IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v137y2018icp235-242.html
   My bibliography  Save this article

Intermittency of trawl processes

Author

Listed:
  • Grahovac, Danijel
  • Leonenko, Nikolai N.
  • Taqqu, Murad S.

Abstract

We study the limiting behavior of continuous time trawl processes which are defined using an infinitely divisible random measure of a time dependent set. In this way one is able to define separately the marginal distribution and the dependence structure. One can have long-range dependence or short-range dependence by choosing the time set accordingly. We introduce the scaling function of the integrated process and show that its behavior displays intermittency, a phenomenon associated with an unusual behavior of moments.

Suggested Citation

  • Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2018. "Intermittency of trawl processes," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 235-242.
  • Handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:235-242
    DOI: 10.1016/j.spl.2018.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218300415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    2. Pipiras,Vladas & Taqqu,Murad S., 2017. "Long-Range Dependence and Self-Similarity," Cambridge Books, Cambridge University Press, number 9781107039469, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grahovac, Danijel, 2022. "Intermittency in the small-time behavior of Lévy processes," Statistics & Probability Letters, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    2. Ran Wang & Yimin Xiao, 2022. "Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2442-2479, December.
    3. Doukhan, Paul & Jakubowski, Adam & Lopes, Silvia R.C. & Surgailis, Donatas, 2019. "Discrete-time trawl processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1326-1348.
    4. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    5. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Patrice Abry & Yannick Malevergne & Herwig Wendt & Marc Senneret & Laurent Jaffrès & Blaise Liaustrat, 2019. "Shuffling for understanding multifractality, application to asset price time series," Post-Print hal-02361738, HAL.
    7. Kubiv Stepan, 2019. "Approximations and forecasting quasi-stationary processes with sudden runs," Technology audit and production reserves, 4(48) 2019, Socionet;Technology audit and production reserves, vol. 4(4(48)), pages 37-39.
    8. Grahovac, Danijel, 2022. "Intermittency in the small-time behavior of Lévy processes," Statistics & Probability Letters, Elsevier, vol. 187(C).
    9. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    10. Johann Gehringer & Xue-Mei Li, 2022. "Functional Limit Theorems for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(1), pages 426-456, March.
    11. Obayda Assaad & Ciprian A. Tudor, 2020. "Parameter identification for the Hermite Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 251-270, July.
    12. Tomoyuki Ichiba & Guodong Pang & Murad S. Taqqu, 2022. "Path Properties of a Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 550-574, March.
    13. Durieu, Olivier & Samorodnitsky, Gennady & Wang, Yizao, 2020. "From infinite urn schemes to self-similar stable processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2471-2487.
    14. Mikkel Bennedsen & Asger Lunde & Neil Shephard & Almut E. D. Veraart, 2021. "Inference and forecasting for continuous-time integer-valued trawl processes," Papers 2107.03674, arXiv.org, revised Feb 2023.
    15. Meng-Chen Hsieh & Clifford Hurvich & Philippe Soulier, 2022. "Long-Horizon Return Predictability from Realized Volatility in Pure-Jump Point Processes," Papers 2202.00793, arXiv.org.
    16. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    17. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
    18. Gannaz, Irène, 2023. "Asymptotic normality of wavelet covariances and multivariate wavelet Whittle estimators," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 485-534.
    19. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    20. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:137:y:2018:i:c:p:235-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.