IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.01979.html
   My bibliography  Save this paper

Optimal Portfolio in Intraday Electricity Markets Modelled by L\'evy-Ornstein-Uhlenbeck Processes

Author

Listed:
  • Marco Piccirilli
  • Tiziano Vargiolu

Abstract

We study an optimal portfolio problem designed for an agent operating in intraday electricity markets. The investor is allowed to trade in a single risky asset modelling the continuously traded power and aims to maximize the expected terminal utility of his wealth. We assume a mean-reverting additive process to drive the power prices. In the case of logarithmic utility, we reduce the fully non-linear Hamilton-Jacobi-Bellman equation to a linear parabolic integro-differential equation, for which we explicitly exhibit a classical solution in two cases of modelling interest. The optimal strategy is given implicitly as the solution of an integral equation, which is possible to solve numerically as well as to describe analytically. An analysis of two different approximations for the optimal policy is provided. Finally, we perform a numerical test by adapting the parameters of a popular electricity spot price model.

Suggested Citation

  • Marco Piccirilli & Tiziano Vargiolu, 2018. "Optimal Portfolio in Intraday Electricity Markets Modelled by L\'evy-Ornstein-Uhlenbeck Processes," Papers 1807.01979, arXiv.org.
  • Handle: RePEc:arx:papers:1807.01979
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.01979
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur Henriot, 2014. "Market Design with Centralized Wind Power Management: Handling Low-predictability in Intraday Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Thaleia Zariphopoulou, 1999. "Optimal investment and consumption models with non-linear stock dynamics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 271-296, October.
    3. Laura Pasin & Tiziano Vargiolu, 2010. "Optimal Portfolio for CRRA Utility Functions when Risky Assets are Exponential Additive Processes," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 65-90, February.
    4. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    5. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    6. Fred Espen Benth & Kenneth Hvistendahl Karlsen & Kristin Reikvam, 2003. "Merton's portfolio optimization problem in a Black and Scholes market with non‐Gaussian stochastic volatility of Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 215-244, April.
    7. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    8. Marius Ascheberg & Nicole Branger & Holger Kraft & Frank Thomas Seifried, 2016. "When do jumps matter for portfolio optimization?," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1297-1311, August.
    9. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    10. Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
    11. René Aïd & P. Gruet & H. Pham, 2016. "An optimal trading problem in intraday electricity markets," Post-Print hal-01609481, HAL.
    12. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    13. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    14. repec:dau:papers:123456789/1433 is not listed on IDEAS
    15. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    16. {L}ukasz Delong & Claudia Kluppelberg, 2008. "Optimal investment and consumption in a Black--Scholes market with L\'evy-driven stochastic coefficients," Papers 0806.2570, arXiv.org.
    17. Garnier, Ernesto & Madlener, Reinhard, 2014. "Balancing Forecast Errors in Continuous-Trade Intraday Markets," FCN Working Papers 2/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    19. repec:bla:ecnote:v:39:y:2010:i:s1:p:65-90 is not listed on IDEAS
    20. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    21. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    22. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    23. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    24. Simone Farinelli & Luisa Tibiletti, 2015. "Hydroassets Portfolio Management for Intraday Electricity Trading from a Discrete Time Stochastic Optimization Perspective," Papers 1508.05837, arXiv.org, revised Aug 2017.
    25. Aase, Knut Kristian, 1984. "Optimum portfolio diversification in a general continuous-time model," Stochastic Processes and their Applications, Elsevier, vol. 18(1), pages 81-98, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    2. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    3. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    4. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    5. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    6. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    7. Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    10. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    11. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    12. Alvaro Cartea & Marcelo Figueroa & Helyette Geman, 2009. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 103-122.
    13. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    14. Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
    15. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    16. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.
    17. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    18. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    19. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    20. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.01979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.