalisation Period," CEF.UP Working Papers 1806, Universidade do Porto, Faculdade de Economia do Porto.
    34. Hildegart Ahumada & Magdalena Cornejo, 2015. "Explaining commodity prices by a cointegrated time series-cross section model," Empirical Economics, Springer, vol. 48(4), pages 1667-1690, June.
    35. Bystrov, Victor & di Salvatore, Antonietta, 2012. "Martingale approximation for common factor representation," MPRA Paper 37669, University Library of Munich, Germany.
    36. Søren Johansen & Bent Nielsen, 2014. "Outlier detection algorithms for least squares time series regression," CREATES Research Papers 2014-39, Department of Economics and Business Economics, Aarhus University.
    37. Durevall, Dick & Loening, Josef L. & Birru, Yohannes A., 2010. "Inflation Dynamics and Food Prices in Ethiopia," Working Papers in Economics 478, University of Gothenburg, Department of Economics, revised 03 Jun 2013.
    38. Carlomagno, Guillermo, 2015. "Forecasting a large set of disaggregates with common trends and outliers," DES - Working Papers. Statistics and Econometrics. WS ws1518, Universidad Carlos III de Madrid. Departamento de Estadística.
    39. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    40. Janine Aron & John Muellbauer & Rachel Sebudde, 2015. "Inflation forecasting models for Uganda: is mobile money relevant?," CSAE Working Paper Series 2015-17, Centre for the Study of African Economies, University of Oxford.
    41. Hoerova, Marie & Bekaert, Geert, 2014. "The VIX, the variance premium and stock market volatility," Working Paper Series 1675, European Central Bank.
    42. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    43. Adam Gersl & Petr Jakubik & Tomas Konecny & Jakub Seidler, 2012. "Dynamic Stress Testing: The Framework for Testing Banking Sector Resilience Used by the Czech National Bank," Working Papers 2012/11, Czech National Bank.
    44. Lukasz Gatarek & Søren Johansen, 2014. "Optimal hedging with the cointegrated vector autoregressive model," Discussion Papers 14-22, University of Copenhagen. Department of Economics.
    45. Frydman, Roman & Stillwagon, Joshua R., 2018. "Fundamental factors and extrapolation in stock-market expectations: The central role of structural change," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 189-198.
    46. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    47. Nauro F Campos & Corrado Macchiarelli, 2020. "The United Kingdom and the stability of the Euro area: From Maastricht to Brexit," The World Economy, Wiley Blackwell, vol. 43(7), pages 1792-1808, July.
    48. Frédérique Bec & Matteo Mogliani, 2013. "Nowcasting French GDP in Real-Time from Survey Opinions : Information or Forecast Combinations ?," Working Papers 2013-21, Center for Research in Economics and Statistics.
    49. Søren Johansen & Bent Nielsen, 2013. "Asymptotic analysis of the Forward Search," CREATES Research Papers 2013-05, Department of Economics and Business Economics, Aarhus University.
    50. Ahumada, Hildegart & Cavallo, Eduardo A. & Espina-Mairal, Santos & Navajas, Fernando, 2021. "Sectoral Productivity Growth, COVID-19 Shocks, and Infrastructure," IDB Publications (Working Papers) 11404, Inter-American Development Bank.
    51. Riccardo Borghi & Eric Hillebrand & Jakob Mikkelsen & Giovanni Urga, 2018. "The dynamics of factor loadings in the cross-section of returns," CREATES Research Papers 2018-38, Department of Economics and Business Economics, Aarhus University.
    52. Lu, Xun & White, Halbert, 2014. "Robustness checks and robustness tests in applied economics," Journal of Econometrics, Elsevier, vol. 178(P1), pages 194-206.
    53. Johannes Tang Kristensen, 2012. "Factor-Based Forecasting in the Presence of Outliers: Are Factors Better Selected and Estimated by the Median than by The Mean?," CREATES Research Papers 2012-28, Department of Economics and Business Economics, Aarhus University.
    54. David H. Bernstein & Andrew B. Martinez, 2021. "Jointly Modeling Male and Female Labor Participation and Unemployment," Working Papers 2021-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    55. Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
    56. Josh R. Stillwagon, 2015. "TIPS and the VIX: Non-linear Spillovers from Financial Panic to Breakeven Inflation," Working Papers 1502, Trinity College, Department of Economics.
