IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v57y2019ics0927538x1830101x.html
   My bibliography  Save this article

Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures

Author

Listed:
  • Qu, Hui
  • Wang, Tianyang
  • Zhang, Yi
  • Sun, Pengfei

Abstract

This paper investigates the dynamic hedging performance of the high frequency data based realized minimum-variance hedge ratio (RMVHR) approach. We comprehensively examine a number of popular time-series models to forecast the RMVHR for the CSI 300 index futures, and evaluate the out-of-sample dynamic hedging performance in comparison to the conventional hedging models using daily prices, as well as the vector heterogeneous autoregressive model using intraday prices. Our results show that the dynamic hedging performance of the RMVHR-based methods significantly dominates that of the conventional methods in terms of both hedging effectiveness and tracking error volatility in the out-of-sample forecast period. Furthermore, the superiority of the RMVHR-based methods is robust in different market structures and different volatility regimes, including China's abnormal market fluctuations in 2015 and the US financial crisis in 2008.

Suggested Citation

  • Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
  • Handle: RePEc:eee:pacfin:v:57:y:2019:i:c:s0927538x1830101x
    DOI: 10.1016/j.pacfin.2018.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X1830101X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2018.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Hou, Yang & Li, Steven, 2013. "Hedging performance of Chinese stock index futures: An empirical analysis using wavelet analysis and flexible bivariate GARCH approaches," Pacific-Basin Finance Journal, Elsevier, vol. 24(C), pages 109-131.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Role of index futures on China's stock markets: Evidence from price discovery and volatility spillover," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 13-26.
    5. Jian Yang & Titus Awokuse, 2003. "Asset storability and hedging effectiveness in commodity futures markets," Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 487-491.
    6. Jian Yang & Zihui Yang & Yinggang Zhou, 2012. "Intraday price discovery and volatility transmission in stock index and stock index futures markets: Evidence from China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 99-121, February.
    7. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    8. Lai, YiHao & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Optimal dynamic hedging via copula-threshold-GARCH models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2609-2624.
    9. Da‐Hsiang Donald Lien, 1996. "The effect of the cointegration relationship on futures hedging: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(7), pages 773-780, October.
    10. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    11. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    12. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    13. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    14. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    15. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    16. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    17. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    19. Ghosh, Asim, 1995. "The Hedging Effectiveness of ECU Futures Contracts: Forecasting Evidence from an Error Correction Model," The Financial Review, Eastern Finance Association, vol. 30(3), pages 567-581, August.
    20. Vicente Meneu & Hipòlit Torró, 2003. "Asymmetric covariance in spot‐futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(11), pages 1019-1046, November.
    21. Ghosh, Asim & Clayton, Ronnie, 1996. "Hedging with International Stock Index Futures: An Intertemporal Error Correction Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 477-491, Winter.
    22. Yu‐Sheng Lai & Her‐Jiun Sheu, 2010. "The incremental value of a futures hedge using realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(9), pages 874-896, September.
    23. Gregory Koutmos & Michael Tucker, 1996. "Temporal relationships and dynamic interactions between spot and futures stock markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(1), pages 55-69, February.
    24. Chih‐Chiang Hsu & Chih‐Ping Tseng & Yaw‐Huei Wang, 2008. "Dynamic hedging with futures: A copula‐based GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1095-1116, November.
    25. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    26. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    27. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    28. Ng, Lilian & Wu, Fei, 2007. "The trading behavior of institutions and individuals in Chinese equity markets," Journal of Banking & Finance, Elsevier, vol. 31(9), pages 2695-2710, September.
    29. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    30. Ross, Gordon J., 2013. "Modelling financial volatility in the presence of abrupt changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 350-360.
    31. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    32. Asim Ghosh & Ronnie Clayton, 1996. "Hedging With International Stock Index Futures: An Intertemporal Error Correction Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 477-491, December.
    33. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    34. Shanshan Dong & Yun Feng, 2017. "Does index futures trading cause market fluctuations?," China Finance Review International, Emerald Group Publishing Limited, vol. 8(2), pages 173-198, December.
    35. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    36. Tae H. Park & Lorne N. Switzer, 1995. "Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(1), pages 61-67, February.
    37. Markopoulou, Chrysi E. & Skintzi, Vasiliki D. & Refenes, Apostolos-Paul N., 2016. "Realized hedge ratio: Predictability and hedging performance," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 121-133.
    38. Joanne Hill & Thomas Schneeweis, 1981. "A note on the hedging effectiveness of foreign currency futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 1(4), pages 659-664, December.
