IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i1p55-d1037927.html
   My bibliography  Save this article

Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process

Author

Listed:
  • Aubain Hilaire Nzokem

    (Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA)

Abstract

The paper builds a Variance-Gamma (VG) model with five parameters: location ( μ ), symmetry ( δ ), volatility ( σ ), shape ( α ), and scale ( θ ); and studies its application to the pricing of European options. The results of our analysis show that the five-parameter VG model is a stochastic volatility model with a Γ ( α , θ ) Ornstein–Uhlenbeck type process; the associated Lévy density of the VG model is a KoBoL family of order ν = 0 , intensity α , and steepness parameters δ σ 2 − δ 2 σ 4 + 2 θ σ 2 and δ σ 2 + δ 2 σ 4 + 2 θ σ 2 ; and the VG process converges asymptotically in distribution to a Lévy process driven by a normal distribution with mean ( μ + α θ δ ) and variance α ( θ 2 δ 2 + σ 2 θ ) . The data used for empirical analysis were obtained by fitting the five-parameter Variance-Gamma (VG) model to the underlying distribution of the daily SPY ETF data. Regarding the application of the five-parameter VG model, the twelve-point rule Composite Newton–Cotes Quadrature and Fractional Fast Fourier (FRFT) algorithms were implemented to compute the European option price. Compared to the Black–Scholes (BS) model, empirical evidence shows that the VG option price is underpriced for out-of-the-money (OTM) options and overpriced for in-the-money (ITM) options. Both models produce almost the same option pricing results for deep out-of-the-money (OTM) and deep-in-the-money (ITM) options.

Suggested Citation

  • Aubain Hilaire Nzokem, 2023. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process," JRFM, MDPI, vol. 16(1), pages 1-28, January.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:1:p:55-:d:1037927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/1/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/1/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharif Mozumder & Ghulam Sorwar & Kevin Dowd, 2015. "Revisiting variance gamma pricing: An application to S&P500 index options," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-24.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. A. H. Nzokem & V. T. Montshiwa, 2022. "Fitting Generalized Tempered Stable distribution: Fractional Fourier Transform (FRFT) Approach," Papers 2205.00586, arXiv.org, revised Jun 2022.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Ole E. Barndorff‐Nielsen & Neil Shephard, 2003. "Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 277-295, June.
    6. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. H. Nzokem, 2023. "Bitcoin versus S&P 500 Index: Return and Risk Analysis," Papers 2310.02436, arXiv.org.
    2. A. H. Nzokem, 2023. "European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis," Papers 2304.06060, arXiv.org, revised Aug 2023.
    3. Aubain Nzokem & Daniel Maposa, 2024. "Fitting the seven-parameter Generalized Tempered Stable distribution to the financial data," Papers 2410.19751, arXiv.org, revised Jan 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
    2. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, August.
    3. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    4. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    5. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    6. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    8. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    9. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    10. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    11. Karl Friedrich Hofmann & Thorsten Schulz, 2016. "A General Ornstein–Uhlenbeck Stochastic Volatility Model With Lévy Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-23, December.
    12. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    13. Yang-Ho Park, 2015. "The Effects of Asymmetric Volatility and Jumps on the Pricing of VIX Derivatives," Finance and Economics Discussion Series 2015-71, Board of Governors of the Federal Reserve System (U.S.).
    14. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
    15. Audrino, Francesco & Fengler, Matthias R., 2015. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 46-63.
    16. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
    17. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    18. Sharif Mozumder & Bakhtear Talukdar & M. Humayun Kabir & Bingxin Li, 2024. "Non-linear volatility with normal inverse Gaussian innovations: ad-hoc analytic option pricing," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 97-133, January.
    19. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    20. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:1:p:55-:d:1037927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.