    57. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
    58. Luke Hartigan, 2015. "Changes in the Factor Structure of the U.S. Economy: Permanent Breaks or Business Cycle Regimes?," Discussion Papers 2015-17, School of Economics, The University of New South Wales.
    59. Jan Morten Dyrstad, 2015. "Resource curse avoidance: Governmental intervention and wage formation in the Norwegian petroleum sector," Working Paper Series 16715, Department of Economics, Norwegian University of Science and Technology.
    60. James Reade, 2014. "Detecting corruption in football," Chapters, in: John Goddard & Peter Sloane (ed.), Handbook on the Economics of Professional Football, chapter 25, pages 419-446, Edward Elgar Publishing.
    61. Reinhold Heinlein & Hans-Martin Krolzig, 2011. "Effects of monetary policy on the $/£ exchange rate. Is there a 'delayed overshooting puzzle'?," Studies in Economics 1124, School of Economics, University of Kent.
    62. Jin Xisong & Lehnert Thorsten, 2018. "Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 19-46, February.
    63. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    64. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    65. Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
    66. Jurgen A. Doornik & Jennifer L. Castle & David F. Hendry, 2021. "Modeling and forecasting the COVID‐19 pandemic time‐series data," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2070-2087, September.
    67. Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2020. "A statistical model of the global carbon budget," CREATES Research Papers 2020-18, Department of Economics and Business Economics, Aarhus University.
    68. Roman Frydman & Joshua R. Stillwagon, 2016. "Stock-Market Expectations: Econometric Evidence that both REH and Behavioral Insights Matter," Working Papers Series 44, Institute for New Economic Thinking.
    69. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
    70. Carlomagno, Guillermo, 2016. "Discovering common trends in a large set of disaggregates: statistical procedures and their properties," DES - Working Papers. Statistics and Econometrics. WS ws1519, Universidad Carlos III de Madrid. Departamento de Estadística.
    71. Jinan Liu & Apostolos Serletis, 2022. "World Commodity Prices and Economic Activity in Advanced and Emerging Economies," Open Economies Review, Springer, vol. 33(2), pages 347-374, April.
    72. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Short-term forecasting of the Coronavirus Pandemic - 2020-04-27," Economics Papers 2020-W06, Economics Group, Nuffield College, University of Oxford.
    73. John Goddard & Peter Sloane (ed.), 2014. "Handbook on the Economics of Professional Football," Books, Edward Elgar Publishing, number 14821.
    74. Pavel Řežábek, 2015. "Poptávka po hotovosti v oběhu v České republice v období let 2002-2014 a její změny v průběhu finanční krize [Demand For Cash in Circulation in the Czech Republic In 2002-2014 and Its Changes Durin," Politická ekonomie, Prague University of Economics and Business, vol. 2015(4), pages 436-455.
    75. Noriega Antonio E. & Ramos Francia Manuel & Rodríguez-Pérez Cid Alonso, 2015. "Money Demand Estimations in Mexico and of its Stability 1986-2010, as well as Some Examples of its Uses," Working Papers 2015-13, Banco de México.
    76. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.
    77. Ryan-Collins, Josh & Werner, Richard A. & Castle, Jennifer, 2016. "A half-century diversion of monetary policy? An empirical horse-race to identify the UK variable most likely to deliver the desired nominal GDP growth rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 158-176.

  3. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.

    Cited by:

    1. Li, Junye, 2013. "An unscented Kalman smoother for volatility extraction: Evidence from stock prices and options," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 15-26.
    2. Yong Li & Zhongxin Ni & Jie Zhang, 2011. "An Efficient Stochastic Simulation Algorithm for Bayesian Unit Root Testing in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 37(3), pages 237-248, March.
    3. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    4. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    5. Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
    6. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    7. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    8. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    9. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    10. David Blake & Marco Morales & Hong Li & Anja Waegenaere & Bertrand Melenberg, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 459-475, April.
    11. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Nonparametric Density Estimation for Positive Time Series," Cahiers de recherche 06-09, HEC Montréal, Institut d'économie appliquée.
    12. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    13. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    14. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    16. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    17. Borus Jungbacker & Siem Jan Koopman, 2005. "On Importance Sampling for State Space Models," Tinbergen Institute Discussion Papers 05-117/4, Tinbergen Institute.
