Forecasting macroeconomic indicators for Eurozone and Greece: How useful are the oil price assumptions?
Author
Abstract
Suggested Citation
DOI: 10.52903/wp2022296
Download full text from publisher
References listed on IDEAS
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Ron Alquist & Lutz Kilian, 2010.
"What do we learn from the price of crude oil futures?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
- Kilian, Lutz & Alquist, Ron, 2007. "What Do We Learn from the Price of Crude Oil Futures?," CEPR Discussion Papers 6548, C.E.P.R. Discussion Papers.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012.
"Jump-robust volatility estimation using nearest neighbor truncation,"
Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," CREATES Research Papers 2009-52, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," NBER Working Papers 15533, National Bureau of Economic Research, Inc.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013.
"Forecasting the Price of Oil,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507,
Elsevier.
- Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
- Ron Alquist & Lutz Kilian & Robert J. Vigfusson, 2011. "Forecasting the price of oil," International Finance Discussion Papers 1022, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Alquist, Ron & Vigfusson, Robert J., 2011. "Forecasting the Price of Oil," CEPR Discussion Papers 8388, C.E.P.R. Discussion Papers.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Ole E. Barndorff-Nielsen, 2004.
"Power and Bipower Variation with Stochastic Volatility and Jumps,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
- Gelos, Gaston & Ustyugova, Yulia, 2017.
"Inflation responses to commodity price shocks – How and why do countries differ?,"
Journal of International Money and Finance, Elsevier, vol. 72(C), pages 28-47.
- Mr. Gaston Gelos & Ms. Yulia Ustyugova, 2012. "Inflation Responses to Commodity Price Shocks: How and Why Do Countries Differ?," IMF Working Papers 2012/225, International Monetary Fund.
- Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
- Olivier Coibion & Yuriy Gorodnichenko, 2015.
"Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
- Olivier Coibion & Yuriy Gorodnichenko, 2013. "Is The Phillips Curve Alive and Well After All? Inflation Expectations and the Missing Disinflation," NBER Chapters, in: Lessons from the Financial Crisis for Monetary Policy, National Bureau of Economic Research, Inc.
- Olivier Coibion & Yuriy Gorodnichenko, 2013. "Is The Phillips Curve Alive and Well After All? Inflation Expectations and the Missing Disinflation," NBER Working Papers 19598, National Bureau of Economic Research, Inc.
- Christiane Baumeister & Lutz Kilian, 2014.
"Real-Time Analysis of Oil Price Risks Using Forecast Scenarios,"
IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 62(1), pages 119-145, April.
- Kilian, Lutz & Baumeister, Christiane, 2011. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," CEPR Discussion Papers 8698, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2012. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," Staff Working Papers 12-1, Bank of Canada.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014.
"Are there gains from pooling real-time oil price forecasts?,"
Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2014. "Are There Gains from Pooling Real-Time Oil Price Forecasts?," Staff Working Papers 14-46, Bank of Canada.
- Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010.
"Regression models with mixed sampling frequencies,"
Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
- Elena Andreou, Eric Ghysels & Eric Ghysels & Andros Kourtellos, 2007. "Regression Models with Mixed Sampling Frequencies," University of Cyprus Working Papers in Economics 8-2007, University of Cyprus Department of Economics.
- Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
- John Elder & Apostolos Serletis, 2010.
"Oil Price Uncertainty,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
- John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
- Tom Doan, "undated". "RATS programs to estimate structural VAR-GARCH-M model," Statistical Software Components RTZ00052, Boston College Department of Economics.
- Christiane Baumeister & Lutz Kilian, 2014.
"What Central Bankers Need To Know About Forecasting Oil Prices,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
- Kilian, Lutz & Baumeister, Christiane, 2012. "What Central Bankers Need to Know about Forecasting Oil Prices," CEPR Discussion Papers 9118, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2013. "What Central Bankers Need to Know about Forecasting Oil Prices," Staff Working Papers 13-15, Bank of Canada.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Don Bredin & John Elder & Stilianos Fountas, 2010. "The Effects of Uncertainty about Oil Prices in G-7," Working Papers 200840, Geary Institute, University College Dublin.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Degiannakis, Stavros & Filis, George, 2023.
"Oil price assumptions for macroeconomic policy,"
Energy Economics, Elsevier, vol. 117(C).
- Degiannakis, Stavros & Filis, George, 2020. "Oil price assumptions for macroeconomic policy," MPRA Paper 100705, University Library of Munich, Germany.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Nicholas Apergis, 2023. "Forecasting energy prices: Quantile‐based risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 17-33, January.
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
- Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
- Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Maghyereh Aktham & Sweidan Osama & Awartani Basel, 2020. "Asymmetric Responses of Economic Growth to Daily Oil Price Changes: New Global Evidence from Mixed-data Sampling Approach," Review of Economics, De Gruyter, vol. 71(2), pages 81-99, August.
- Chu, Pyung Kun & Hoff, Kristian & Molnár, Peter & Olsvik, Magnus, 2022. "Crude oil: Does the futures price predict the spot price?," Research in International Business and Finance, Elsevier, vol. 60(C).
- Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014.
"Are there gains from pooling real-time oil price forecasts?,"
Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2014. "Are There Gains from Pooling Real-Time Oil Price Forecasts?," Staff Working Papers 14-46, Bank of Canada.
- Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
- Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
- Christiane Baumeister & Lutz Kilian & Xiaoqing Zhou, 2013.
"Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis,"
Staff Working Papers
13-25, Bank of Canada.
- Kilian, Lutz & Baumeister, Christiane & Zhou, Xiaoqing, 2013. "Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis," CEPR Discussion Papers 9572, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Are product spreads useful for forecasting? An empirical evaluation of the Verleger hypothesis," CFS Working Paper Series 2013/09, Center for Financial Studies (CFS).
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022.
"Forecasting realized volatility of agricultural commodities,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2019. "Forecasting Realized Volatility of Agricultural Commodities," MPRA Paper 96267, University Library of Munich, Germany.
- Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
- Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
More about this item
Keywords
Oil price forecasts; MIDAS; conditional forecasts; core inflation; industrial production;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2022-08-08 (Energy Economics)
- NEP-FOR-2022-08-08 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bog:wpaper:296. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anastasios Rizos (email available below). General contact details of provider: https://edirc.repec.org/data/boggvgr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.