IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v72y2010i4p497-512.html
   My bibliography  Save this article

Random‐weight particle filtering of continuous time processes

Author

Listed:
  • Paul Fearnhead
  • Omiros Papaspiliopoulos
  • Gareth O. Roberts
  • Andrew Stuart

Abstract

Summary. It is possible to implement importance sampling, and particle filter algorithms, where the importance sampling weight is random. Such random‐weight algorithms have been shown to be efficient for inference for a class of diffusion models, as they enable inference without any (time discretization) approximation of the underlying diffusion model. One difficulty of implementing such random‐weight algorithms is the requirement to have weights that are positive with probability 1. We show how Wald's identity for martingales can be used to ensure positive weights. We apply this idea to analysis of diffusion models from high frequency data. For a class of diffusion models we show how to implement a particle filter, which uses all the information in the data, but whose computational cost is independent of the frequency of the data. We use the Wald identity to implement a random‐weight particle filter for these models which avoids time discretization error.

Suggested Citation

  • Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts & Andrew Stuart, 2010. "Random‐weight particle filtering of continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 497-512, September.
  • Handle: RePEc:bla:jorssb:v:72:y:2010:i:4:p:497-512
    DOI: 10.1111/j.1467-9868.2010.00744.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2010.00744.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2010.00744.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    2. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Particle filters for partially observed diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 755-777, September.
    3. Paul Glasserman & Jeremy Staum, 2001. "Conditioning on One-Step Survival for Barrier Option Simulations," Operations Research, INFORMS, vol. 49(6), pages 923-937, December.
    4. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    5. Moral, P. Del & Miclo, L., 2000. "A Moran particle system approximation of Feynman-Kac formulae," Stochastic Processes and their Applications, Elsevier, vol. 86(2), pages 193-216, April.
    6. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    7. Tina Hviid Rydberg, 1997. "A note on the existence of unique equivalent martingale measures in a Markovian setting," Finance and Stochastics, Springer, vol. 1(3), pages 251-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgos Sermaidis & Omiros Papaspiliopoulos & Gareth O. Roberts & Alexandros Beskos & Paul Fearnhead, 2013. "Markov Chain Monte Carlo for Exact Inference for Diffusions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 294-321, June.
    2. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    3. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    4. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    5. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    6. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    7. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    8. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    9. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    10. Wei Wei & Asger Lunde, 2023. "Identifying Risk Factors and Their Premia: A Study on Electricity Prices," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1647-1679.
    11. Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
    12. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    13. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    14. Crucinio, Francesca R. & Johansen, Adam M., 2023. "Properties of marginal sequential Monte Carlo methods," Statistics & Probability Letters, Elsevier, vol. 203(C).
    15. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    16. Jourdain Benjamin & Sbai Mohamed, 2007. "Exact retrospective Monte Carlo computation of arithmetic average Asian options," Monte Carlo Methods and Applications, De Gruyter, vol. 13(2), pages 135-171, July.
    17. Yuan Shen & Dan Cornford & Manfred Opper & Cedric Archambeau, 2012. "Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions," Computational Statistics, Springer, vol. 27(1), pages 149-176, March.
    18. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    19. Ignatieva, Katja & Wong, Patrick, 2022. "Modelling high frequency crude oil dynamics using affine and non-affine jump–diffusion models," Energy Economics, Elsevier, vol. 108(C).
    20. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:72:y:2010:i:4:p:497-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.