    18. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    19. Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Bounds for Time-Varying Parameters of Observation Driven Models," Tinbergen Institute Discussion Papers 15-027/III, Tinbergen Institute, revised 07 Sep 2015.
    20. Irle, Albrecht & Kauschke, Jonas & Lux, Thomas & Milaković, Mishael, 2010. "Switching rates and the asymptotic behavior of herding models," Kiel Working Papers 1595, Kiel Institute for the World Economy (IfW Kiel).
    21. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
    22. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    23. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    24. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    25. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    26. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    27. Daniele Massacci, 2017. "Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and Global Markets Connectedness," Management Science, INFORMS, vol. 63(9), pages 3072-3089, September.
    28. Katz, Yuri A. & Tian, Li, 2013. "q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4989-4996.
    29. Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
    30. Abel Rodriguez & Henryk Gzyl & German Molina & Enrique ter Horst, 2009. "Stochastic Volatility Models Including Open, Close, High and Low Prices," Papers 0901.1315, arXiv.org.
    31. Deniz Erer, 2023. "The Impact of News Related Covid-19 on Exchange Rate Volatility:A New Evidence From Generalized Autoregressive Score Model," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(38), pages 105-126, June.
    32. Jeremy Large, 2007. "Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment," Economics Series Working Papers 340, University of Oxford, Department of Economics.
    33. Ai-ru (Meg) Cheng & Yin-Wong Cheung, 2008. "Return, Trading Volume, and Market Depth in Currency Futures Markets," Working Papers 202008, Hong Kong Institute for Monetary Research.
    34. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    35. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    36. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    37. Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
    38. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    39. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    40. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    41. Zhaosu MENG & Wei WEI & Xiaotong LIU & Kedong YIN, 2018. "The Influence of International Capital Flow on the Effectiveness of Chinese Monetary Policy," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 21-40, December.
    42. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
    43. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    44. Sui, Yuelei & Holan, Scott H. & Yang, Wen-Hsi, 2023. "Bayesian circular lattice filters for computationally efficient estimation of multivariate time-varying autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    45. Yang K. Lu & Pierre Perron, 2008. "Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model," Boston University - Department of Economics - Working Papers Series wp2008-012, Boston University - Department of Economics.
    46. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    47. Nakajima, Jouchi, 2022. "Macroeconomic uncertainty matters: A nonlinear effect of financial volatility on real economic activity," Discussion paper series HIAS-E-121, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    48. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    49. Peter C.B. Phillips & Jun Yu, 2007. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Cowles Foundation Discussion Papers 1597, Cowles Foundation for Research in Economics, Yale University.
    50. Hatcher, Michael, 2011. "Time-varying volatility, precautionary saving and monetary policy," Bank of England working papers 440, Bank of England.
    51. Massacci, Daniele, 2014. "A two-regime threshold model with conditional skewed Student t distributions for stock returns," Economic Modelling, Elsevier, vol. 43(C), pages 9-20.
    52. Xiaodong Du & Cindy L. Yu & Dermot J. Hayes, 2009. "Speculation and Volatility Spillover in the Crude Oil and Agricultural Commodity Markets: A Bayesian Analysis," Center for Agricultural and Rural Development (CARD) Publications 09-wp491, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    53. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    54. Rime, Dagfinn & Sucarrat, Genaro, 2007. "Exchange rate variability, market activity and heterogeneity," UC3M Working papers. Economics we077039, Universidad Carlos III de Madrid. Departamento de Economía.
    55. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    56. Lee, Eunhee & Han, Doo Bong & Ito, Shoichi & Rodolfo M. Nayga, Jr, 2015. "A common factor of stochastic volatilities between oil and commodity prices," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205771, Agricultural and Applied Economics Association.
    57. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.
    58. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    59. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    60. Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
    61. Miguel A. Fuentes & Austin Gerig & Javier Vicente, 2009. "Universal Behavior of Extreme Price Movements in Stock Markets," Papers 0912.5448, arXiv.org.
    62. Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
    63. Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    64. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution Models," CIRJE F-Series CIRJE-F-738, CIRJE, Faculty of Economics, University of Tokyo.
    65. A. J. Lawrance, 2013. "Exploratory graphics for financial time series volatility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 669-686, November.
