Forecasting realised volatility: Does the LASSO approach outperform HAR?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.intfin.2021.101386
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Offer Lieberman & Peter Phillips, 2008.
"Refined Inference on Long Memory in Realized Volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
- Offer Lieberman & Peter C. B. Phillips, 2006. "Refined Inference on Long Memory in Realized Volatility," Cowles Foundation Discussion Papers 1549, Cowles Foundation for Research in Economics, Yale University.
- Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008.
"The Volatility of Realized Volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
- Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
- Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Bollerslev, Tim & Ole Mikkelsen, Hans, 1996.
"Modeling and pricing long memory in stock market volatility,"
Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
- Tom Doan, "undated". "RATS program to replicate Bollerslev-Mikkelson(1996) FIEGARCH models," Statistical Software Components RTZ00173, Boston College Department of Economics.
- WANG , Shin-Huei & HSIAO, Cheng, 2008. "An easy test for two stationary long processes being uncorrelated via AR approximations," LIDAM Discussion Papers CORE 2008047, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013.
"Forecasting a long memory process subject to structural breaks,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
- WANG, Shin-Huei & BAUWENS, Luc & HSIAO, Cheng, 2012. "Forecasting long memory processes subject to structural breaks," LIDAM Discussion Papers CORE 2012048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- WANG, Cindy Shin-Huei & BAUWENS, Luc & HSIAO, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," LIDAM Reprints CORE 2574, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Francesco Audrino & Simon D. Knaus, 2016.
"Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
- Audrino, Francesco & Knaus, Simon, 2012. "Lassoing the HAR model: A Model Selection Perspective on Realized Volatility Dynamics," Economics Working Paper Series 1224, University of St. Gallen, School of Economics and Political Science.
- Poskitt, D.S., 2006. "On The Identification And Estimation Of Nonstationary And Cointegrated Armax Systems," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1138-1175, December.
- Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Francesco Audrino & Lorenzo Camponovo, 2013.
"Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models,"
Papers
1312.1473, arXiv.org.
- Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
- Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Florian Ziel, 2015. "Forecasting Electricity Spot Prices using Lasso: On Capturing the Autoregressive Intraday Structure," Papers 1509.01966, arXiv.org, revised Jan 2016.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
- Nardi, Y. & Rinaldo, A., 2011. "Autoregressive process modeling via the Lasso procedure," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 528-549, March.
- Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
- Mihaela Craioveanu & Eric Hillebrand, 2012. "Why It Is Ok To Use The Har-Rv(1,5,21) Model," Working Papers 1201, University of Central Missouri, Department of Economics & Finance, revised Aug 2012.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Eugenie Hol & Siem Jan Koopman, 2002. "Stock Index Volatility Forecasting with High Frequency Data," Tinbergen Institute Discussion Papers 02-068/4, Tinbergen Institute.
- Audrino Francesco & Huang Chen & Okhrin Ostap, 2019. "Flexible HAR model for realized volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(3), pages 1-22, June.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Heewon Park & Fumitake Sakaori, 2013. "Lag weighted lasso for time series model," Computational Statistics, Springer, vol. 28(2), pages 493-504, April.
- Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
- Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008.
"Measuring downside risk-realised semivariance,"
Economics Papers
2008-W02, Economics Group, Nuffield College, University of Oxford.
- Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk - realised semivariance," OFRC Working Papers Series 2008fe01, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004.
"Analytical Evaluation Of Volatility Forecasts,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
- Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
- Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Jia & Wang, Xinyi & Wang, Xu, 2024. "International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
- Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Ghani, Usman & Zhu, Bo & Ghani, Maria & Khan, Nasir & khan, Raja Danish Akbar, 2023. "Role of oil shocks in US stock market volatility: A new insight from GARCH-MIDAS perspective," Resources Policy, Elsevier, vol. 85(PB).
- Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org.
- Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
- Guo, Xiaozhu & Huang, Yisu & Liang, Chao & Umar, Muhammad, 2022. "Forecasting volatility of EUA futures: New evidence," Energy Economics, Elsevier, vol. 110(C).
- Lyócsa, Štefan & Todorova, Neda, 2024. "Forecasting of clean energy market volatility: The role of oil and the technology sector," Energy Economics, Elsevier, vol. 132(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
- Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
- repec:uts:finphd:39 is not listed on IDEAS
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
- Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017.
"Forecasting With the Standardized Self‐Perturbed Kalman Filter,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," CREATES Research Papers 2014-12, Department of Economics and Business Economics, Aarhus University.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Scharth, Marcel & Medeiros, Marcelo C., 2009.
"Asymmetric effects and long memory in the volatility of Dow Jones stocks,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
- Marcel Scharth & Marcelo Cunha Medeiros, 2006. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," Textos para discussão 532, Department of Economics PUC-Rio (Brazil).
- Dimos Kambouroudis & David McMillan & Katerina Tsakou, 2019. "Forecasting Realized Volatility: The role of implied volatility, leverage effect, overnight returns and volatility of realized volatility," Working Papers 2019-03, Swansea University, School of Management.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2015.
"It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It's all about volatility of volatility: evidence from a two-factor stochastic volatility model," Studies in Economics 1404, School of Economics, University of Kent.
- repec:uts:finphd:38 is not listed on IDEAS
- Rossi, Eduardo & Santucci de Magistris, Paolo, 2013.
"Long memory and tail dependence in trading volume and volatility,"
Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
- Eduardo Rossi & Paolo Santucci de Magistris, 2009. "Long Memory and Tail dependence in Trading Volume and Volatility," CREATES Research Papers 2009-30, Department of Economics and Business Economics, Aarhus University.
- Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
More about this item
Keywords
Volatility Forecasting; HAR; Lasso; VaR;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:74:y:2021:i:c:s1042443121001050. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.