IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v198y2017i1p10-28.html
   My bibliography  Save this article

A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation

Author

Listed:
  • Hounyo, Ulrich
  • Varneskov, Rasmus T.

Abstract

We provide a new resampling procedure–the local stable bootstrap–that is able to mimic the dependence properties of realized power variations for pure-jump semimartingales observed at different frequencies. This allows us to propose a bootstrap estimator and inference procedure for the activity index of the underlying process, β, as well as bootstrap tests for whether it obeys a jump-diffusion or a pure-jump process, that is, of the null hypothesis H0:β=2 against the alternative H1:β<2. We establish first-order asymptotic validity of the resulting bootstrap power variations, activity index estimator, and diffusion tests for H0. Moreover, the finite sample size and power properties of the proposed diffusion tests are compared to those of benchmark tests using Monte Carlo simulations. Unlike existing procedures, our bootstrap tests are correctly sized in general settings. Finally, we illustrate the use and properties of the new bootstrap diffusion tests using high-frequency data on three FX series, the S&P 500, and the VIX.

Suggested Citation

  • Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
  • Handle: RePEc:eee:econom:v:198:y:2017:i:1:p:10-28
    DOI: 10.1016/j.jeconom.2017.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617300039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    2. Todorov, Viktor, 2013. "Power variation from second order differences for pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2829-2850.
    3. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    4. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2014. "Volatility activity: Specification and estimation," Journal of Econometrics, Elsevier, vol. 178(P1), pages 180-193.
    5. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    6. Todorov, Viktor & Tauchen, George, 2010. "Activity signature functions for high-frequency data analysis," Journal of Econometrics, Elsevier, vol. 154(2), pages 125-138, February.
    7. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.
    8. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    9. Russell Davidson, 2007. "Bootstrapping Econometric Models," Departmental Working Papers 2007-13, McGill University, Department of Economics.
    10. Shao, Xiaofeng, 2010. "The Dependent Wild Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 218-235.
    11. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, September.
    12. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    13. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    14. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    15. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    16. Jing, Bing-Yi & Kong, Xin-Bing & Liu, Zhi, 2011. "Estimating the Jump Activity Index Under Noisy Observations Using High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 558-568.
    17. Sílvia Gonçalves & Nour Meddahi, 2009. "Bootstrapping Realized Volatility," Econometrica, Econometric Society, vol. 77(1), pages 283-306, January.
    18. Andersen, Torben G. & Bondarenko, Oleg & Todorov, Viktor & Tauchen, George, 2015. "The fine structure of equity-index option dynamics," Journal of Econometrics, Elsevier, vol. 187(2), pages 532-546.
    19. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    20. Russell Davidson, 2007. "Bootstrapping econometric models (in Russian)," Quantile, Quantile, issue 3, pages 13-36, September.
    21. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    22. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    23. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    24. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    25. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    26. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    27. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    28. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    29. Horowitz, Joel L. & Savin, N. E., 2000. "Empirically relevant critical values for hypothesis tests: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 95(2), pages 375-389, April.
    30. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    31. Jing, Bing-Yi & Kong, Xin-Bing & Liu, Zhi & Mykland, Per, 2012. "On the jump activity index for semimartingales," Journal of Econometrics, Elsevier, vol. 166(2), pages 213-223.
    32. Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
    33. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    2. Ulrich Hounyo & Rasmus T. Varneskov, 2018. "Inference for Local Distributions at High Sampling Frequencies: A Bootstrap Approach," CREATES Research Papers 2018-16, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Hounyo & Rasmus T. Varneskov, 2015. "A Local Stable Bootstrap for Power Variations of Pure-Jump Semimartingales and Activity Index Estimation," CREATES Research Papers 2015-26, Department of Economics and Business Economics, Aarhus University.
    2. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    3. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    4. Ulrich Hounyo & Rasmus T. Varneskov, 2018. "Inference for Local Distributions at High Sampling Frequencies: A Bootstrap Approach," CREATES Research Papers 2018-16, Department of Economics and Business Economics, Aarhus University.
    5. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    6. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.
    7. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    8. Todorov, Viktor, 2019. "Nonparametric inference for the spectral measure of a bivariate pure-jump semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 419-451.
    9. Torben G. Andersen & Nicola Fusari & Viktor Todorov & Rasmus T. Varneskov, 2018. "Option Panels in Pure-Jump Settings," CREATES Research Papers 2018-04, Department of Economics and Business Economics, Aarhus University.
    10. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    11. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    12. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    13. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    14. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    15. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    16. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    17. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    18. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    19. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2014. "Volatility activity: Specification and estimation," Journal of Econometrics, Elsevier, vol. 178(P1), pages 180-193.
    20. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.

    More about this item

    Keywords

    Activity index; Bootstrap; Blumenthal–Getoor index; Confidence intervals; High-frequency data; Hypothesis testing; Realized power variation; Stable processes;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:198:y:2017:i:1:p:10-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.