IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2012-008.html
   My bibliography  Save this paper

Does Basel II pillar 3 risk exposure data help to identify risky banks?

Author

Listed:
  • Sabiwalsky, Ralf

Abstract

Basel II Pillar 3 reports provide information about banks' exposure towards a number of risk factors, such as corporate credit risk and interest rate risk. Previous studies find that the quality of such information is likely to be weak. We analyze the marginal contribution of pillar 3 exposure data to the quality of equity volatility forecasts for individual banks. Our method uses (local in time) measures of risk factor risk using a multivariate stochastic volatility model for five risk factors, and uses measures of bank sensitivity with respect to these risk factors. We use two sets of sensitivity measures. One takes into account pillar 3 information, and the other one does not. Generally, we generate volatility forecasts as if no market prices of equity were available for the bank the forecast is made for. We do this for banks for which such data is, in fact, available so that we can conduct ex post - tests of the quality of volatility forecasts. We find that (1) pillar 3 information allows for a better-than-random ranking of banks according to their risk, but (2) pillar 3 exposure data does not help reduce volatility forecast error magnitude.

Suggested Citation

  • Sabiwalsky, Ralf, 2012. "Does Basel II pillar 3 risk exposure data help to identify risky banks?," SFB 649 Discussion Papers 2012-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2012-008
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56714/1/684717832.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008. "Do banks overstate their Value-at-Risk?," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
    2. Barth, Mary E. & Beaver, William H. & Landsman, Wayne R., 2001. "The relevance of the value relevance literature for financial accounting standard setting: another view," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 77-104, September.
    3. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    4. Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2006. "Internal ratings systems, implied credit risk and the consistency of banks' risk classification policies," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 1899-1926, July.
    5. Holthausen, Robert W. & Watts, Ross L., 2001. "The relevance of the value-relevance literature for financial accounting standard setting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 3-75, September.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Colleen Cassidy & Marianne Gizycki, 1997. "Measuring Traded Market Risk: Value-at-risk and Backtesting Techniques," RBA Research Discussion Papers rdp9708, Reserve Bank of Australia.
    8. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    9. Carey, Mark & Hrycay, Mark, 2001. "Parameterizing credit risk models with rating data," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 197-270, January.
    10. Frésard, Laurent & Pérignon, Christophe & Wilhelmsson, Anders, 2011. "The pernicious effects of contaminated data in risk management," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2569-2583, October.
    11. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    12. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    13. Gonzalez, Francisco, 2005. "Bank regulation and risk-taking incentives: An international comparison of bank risk," Journal of Banking & Finance, Elsevier, vol. 29(5), pages 1153-1184, May.
    14. Wong, Woon K., 2008. "Backtesting trading risk of commercial banks using expected shortfall," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1404-1415, July.
    15. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    16. Lucas, Andre, 2001. "Evaluating the Basle Guidelines for Backtesting Banks' Internal Risk Management Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 33(3), pages 826-846, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2012-008 is not listed on IDEAS
    2. Katherine Uylangco & Siqiwen Li, 2016. "An evaluation of the effectiveness of Value-at-Risk (VaR) models for Australian banks under Basel III," Australian Journal of Management, Australian School of Business, vol. 41(4), pages 699-718, November.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    5. Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008. "Do banks overstate their Value-at-Risk?," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
    6. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    7. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    8. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    9. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    10. da Veiga, B. & Chan, F. & McAleer, M.J., 2009. "It Pays to Violate: How Effective are the Basel Accord Penalties?," Econometric Institute Research Papers EI 2009-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    12. Hammoudeh, Shawkat & Malik, Farooq & McAleer, Michael, 2011. "Risk management of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 435-441.
    13. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    14. Mahmoud Haddad & Sam Hakim, 2014. "Using Risk Disclosures of Lage GCC Bank to Evaluate Information Content," Working Papers 863, Economic Research Forum, revised Nov 2014.
    15. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    16. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    17. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    18. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    19. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    20. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    21. IORGULESCU Filip, 2012. "The Stylized Facts Of Asset Returns And Their Impact On Value-At-Risk Models," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 0(4), pages 360-368.

    More about this item

    Keywords

    risk reporting; stochastic volatility; risk factors;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2012-008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.