IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.07288.html
   My bibliography  Save this paper

Smoothing volatility targeting

Author

Listed:
  • Mauro Bernardi
  • Daniele Bianchi
  • Nicolas Bianco

Abstract

We propose an alternative approach towards cost mitigation in volatility-managed portfolios based on smoothing the predictive density of an otherwise standard stochastic volatility model. Specifically, we develop a novel variational Bayes estimation method that flexibly encompasses different smoothness assumptions irrespective of the persistence of the underlying latent state. Using a large set of equity trading strategies, we show that smoothing volatility targeting helps to regularise the extreme leverage/turnover that results from commonly used realised variance estimates. This has important implications for both the risk-adjusted returns and the mean-variance efficiency of volatility-managed portfolios, once transaction costs are factored in. An extensive simulation study shows that our variational inference scheme compares favourably against existing state-of-the-art Bayesian estimation methods for stochastic volatility models.

Suggested Citation

  • Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Smoothing volatility targeting," Papers 2212.07288, arXiv.org.
  • Handle: RePEc:arx:papers:2212.07288
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.07288
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    4. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
    5. Frank Schorfheide & Dongho Song & Amir Yaron, 2018. "Identifying Long‐Run Risks: A Bayesian Mixed‐Frequency Approach," Econometrica, Econometric Society, vol. 86(2), pages 617-654, March.
    6. Darjus Hosszejni & Gregor Kastner, 2019. "Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol," Papers 1906.12123, arXiv.org, revised Feb 2021.
    7. Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.
    8. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    9. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    10. Barroso, Pedro & Detzel, Andrew, 2021. "Do limits to arbitrage explain the benefits of volatility-managed portfolios?," Journal of Financial Economics, Elsevier, vol. 140(3), pages 744-767.
    11. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    12. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
    13. Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
    14. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    15. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    16. Ravi Bansal & Dana Kiku & Amir Yaron, 2010. "Long Run Risks, the Macroeconomy, and Asset Prices," American Economic Review, American Economic Association, vol. 100(2), pages 542-546, May.
    17. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    18. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    19. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    20. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    21. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," The Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    22. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    23. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    24. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    25. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    26. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    27. Patton, Andrew J. & Weller, Brian M., 2020. "What you see is not what you get: The costs of trading market anomalies," Journal of Financial Economics, Elsevier, vol. 137(2), pages 515-549.
    28. Bali, Turan G., 2000. "Testing the Empirical Performance of Stochastic Volatility Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(2), pages 191-215, June.
    29. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    30. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Božović, Miloš, 2024. "VIX-managed portfolios," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    2. Wang, Feifei & Yan, Xuemin Sterling, 2021. "Downside risk and the performance of volatility-managed portfolios," Journal of Banking & Finance, Elsevier, vol. 131(C).
    3. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    4. Gao, Yang & Leung, Henry & Satchell, Stephen, 2022. "Partial moment momentum," Journal of Banking & Finance, Elsevier, vol. 135(C).
    5. Barroso, Pedro & Detzel, Andrew, 2021. "Do limits to arbitrage explain the benefits of volatility-managed portfolios?," Journal of Financial Economics, Elsevier, vol. 140(3), pages 744-767.
    6. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    7. Abhishek Subramanian & Parthajit Kayal, 2023. "Application of Volatility-Managed Portfolios in the Context of a Volatility Index," Working Papers 2023-242, Madras School of Economics,Chennai,India.
    8. Kim, Hyuksoo & Kim, Saejoon, 2022. "Managing downside risk of low-risk anomaly portfolios," Finance Research Letters, Elsevier, vol. 46(PB).
    9. Flögel, Volker & Schlag, Christian & Zunft, Claudia, 2022. "Momentum-Managed Equity Factors," Journal of Banking & Finance, Elsevier, vol. 137(C).
    10. Marie Brière & Ariane Szafarz, 2021. "When it rains, it pours: Multifactor asset management in good and bad times," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 641-669, September.
    11. David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Papers 2106.12262, arXiv.org, revised Feb 2022.
    12. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    13. Blanco, Ivan & De Jesus, Miguel & Remesal, Alvaro, 2023. "Overlapping momentum portfolios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 1-22.
    14. Kim, Junyong, 2024. "Zoom in on momentum," International Review of Financial Analysis, Elsevier, vol. 94(C).
    15. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    16. Qi Xu & Ying Wang, 2021. "Managing volatility in commodity momentum," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 758-782, May.
    17. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    18. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    19. Klaus Grobys & James W. Kolari & Jere Rutanen, 2022. "Factor momentum, option-implied volatility scaling, and investor sentiment," Journal of Asset Management, Palgrave Macmillan, vol. 23(2), pages 138-155, March.
    20. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.07288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.