    66. Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
    67. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    68. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    69. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    70. Igor Ferreira Batista Martins & Hedibert Freitas Lopes, 2023. "Stochastic volatility models with skewness selection," Papers 2312.00282, arXiv.org.
    71. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
    72. Skrobotov Anton & Cavaliere Giuseppe & Taylor Robert, 2016. "Wild Bootstrap Seasonal Unit Root Tests for Time Series with Periodic Non-Stationary Volatility," Working Papers wpaper-2016-269, Gaidar Institute for Economic Policy, revised 2016.
    73. Athanasios Tsagkanos & Konstantinos Gkillas & Christoforos Konstantatos & Christos Floros, 2021. "Does Trading Volume Drive Systemic Banks’ Stock Return Volatility? Lessons from the Greek Banking System," IJFS, MDPI, vol. 9(2), pages 1-13, April.
    74. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    75. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    76. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    77. István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2017. "Joint Bayesian Analysis of Parameters and States in Nonlinear non‐Gaussian State Space Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1003-1026, August.
    78. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    79. Milan Ficura & Jiri Witzany, 2016. "Estimating Stochastic Volatility and Jumps Using High-Frequency Data and Bayesian Methods," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 278-301, August.
    80. Geweke, John F. & Horowitz, Joel L. & Pesaran, M. Hashem, 2006. "Econometrics: A Bird's Eye View," IZA Discussion Papers 2458, Institute of Labor Economics (IZA).
    81. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    82. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    83. Neha Saini & Anil Kumar Mittal, 2019. "On the predictive ability of GARCH and SV models of volatility: An empirical test on the SENSEX index," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(4), pages 1-5.
    84. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    85. Diebold, F.X. & Kilian, L. & Nerlove, Marc, 2006. "Time Series Analysis," Working Papers 28556, University of Maryland, Department of Agricultural and Resource Economics.
    86. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
    87. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    88. Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2011. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 11-057/4, Tinbergen Institute, revised 27 Jan 2012.
    89. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    90. Francesco Calvori & Drew Creal & Siem Jan Koopman & Andre Lucas, 2014. "Testing for Parameter Instability in Competing Modeling Frameworks," Tinbergen Institute Discussion Papers 14-010/IV/DSF71, Tinbergen Institute.
    91. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    92. Yong Li & Jun Yu, 2010. "A New Bayesian Unit Root Test in Stochastic Volatility Models," Working Papers 21-2010, Singapore Management University, School of Economics, revised Oct 2010.
    93. German Rodikov & Nino Antulov-Fantulin, 2023. "Introducing the $\sigma$-Cell: Unifying GARCH, Stochastic Fluctuations and Evolving Mechanisms in RNN-based Volatility Forecasting," Papers 2309.01565, arXiv.org.
    94. Nakajima Jouchi, 2013. "Stochastic volatility model with regime-switching skewness in heavy-tailed errors for exchange rate returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 499-520, December.
    95. Neil Shephard & Thomas Flury, 2009. "Learning and filtering via simulation: smoothly jittered particle filters," Economics Series Working Papers 469, University of Oxford, Department of Economics.
    96. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    97. Moawia Alghalith & Christos Floros & Konstantinos Gkillas, 2020. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility," Risks, MDPI, vol. 8(2), pages 1-15, April.
    98. Julio-Román, Juan Manuel, 2019. "Estimating the Exchange Rate Pass-Through: A Time-Varying Vector Auto-Regression with Residual Stochastic Volatility Approach," Working papers 21, Red Investigadores de Economía.
    99. Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2012. "Return and Volatility Spillovers between Japanese and Chinese Stock Markets FAn Analysis of Overlapping Trading Hours with High-frequency Data," Discussion Papers in Economics and Business 12-01, Osaka University, Graduate School of Economics.
    100. Jihyun Park & Andrey Sarantsev, 2024. "The VIX as Stochastic Volatility for Corporate Bonds," Papers 2410.22498, arXiv.org, revised Jan 2025.
    101. George Tauchen, 2011. "Stochastic Volatility in General Equilibrium," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 707-731.
    102. Milan Fičura, 2017. "Forecasting Stock Market Realized Variance with Echo State Neural Networks," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2017(3), pages 145-155.
    103. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    104. Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.
