IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/46.html
   My bibliography  Save this paper

Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility

Author

Listed:
  • Scott I. White
  • Adam E. Clements
  • Stan Hurn

Abstract

Filtering techniques are often applied to the estimation of dynamic latent variable models. However, these techniques are often based on a set assumptions which restrict models to be specified in a linear state-space form. Numerical filtering techniques have been propsed that avoid invoking such restrictive assumptions, thus permitting a wider class of latent variable models to be considered. This paper proposes an accurate yet computationally efficient numerical filtering algorithm (based on a discretisation of the state space) for estimating the general class of dynamic latent variable models. The empirical performance of this algorithm is considered within the context of the stochastic volatility model. It is found that the proposed algorithm outperforms a number of accepted procedures in terms of volatility forecasti

Suggested Citation

  • Scott I. White & Adam E. Clements & Stan Hurn, 2004. "Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility," Econometric Society 2004 Australasian Meetings 46, Econometric Society.
  • Handle: RePEc:ecm:ausm04:46
    as

    Download full text from publisher

    File URL: http://repec.org/esAUSM04/up.6952.1076024138.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Torben G. ANDERSEN & Tim BOLLERSLEV & Nour MEDDAHI, 2002. "Correcting The Errors : A Note On Volatility Forecast Evaluation Based On High-Frequency Data And Realized Volatilities," Cahiers de recherche 21-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    7. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    8. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    9. Watanabe, Toshiaki, 1999. "A Non-linear Filtering Approach to Stochastic Volatility Models with an Application to Daily Stock Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 101-121, March-Apr.
    10. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    11. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "(Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-061, New York University, Leonard N. Stern School of Business-.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
    2. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
    3. Ralf Becker & Adam Clements & Christopher Coleman-Fenn, 2009. "Forecast performance of implied volatility and the impact of the volatility risk premium," NCER Working Paper Series 45, National Centre for Econometric Research.
    4. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
    5. Adam Clements & Scott White, 2005. "Non-linear filtering with state dependant transition probabilities: A threshold (size effect) SV model," School of Economics and Finance Discussion Papers and Working Papers Series 191, School of Economics and Finance, Queensland University of Technology.
    6. Adam Clements & Scott White, 2005. "Nonlinear Filtering for Stochastic Volatility Models with Heavy Tails and Leverage," School of Economics and Finance Discussion Papers and Working Papers Series 192, School of Economics and Finance, Queensland University of Technology.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    6. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    7. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    8. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    9. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    10. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    11. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    12. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    13. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    14. repec:uts:finphd:39 is not listed on IDEAS
    15. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    16. repec:hum:wpaper:sfb649dp2008-063 is not listed on IDEAS
    17. Ronald Mahieu & Rob Bauer, 1998. "A Bayesian analysis of stock return volatility and trading volume," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 671-687.
    18. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    20. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
    21. van der Sluis Pieter J., 1997. "EmmPack 1.01: C/C++ Code for Use with Ox for Estimation of Univariate Stochastic Volatility Models with the Efficient Method of Moments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(3), pages 1-20, October.
    22. Mora Galán, Alberto & Pérez, Ana, 2004. "Stochastic volatility models and the Taylor effect," DES - Working Papers. Statistics and Econometrics. WS ws046315, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    Non-linear filtering; latent variable models; stochastic volatility; volatilitry forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.