Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2013.01.003
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009," CREATES Research Papers 2011-28, Department of Economics and Business Economics, Aarhus University.
References listed on IDEAS
- Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
- Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005.
"Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination,"
International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
- Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros, 2004. "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination," Textos para discussão 485, Department of Economics PUC-Rio (Brazil).
- Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 09 Nov 2004.
- Krolzig, Hans-Martin & Hendry, David F., 2001.
"Computer automation of general-to-specific model selection procedures,"
Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
- Hans-Martin Krolzig & David Hendry, 1999. "Computer Automation of General-to-Specific Model Selection Procedures," Computing in Economics and Finance 1999 314, Society for Computational Economics.
- David Hendry & Hans-Martin Krolzig, 2000. "Computer Automation of General-to-Specific Model Selection Procedures," Economics Series Working Papers 3, University of Oxford, Department of Economics.
- Hans-Martin Krolzig, 2000. "Computer Automation of General-to-Specific Model Selection Procedures," Econometric Society World Congress 2000 Contributed Papers 0411, Econometric Society.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006.
"A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
- Stock, James & Watson, Mark & Marcellino, Massimiliano, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
- Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- David F. Hendry & Hans-Martin Krolzig, 2005.
"The Properties of Automatic "GETS" Modelling,"
Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
- David Hendry & Hans-Martin Krolzig, 2003. "The Properties of Automatic Gets Modelling," Economics Papers 2003-W14, Economics Group, Nuffield College, University of Oxford.
- Hendry, David F & Hans-Martin Krolzig, 2003. "The Properties of Automatic Gets Modelling," Royal Economic Society Annual Conference 2003 105, Royal Economic Society.
- Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
- Teodosio Perez‐Amaral & Giampiero M. Gallo & Halbert White, 2003.
"A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA),"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 821-838, December.
- Halbert L. White & Giampiero M. Gallo & Teodosio Pérez Amaral, 2002. "A flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Documentos de Trabajo del ICAE 0201, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Teodosio Perez-Amaral & Giampiero M. Gallo & Halbert White, 2003. "Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Documentos de Trabajo del ICAE 0309, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Teodosio Perez-Amaral & Giampiero M. Gallo & Halbert L. White, 2003. "A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Econometrics Working Papers Archive wp2003_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Amit Goyal & Ivo Welch, 2003.
"Predicting the Equity Premium with Dividend Ratios,"
Management Science, INFORMS, vol. 49(5), pages 639-654, May.
- Amit Goyal & Ivo Welch, 1999. "Predicting the Equity Premium with Dividend Ratios," Yale School of Management Working Papers amz2437, Yale School of Management, revised 01 Nov 2002.
- Amit Goyal & Ivo Welch, 2002. "Predicting the Equity Premium With Dividend Ratios," NBER Working Papers 8788, National Bureau of Economic Research, Inc.
- Norman R. Swanson & Halbert White, 1997.
"A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks,"
The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
- Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
- Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, University Library of Munich, Germany.
- Castle, Jennifer & Shephard, Neil (ed.), 2009. "The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry," OUP Catalogue, Oxford University Press, number 9780199237197.
- Anders Bredahl Kock & Timo Teräsvirta, 2016.
"Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
- Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
- Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
- Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
- Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
- Klaus Nordhausen, 2009. "The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman," International Statistical Review, International Statistical Institute, vol. 77(3), pages 482-482, December.
- Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
- Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
- White, Halbert, 2006. "Approximate Nonlinear Forecasting Methods," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 9, pages 459-512, Elsevier.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015.
"Macroeconomic forecasting during the Great Recession: The return of non-linearity?,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
- Ferrara, L. & Marcellino, M. & Mogliani, M., 2012. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," Working papers 383, Banque de France.
- Laurent Ferrara & Massimiliano Marcellino & Matteo Mogliani, 2015. "Macroeconomic forecasting during the Great Recession: the return of non-linearity?," Post-Print hal-01635951, HAL.
- Marcellino, Massimiliano & Ferrara, Laurent & Mogliani, Matteo, 2013. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," CEPR Discussion Papers 9313, C.E.P.R. Discussion Papers.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015.
"“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”,"
IREA Working Papers
201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
- Jahn, Malte, 2020. "Artificial neural network regression models in a panel setting: Predicting economic growth," Economic Modelling, Elsevier, vol. 91(C), pages 148-154.
- Claudimar Pereira da Veiga & Cássia Rita Pereira da Veiga & Felipe Mendes Girotto & Diego Antonio Bittencourt Marconatto & Zhaohui Su, 2024. "Implementation of the ARIMA model for prediction of economic variables: evidence from the health sector in Brazil," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017.
"“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting","
IREA Working Papers
201701, University of Barcelona, Research Institute of Applied Economics, revised Jan 2017.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting”," AQR Working Papers 201701, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2017.
- Zhidan Luo & Wei Guo & Qingfu Liu & Yiuman Tse, 2023. "A hybrid prediction model with time‐varying gain tracking differentiator in Taylor expansion: Evidence from precious metals," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1138-1149, August.
- Diogo de Prince & Emerson Fernandes Marçal & Pedro L. Valls Pereira, 2022. "Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy," Econometrics, MDPI, vol. 10(2), pages 1-34, June.