    39. Asim Ghosh, 1993. "Hedging with stock index futures: Estimation and forecasting with error correction model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(7), pages 743-752, October.
    40. Xundi Diao & Hongyang Qiu & Bin Tong, 2017. "Does a unique “T+1 trading rule” in China incur return difference between daytime and overnight periods?," China Finance Review International, Emerald Group Publishing Limited, vol. 8(1), pages 2-20, December.
    41. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    42. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    43. Her‐Jiun Sheu & Hsiang‐Tai Lee, 2014. "Optimal Futures Hedging Under Multichain Markov Regime Switching," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(2), pages 173-202, February.
    44. Paul Kofman & Patrick McGlenchy, 2005. "Structurally sound dynamic index futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(12), pages 1173-1202, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiying Wang & Ying Yuan & Tianyang Wang, 2021. "The dynamics of cross‐boundary fire—Financial contagion between the oil and stock markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1655-1673, October.
    2. Sharma, Udayan & Karmakar, Madhusudan, 2023. "Measuring minimum variance hedging effectiveness: Traditional vs. sophisticated models," International Review of Financial Analysis, Elsevier, vol. 87(C).
    3. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    4. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The influence of the COVID-19 pandemic on the hedging functionality of Chinese financial markets," Research in International Business and Finance, Elsevier, vol. 59(C).
    5. Chao Liang & Yongan Xu & Zhonglu Chen & Xiafei Li, 2023. "Forecasting China's stock market volatility with shrinkage method: Can Adaptive Lasso select stronger predictors from numerous predictors?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3689-3699, October.
    6. Yu, Xing & Li, Yanyan & Gong, Xue & Zhang, Nan, 2022. "Evaluating the performance of futures hedging using factors-driven realized volatility," International Review of Financial Analysis, Elsevier, vol. 84(C).
    7. Xiaole Wan & Zhen Zhang & Chi Zhang & Qingchun Meng, 2020. "Stock Market Temporal Complex Networks Construction, Robustness Analysis, and Systematic Risk Identification: A Case of CSI 300 Index," Complexity, Hindawi, vol. 2020, pages 1-19, July.
    8. Carlos Esparcia & Tarek Fakhfakh & Francisco Jareño & Achraf Ghorbel, 2024. "Dynamic DeFi-G7 stock markets interactions and their potential role in diversifying and hedging strategies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    9. Kuang, Wei, 2022. "The economic value of high-frequency data in equity-oil hedge," Energy, Elsevier, vol. 239(PA).
    10. Zainudin, Ahmad Danial & Mohamad, Azhar, 2021. "Cross hedging with stock index futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 128-144.
    11. Yan Hu & Jian Ni, 2024. "A deep learning‐based financial hedging approach for the effective management of commodity risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 879-900, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The influence of the COVID-19 pandemic on the hedging functionality of Chinese financial markets," Research in International Business and Finance, Elsevier, vol. 59(C).
    2. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    3. Qianjie Geng & Yudong Wang, 2021. "Futures Hedging in CSI 300 Markets: A Comparison Between Minimum-Variance and Maximum-Utility Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 719-742, February.
    4. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    5. Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
    6. Stavros Degiannakis & Christos Floros, 2010. "Hedge Ratios in South African Stock Index Futures," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(3), pages 285-304, December.
    7. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    8. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    9. Lin, Xiaoqiang & Chen, Qiang & Tang, Zhenpeng, 2014. "Dynamic hedging strategy in incomplete market: Evidence from Shanghai fuel oil futures market," Economic Modelling, Elsevier, vol. 40(C), pages 81-90.
    10. Aragó, Vicent & Salvador, Enrique, 2011. "Sudden changes in variance and time varying hedge ratios," European Journal of Operational Research, Elsevier, vol. 215(2), pages 393-403, December.
    11. Hou, Yang & Holmes, Mark, 2017. "On the effects of static and autoregressive conditional higher order moments on dynamic optimal hedging," MPRA Paper 82000, University Library of Munich, Germany.
    12. Pablo Urtubia & Alfonso Novales & Andrés Mora-Valencia, 2021. "Cross-Hedging Portfolios in Emerging Stock Markets: Evidence for the LATIBEX Index," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    13. Wenming Shi & Kevin X. Li & Zhongzhi Yang & Ganggang Wang, 2017. "Time-varying copula models in the shipping derivatives market," Empirical Economics, Springer, vol. 53(3), pages 1039-1058, November.
    14. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    15. Atreya Chakraborty & John Barkoulas, 1999. "Dynamic futures hedging in currency markets," The European Journal of Finance, Taylor & Francis Journals, vol. 5(4), pages 299-314.
    16. Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
    17. Kotkatvuori-Örnberg, Juha, 2016. "Dynamic conditional copula correlation and optimal hedge ratios with currency futures," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 60-69.
    18. Yu‐Sheng Lai, 2018. "Estimation of the optimal futures hedge ratio for equity index portfolios using a realized beta generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1370-1390, November.
    19. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    20. Choudhry, Taufiq, 2009. "Short-run deviations and time-varying hedge ratios: Evidence from agricultural futures markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 58-65, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:57:y:2019:i:c:s0927538x1830101x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.