IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2006fe11.html
   My bibliography  Save this paper

High Dimensional Yield Curves: Models and Forecasting

Author

Listed:
  • Clive G. Bowsher
  • Roland Meeks

Abstract

Functional Signal plus Noise (FSN) models are proposed for analysing the dynamics of a large cross-section of yields or asset prices in which contemporaneous observations are functionally related. The FSN models are used to forecast high dimensional yield curves for US Treasury bonds at the one month ahead horizon. The models achieve large reductions in mean square forecast errors relative to a random walk for yields and readily dominate both the Diebold and Li (2006) and random walk forecasts across all maturities studied. We show that the Expectations Theory (ET) of the term structure completely determines the conditional mean of any zero-coupon yield curve. This enables a novel evaluation of the ET in which its 1-step ahead forecasts are compared with those of rival methods such as the FSN models, with the results strongly supporting the growing body of empirical evidence against the ET. Yield spreads do provide important information for forecasting the yield curve, especially in the case of shorter maturities, but not in the manner prescribed by the Expectations Theory.

Suggested Citation

  • Clive G. Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," OFRC Working Papers Series 2006fe11, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2006fe11
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2006fe11.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    2. McCulloch, J Huston, 1971. "Measuring the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 44(1), pages 19-31, January.
    3. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    4. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    5. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    6. Clive Bowsher, 2004. "Modelling the Dynamics of Cross-Sectional Price Functions: an Econometric Analysis of the Bid and Ask Curves of an Automated Exchange," Economics Series Working Papers 2004-FE-19, University of Oxford, Department of Economics.
    7. Clive G. Bowsher, 2004. "Modelling the Dynamics of Cross-Sectional Price Functions: an Econometric Analysis of the Bid and Ask Curves of an Automated Exchange," OFRC Working Papers Series 2004fe19, Oxford Financial Research Centre.
    8. Siem Jan Koopman & Marius Ooms, 2003. "Time Series Modelling of Daily Tax Revenues," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
    9. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    10. Shea, Gary S, 1992. "Benchmarking the Expectations Hypothesis of the Interest-Rate Term Structure: An Analysis of Cointegration Vectors," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 347-366, July.
    11. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-126, February.
    12. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    13. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    14. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    15. Pagan, A.R. & Hall, A.D. & Martin, V., 1995. "Modelling the Term Structure," Papers 284, Australian National University - Department of Economics.
    16. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    17. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    18. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    19. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    20. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almeida, Caio & Vicente, José, 2008. "The role of no-arbitrage on forecasting: Lessons from a parametric term structure model," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2695-2705, December.
    2. Siem Jan Koopman & Max I.P. Mallee & Michel van der Wel, 2007. "Analyzing the Term Structure of Interest Rates using the Dynamic Nelson-Siegel Model with Time-Varying Parameters," Tinbergen Institute Discussion Papers 07-095/4, Tinbergen Institute.
    3. Song Song & Wolfgang K. Härdle & Ya'acov Ritov, 2014. "Generalized dynamic semi‐parametric factor models for high‐dimensional non‐stationary time series," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 101-131, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
    2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    3. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    4. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    5. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.
    6. Duffee, Gregory, 2013. "Forecasting Interest Rates," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 385-426, Elsevier.
    7. Almeida, Caio & Vicente, José, 2008. "The role of no-arbitrage on forecasting: Lessons from a parametric term structure model," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2695-2705, December.
    8. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
    9. Luis Ceballos & Alberto Naudon & Damián Romero, 2016. "Nominal term structure and term premia: evidence from Chile," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2721-2735, June.
    10. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    11. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    12. Joao Frois Caldeira & Guilherme Valle Moura & Marcelo Savino Portugal, 2011. "Efficient Interest Ratecurve Estimation And Forecasting In Brazil," Anais do XXXVII Encontro Nacional de Economia [Proceedings of the 37th Brazilian Economics Meeting] 133, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    13. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Yield curve factors, term structure volatility, and bond risk premia," SFB 649 Discussion Papers 2008-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Krishnan, C.N.V. & Ritchken, Peter H. & Thomson, James B., 2010. "Predicting credit spreads," Journal of Financial Intermediation, Elsevier, vol. 19(4), pages 529-563, October.
    15. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.
    16. Dick, Christian D. & Schmeling, Maik & Schrimpf, Andreas, 2013. "Macro-expectations, aggregate uncertainty, and expected term premia," European Economic Review, Elsevier, vol. 58(C), pages 58-80.
    17. Zeno Rotondi, 2006. "The Macroeconomy and the Yield Curve: A Review of the Literature with Some New Evidence," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 65(2), pages 193-224, November.
    18. Luciano Vereda & Hélio Lopes & Jessica Kubrusly & Adrian Pizzinga & Taofik Mohammed Ibrahim, 2014. "Yield Curve Forecasts and the Predictive Power of Macro Variables in a VAR Framework," Journal of Reviews on Global Economics, Lifescience Global, vol. 3, pages 377-393.
    19. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2010. "Forecasting Government Bond Yields with Large Bayesian VARs," Working Papers 662, Queen Mary University of London, School of Economics and Finance.
    20. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.

    More about this item

    Keywords

    Yield curve; term structure; expectations theory; FSN models; functional time series; forecasting; state space form; cubic spline.;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2006fe11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://edirc.repec.org/data/frcoxuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.