- Malte Jahn, 2023. "Artificial neural networks and time series of counts: A class of nonlinear INGARCH models," Papers 2304.01025, arXiv.org.
- Jena, Pradyot Ranjan & Majhi, Ritanjali & Kalli, Rajesh & Managi, Shunsuke & Majhi, Babita, 2021. "Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 324-339.
- Jahn, Malte, 2018. "Artificial neural network regression models: Predicting GDP growth," HWWI Research Papers 185, Hamburg Institute of International Economics (HWWI).
- Marcus Buckmann & Andreas Joseph, 2023. "An Interpretable Machine Learning Workflow with an Application to Economic Forecasting," International Journal of Central Banking, International Journal of Central Banking, vol. 19(4), pages 449-522, October.
- Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
- Ahmed Ramzy Mohamed, 2022. "Artificial Neural Network for Modeling the Economic Performance: A New Perspective," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(3), pages 555-575, September.
- Lee Jinu, 2019. "A Neural Network Method for Nonlinear Time Series Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-18, January.
- Malte Jahn, 2023. "Regressing on distributions: The nonlinear effect of temperature on regional economic growth," Papers 2309.10481, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anders Bredahl Kock & Timo Teräsvirta, 2016.
"Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
- Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
- Terasvirta, Timo, 2006.
"Forecasting economic variables with nonlinear models,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457,
Elsevier.
- Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
- Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
- Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016.
"Nonlinear forecasting with many predictors using kernel ridge regression,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2011. "Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-007/4, Tinbergen Institute.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2013. "Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression," CREATES Research Papers 2013-16, Department of Economics and Business Economics, Aarhus University.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005.
"Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination,"
International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
- Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 09 Nov 2004.
- Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros, 2004. "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination," Textos para discussão 485, Department of Economics PUC-Rio (Brazil).
- Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006.
"Building neural network models for time series: a statistical approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
- Medeiros, Marcelo C. & Teräsvirta, Timo & Rech, Gianluigi, 2002. "Building neural network models for time series: A statistical approach," SSE/EFI Working Paper Series in Economics and Finance 508, Stockholm School of Economics.
- Marcelo C. Medeiros & Timo Terasvirta & Gianluigi Rech, 2002. "Building Neural Network Models for Time Series: A Statistical Approach," Textos para discussão 461, Department of Economics PUC-Rio (Brazil).
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.
- Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
- Kock Anders Bredahl, 2011.
"Forecasting with Universal Approximators and a Learning Algorithm,"
Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
- Anders Bredahl Kock, 2009. "Forecasting with Universal Approximators and a Learning Algorithm," CREATES Research Papers 2009-18, Department of Economics and Business Economics, Aarhus University.
- Bec, Frédérique & Mogliani, Matteo, 2015.
"Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
- Bec, F. & Mogliani, M., 2013. "Nowcasting French GDP in Real-Time from Survey Opinions: Information or Forecast Combinations?," Working papers 436, Banque de France.
- Frédérique Bec & Matteo Mogliani, 2013. "Nowcasting French GDP in Real-Time from Survey Opinions : Information or Forecast Combinations ?," Working Papers 2013-21, Center for Research in Economics and Statistics.
- Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015.
"Macroeconomic forecasting during the Great Recession: The return of non-linearity?,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
- Ferrara, L. & Marcellino, M. & Mogliani, M., 2012. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," Working papers 383, Banque de France.
- Laurent Ferrara & Massimiliano Marcellino & Matteo Mogliani, 2015. "Macroeconomic forecasting during the Great Recession: the return of non-linearity?," Post-Print hal-01635951, HAL.
- Marcellino, Massimiliano & Ferrara, Laurent & Mogliani, Matteo, 2013. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," CEPR Discussion Papers 9313, C.E.P.R. Discussion Papers.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2013.
"Forecasting Nevada gross gaming revenue and taxable sales using coincident and leading employment indexes,"
Empirical Economics, Springer, vol. 44(2), pages 387-417, April.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 15-01, Eastern Mediterranean University, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2011. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 1103, University of Nevada, Las Vegas , Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working papers 2010-21, University of Connecticut, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 201018, University of Pretoria, Department of Economics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Camila Epprecht & Dominique Guegan & Álvaro Veiga, 2013. "Comparing variable selection techniques for linear regression: LASSO and Autometrics," Documents de travail du Centre d'Economie de la Sorbonne 13080, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Heikki Kauppi & Timo Virtanen, 2018. "Boosting Non-linear Predictabilityof Macroeconomic Time Series," Discussion Papers 124, Aboa Centre for Economics.
- Nikolay Robinzonov & Klaus Wohlrabe, 2010.
"Freedom of Choice in Macroeconomic Forecasting ,"
CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
- Nikolay Robinzonov & Klaus Wohlrabe, 2008. "Freedom of Choice in Macroeconomic Forecasting: An Illustration with German Industrial Production and Linear Models," ifo Working Paper Series 57, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
More about this item
Keywords
Autometrics; Economic forecasting; Marginal Bridge estimator; Neural network; Nonlinear time series model; QuickNet; RETINA; Root mean squared forecast error;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:30:y:2014:i:3:p:616-631. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.