IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v8y2004i2n9.html
   My bibliography  Save this article

Constructing Non-linear Gaussian Time Series by Means of a Simplified State Space Representation

Author

Listed:
  • Vidoni Paolo

    (University of Udine)

Abstract

State space models provide a useful stochastic description for dynamic phenomena, based on unobserved or latent variables. When the model rests on linear and Gaussian assumptions there exists a well-known iterative procedure, called the Kalman filter, which gives analytic updating recursion for the filtering, the prediction and the smoothing distributions. However, this is rare and a state space model does not usually admit such a filter. For this reason, instead of looking for analytic solutions, a number of papers aim to define alternative procedures, giving numerical or approximate solutions. This paper concerns a particular class of models based on the assumption that the mixed process, obtained by alternating states and observations, is a Markov process. The main features of this class of models, proposed for stochastic volatility description by Barndorff-Nielsen (1997), are emphasized. In this framework, some new non-linear Gaussian state space models, computationally tractable and of potential interest for applications, may be defined.

Suggested Citation

  • Vidoni Paolo, 2004. "Constructing Non-linear Gaussian Time Series by Means of a Simplified State Space Representation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
  • Handle: RePEc:bpj:sndecm:v:8:y:2004:i:2:n:9
    DOI: 10.2202/1558-3708.1213
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1213
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shephard, Neil, 1994. "Local scale models : State space alternative to integrated GARCH processes," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 181-202.
    2. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-10.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Paolo Vidoni, 2001. "Proper Dispersion State Space Models for Stochastic Volatility," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 271-281, June.
    5. P. Vidoni, 1999. "Exponential family state space models based on a conjugate latent process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 213-221.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
    2. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    3. Ferrante, Marco & Vidoni, Paolo, 1999. "A Gaussian-generalized inverse Gaussian finite-dimensional filter," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 165-176, November.
    4. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    5. Ferrante, Marco & Frigo, Nadia, 2009. "Particle filtering approximations for a Gaussian-generalized inverse Gaussian model," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 442-449, February.
    6. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    7. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    8. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    9. Kostas Triantafyllopoulos, 2009. "Inference of Dynamic Generalized Linear Models: On‐Line Computation and Appraisal," International Statistical Review, International Statistical Institute, vol. 77(3), pages 430-450, December.
    10. de Pinho, Frank M. & Franco, Glaura C. & Silva, Ralph S., 2016. "Modeling volatility using state space models with heavy tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 108-127.
    11. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    12. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    13. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    14. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    15. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    16. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    17. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    18. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    19. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    20. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    21. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:8:y:2004:i:2:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.