    105. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    106. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    107. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
    108. Pérez-González, A. & Vilar-Fernández, J.M. & González-Manteiga, W., 2010. "Nonparametric variance function estimation with missing data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1123-1142, May.
    109. Carlo Campajola & Domenico Di Gangi & Fabrizio Lillo & Daniele Tantari, 2020. "Modelling time-varying interactions in complex systems: the Score Driven Kinetic Ising Model," Papers 2007.15545, arXiv.org, revised Aug 2021.
    110. T M Christensen & A. S. Hurn & K A Lindsay, 2008. "Discrete time-series models when counts are unobservable," NCER Working Paper Series 35, National Centre for Econometric Research.
    111. Laurent E. Calvet & Veronika Czellar, 2015. "Accurate Methods for Approximate Bayesian Computation Filtering," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 798-838.
    112. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    113. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.
    114. Matthias Raddant & Friedrich Wagner, 2015. "Transitions in the Stock Markets of the US, UK, and Germany," Papers 1504.06113, arXiv.org.
    115. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    116. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    117. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    118. Yong Li & Jun Yu, 2019. "An Improved Bayesian Unit Root Test in Stochastic Volatility Models," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 103-122, May.
    119. Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Confidence Bands and Out-of-Sample Forecast Bands for Time-Varying Parameters in Observation Driven Models," Tinbergen Institute Discussion Papers 15-083/III, Tinbergen Institute.
    120. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    121. Sujay Mukhoti & Pritam Ranjan, 2016. "Mean-correction and Higher Order Moments for a Stochastic Volatility Model with Correlated Errors," Papers 1605.02418, arXiv.org.
    122. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    123. Tommaso Proietti, 2016. "Component-wise Representations of Long-memory Models and Volatility Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 668-692.
    124. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    125. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    126. Jean Pierre Fernández Prada Saucedo & Gabriel Rodríguez, 2020. "Modeling the Volatility of Returns on Commodities: An Application and Empirical Comparison of GARCH and SV Models," Documentos de Trabajo / Working Papers 2020-484, Departamento de Economía - Pontificia Universidad Católica del Perú.
    127. Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.
    128. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    129. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    130. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
    131. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    132. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    133. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    134. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    135. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
    136. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    137. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    138. Francesco Calvori & Drew Creal & Siem Jan Koopman & André Lucas, 2017. "Testing for Parameter Instability across Different Modeling Frameworks," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 223-246.
    139. Emmanuel Owusu-Sekyere, 2016. "The impact of monetary policy on household consumption in South Africa. Evidence from Vector Autoregressive Techniques," Working Papers 598, Economic Research Southern Africa.
    140. Daisuke Nagakura & Toshiaki Watanabe, 2009. "A State Space Approach to Estimating the Integrated Variance and Microstructure Noise Component," Global COE Hi-Stat Discussion Paper Series gd09-055, Institute of Economic Research, Hitotsubashi University.
    141. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2020. "On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin," Econometrics and Statistics, Elsevier, vol. 16(C), pages 69-90.
    142. Pan, Qi & Li, Yong, 2013. "Testing volatility persistence on Markov switching stochastic volatility models," Economic Modelling, Elsevier, vol. 35(C), pages 45-50.
    143. Chaleyat-Maurel, Mireille & Genon-Catalot, Valentine, 2006. "Computable infinite-dimensional filters with applications to discretized diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1447-1467, October.
    144. Austin Gerig & Javier Vicente & Miguel A. Fuentes, 2009. "Model for Non-Gaussian Intraday Stock Returns," Papers 0906.3841, arXiv.org, revised Dec 2009.
    145. Hardiyanto, A.V., 2007. "Daily Rp/USD stochastic volatility and the policy implication lesson," Journal of Asian Economics, Elsevier, vol. 18(1), pages 237-256, February.
    146. Zhongjun Qu & Pierre Perron, 2008. "A Stochastic Volatility Model with Random Level Shifts: Theory and Applications to S&P 500 and NASDAQ Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-007, Boston University - Department of Economics.
    147. B. Jungbacker & S.J. Koopman, 2005. "Model-based Measurement of Actual Volatility in High-Frequency Data," Tinbergen Institute Discussion Papers 05-002/4, Tinbergen Institute.
    148. Cook, Steven, 2008. "Joint maximum likelihood estimation of unit root testing equations and GARCH processes: Some finite-sample issues," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 109-116.
