IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0807.4394.html
   My bibliography  Save this paper

Financial Time Series Analysis of SV Model by Hybrid Monte Carlo

Author

Listed:
  • Tetsuya Takaishi

Abstract

We apply the hybrid Monte Carlo (HMC) algorithm to the financial time sires analysis of the stochastic volatility (SV) model for the first time. The HMC algorithm is used for the Markov chain Monte Carlo (MCMC) update of volatility variables of the SV model in the Bayesian inference. We compute parameters of the SV model from the artificial financial data and compare the results from the HMC algorithm with those from the Metropolis algorithm. We find that the HMC decorrelates the volatility variables faster than the Metropolis algorithm. We also make an empirical analysis based on the Yen/Dollar exchange rates.

Suggested Citation

  • Tetsuya Takaishi, 2008. "Financial Time Series Analysis of SV Model by Hybrid Monte Carlo," Papers 0807.4394, arXiv.org.
  • Handle: RePEc:arx:papers:0807.4394
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0807.4394
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Tetsuya Takaishi, 2005. "Simulations Of Financial Markets In A Potts-Like Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1311-1317.
    4. K. Sznajd-Weron & R. Weron, 2002. "A Simple Model Of Price Formation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 115-123.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    8. Tetsuya Takaishi, 2005. "Simulations of financial markets in a Potts-like model," Papers cond-mat/0503156, arXiv.org.
    9. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetsuya Takaishi, 2013. "Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm," Papers 1305.3184, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tetsuya Takaishi, 2009. "An Adaptive Markov Chain Monte Carlo Method for GARCH Model," Papers 0901.0992, arXiv.org.
    2. Tetsuya Takaishi, 2014. "Analysis of Spin Financial Market by GARCH Model," Papers 1409.0118, arXiv.org.
    3. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    4. Liu, Zhenya & Wang, Shixuan, 2017. "Decoding Chinese stock market returns: Three-state hidden semi-Markov model," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 127-149.
    5. Martina Danielova Zaharieva & Mark Trede & Bernd Wilfling, 2017. "Bayesian semiparametric multivariate stochastic volatility with an application to international stock-market co-movements," CQE Working Papers 6217, Center for Quantitative Economics (CQE), University of Muenster.
    6. Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    7. Tetsuya Takaishi, 2013. "Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm," Papers 1305.3184, arXiv.org.
    8. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    9. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    10. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    11. António A. F. Santos, 2015. "On the Forecasting of Financial Volatility Using Ultra-High Frequency Data," GEMF Working Papers 2015-17, GEMF, Faculty of Economics, University of Coimbra.
    12. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    13. Liesenfeld, Roman & Breitung, Jörg, 1998. "Simulation based methods of moments in empirical finance," Tübinger Diskussionsbeiträge 136, University of Tübingen, School of Business and Economics.
    14. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    15. Qiang Zhang & Rui Luo & Yaodong Yang & Yuanyuan Liu, 2018. "Benchmarking Deep Sequential Models on Volatility Predictions for Financial Time Series," Papers 1811.03711, arXiv.org.
    16. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    17. Chiara Pederzoli, 2006. "Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(1), pages 41-59.
    18. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    19. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    20. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0807.4394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.