IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i6p864-d1357687.html
   My bibliography  Save this article

A Noisy Fractional Brownian Motion Model for Multiscale Correlation Analysis of High-Frequency Prices

Author

Listed:
  • Tim Leung

    (Applied Mathematics Department, University of Washington, Seattle, WA 98195, USA)

  • Theodore Zhao

    (Applied Mathematics Department, University of Washington, Seattle, WA 98195, USA)

Abstract

We analyze the multiscale behaviors of high-frequency intraday prices, with a focus on how asset prices are correlated over different timescales. The multiscale approach proposed in this paper is designed for the analysis of high-frequency intraday prices. It incorporates microstructure noise into the stochastic price process. We consider a noisy fractional Brownian motion model and illustrate its various statistical properties. This leads us to introduce new latent correlation and noise estimators. New numerical algorithms are developed for model estimation using empirical high-frequency data. For a collection of stocks and exchange-traded funds, examples are provided to illustrate the relationship between multiscale correlation and sampling frequency as well as the evolution of multiscale correlation over time.

Suggested Citation

  • Tim Leung & Theodore Zhao, 2024. "A Noisy Fractional Brownian Motion Model for Multiscale Correlation Analysis of High-Frequency Prices," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:864-:d:1357687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/6/864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/6/864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
    2. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    3. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    4. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    5. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    6. Capobianco, Enrico, 2004. "Multiscale stochastic dynamics in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 122-127.
    7. Walid Mensi & Mobeen Ur Rehman & Muhammad Shafullah & Khamis Hamed Al‑Yahyaee & Ahmet Sensoy, 2021. "Correction to: High frequency multiscale relationships among major cryptocurrencies: portfolio management implications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-1, December.
    8. Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
    9. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    10. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2009. "Covariance function of vector self-similar processes," Statistics & Probability Letters, Elsevier, vol. 79(23), pages 2415-2421, December.
    11. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    12. Walid Mensi & Mobeen Ur Rehman & Muhammad Shafiullah & Khamis Hamed Al-Yahyaee & Ahmet Sensoy, 2021. "High frequency multiscale relationships among major cryptocurrencies: portfolio management implications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    3. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    4. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    5. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    6. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    7. Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
    8. Jeremy Large, 2005. "Estimating Quadratic Variation When Quoted Prices Jump by a Constant Increment," Economics Series Working Papers 2005-FE-05, University of Oxford, Department of Economics.
    9. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    10. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    11. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
    12. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
    13. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    14. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    15. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    16. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    17. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    18. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, Department of Economics and Business Economics, Aarhus University.
    19. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    20. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:864-:d:1357687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.