    149. Michael Grabchak & Eliana Christou, 2021. "A note on calculating expected shortfall for discrete time stochastic volatility models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-16, December.
    150. Patrick Leung & Catherine S. Forbes & Gael M. Martin & Brendan McCabe, 2016. "Data-driven particle Filters for particle Markov Chain Monte Carlo," Monash Econometrics and Business Statistics Working Papers 17/16, Monash University, Department of Econometrics and Business Statistics.
    151. Katz, Y.A. & Tian, L., 2014. "Superstatistical fluctuations in time series of leverage returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 326-331.
    152. Suk Kim, Myung & Wang, Suojin, 2006. "On the applicability of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2210-2217, December.
    153. Milan Fičura & Jiří Witzany, 2018. "Use of Adapted Particle Filters in SVJD Models," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2018(3), pages 5-20.
    154. Dorra Zouari & Achraf Ghorbel & Sonia Ghorbel-Zouari & Younes Boujelbène, 2014. "Volatility spillovers and dynamic correlation between liquidity risk factors in Tunisian banks," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 6(1), pages 1-26.
    155. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    156. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    157. Li, Yong & Chong, Terence Tai-Leung & Zhang, Jie, 2012. "Testing for a unit root in the presence of stochastic volatility and leverage effect," Economic Modelling, Elsevier, vol. 29(5), pages 2035-2038.
    158. Genon-Catalot, Valentine & Laredo, Catherine, 2006. "Leroux's method for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 222-243, February.
    159. Ibrahim A. ONOUR & Bruno S. SERGI, 2011. "Modeling and forecasting volatility in global food commodity prices," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 57(3), pages 132-139.
    160. Sohei Kaihatsu & Jouchi Nakajima, 2015. "Has Trend Inflation Shifted?: An Empirical Analysis with a Regime-Switching Model," Bank of Japan Working Paper Series 15-E-3, Bank of Japan.
    161. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    162. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    163. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    164. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    165. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    166. Juan Manuel Julio-Román & Fredy Gamboa-Estrada, 2019. "The Exchange Rate and Oil Prices in Colombia: A High Frequency Analysis," Borradores de Economia 1091, Banco de la Republica de Colombia.
    167. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    168. Wentao Li & Rong Chen & Zhiqiang Tan, 2016. "Efficient Sequential Monte Carlo With Multiple Proposals and Control Variates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 298-313, March.
    169. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations," Stan Hurn Discussion Papers 2006, School of Economics and Finance, Queensland University of Technology.
    170. Rozina Shaheen, 2019. "Impact of Fiscal Policy on Consumption and Labor Supply under a Time-Varying Structural VAR Model," Economies, MDPI, vol. 7(2), pages 1-15, June.
    171. Kevin Kotze & Stan Du Plessis, 2012. "Trends and Structural Changes in South African Macroeconomic Volatility," Working Papers 297, Economic Research Southern Africa.
    172. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    173. David Ardia & Kris Boudt & Leopoldo Catania, 2016. "Generalized Autoregressive Score Models in R: The GAS Package," Papers 1609.02354, arXiv.org.
    174. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    175. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    176. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    177. Athambawa Jahfer & Abdul Hameed Mulafara, 2016. "Dividend policy and share price volatility: evidence from Colombo stock market," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 8(2), pages 97-108.
    178. Ysusi Carla, 2006. "Estimating Integrated Volatility Using Absolute High-Frequency Returns," Working Papers 2006-13, Banco de México.
    179. Fernández, Begoña & Muriel, Nelson, 2009. "Regular variation and related results for the multivariate GARCH(p,q) model with constant conditional correlations," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1538-1550, August.
    180. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    181. Nagaratnam Jeyasreedharan & David E Allen & Joey Wenling Yang, 2014. "Yet Another Acd Model: The Autoregressive Conditional Directional Duration (Acdd) Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-20.
    182. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    183. Comte, F. & Lacour, C. & Rozenholc, Y., 2010. "Adaptive estimation of the dynamics of a discrete time stochastic volatility model," Journal of Econometrics, Elsevier, vol. 154(1), pages 59-73, January.
    184. F. Wagner & M. Milaković & S. Alfarano, 2010. "What distinguishes individual stocks from the index?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 23-28, January.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.