IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1709.01198.html
   My bibliography  Save this paper

Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets

Author

Listed:
  • Daniela Castro Camilo
  • Miguel de Carvalho
  • Jennifer Wadsworth

Abstract

Extremal dependence between international stock markets is of particular interest in today's global financial landscape. However, previous studies have shown this dependence is not necessarily stationary over time. We concern ourselves with modeling extreme value dependence when that dependence is changing over time, or other suitable covariate. Working within a framework of asymptotic dependence, we introduce a regression model for the angular density of a bivariate extreme value distribution that allows us to assess how extremal dependence evolves over a covariate. We apply the proposed model to assess the dynamics governing extremal dependence of some leading European stock markets over the last three decades, and find evidence of an increase in extremal dependence over recent years.

Suggested Citation

  • Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
  • Handle: RePEc:arx:papers:1709.01198
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1709.01198
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Büttner, David & Hayo, Bernd, 2011. "Determinants of European stock market integration," Economic Systems, Elsevier, vol. 35(4), pages 574-585.
    2. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    3. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    4. Suk-Joong Kim & Fari Moshirian & Eliza Wu, 2018. "Dynamic Stock Market Integration Driven by the European Monetary Union: An Empirical Analysis," World Scientific Book Chapters, in: Information Spillovers and Market Integration in International Finance Empirical Analyses, chapter 10, pages 305-368, World Scientific Publishing Co. Pte. Ltd..
    5. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    6. de Carvalho, Miguel & Oumow, Boris & Segers, Johan & Warchol, Michal, 2013. "A Euclidean Likelihood Estimator for Bivariate Tail Dependence," LIDAM Reprints ISBA 2013008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Karolyi, G Andrew & Stulz, Rene M, 1996. "Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements," Journal of Finance, American Finance Association, vol. 51(3), pages 951-986, July.
    8. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    9. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    10. Brooks, Robin & Del Negro, Marco, 2004. "The rise in comovement across national stock markets: market integration or IT bubble?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 659-680, December.
    11. Fermanian, Jean-David & Wegkamp, Marten H., 2012. "Time-dependent copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 19-29.
    12. Gikas A. Hardouvelis & Dimitrios Malliaropulos & Richard Priestley, 2006. "EMU and European Stock Market Integration," The Journal of Business, University of Chicago Press, vol. 79(1), pages 365-392, January.
    13. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    14. M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
    15. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
    16. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    17. Elif F. Acar & Radu V. Craiu & Fang Yao, 2011. "Dependence Calibration in Conditional Copulas: A Nonparametric Approach," Biometrics, The International Biometric Society, vol. 67(2), pages 445-453, June.
    18. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    19. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    20. Fratzscher, Marcel, 2002. "Financial Market Integration in Europe: On the Effects of EMU on Stock Markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 7(3), pages 165-193, July.
    21. King, Mervyn & Sentana, Enrique & Wadhwani, Sushil, 1994. "Volatility and Links between National Stock Markets," Econometrica, Econometric Society, vol. 62(4), pages 901-933, July.
    22. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
    23. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    24. Philip R. Lane, 2012. "The European Sovereign Debt Crisis," Journal of Economic Perspectives, American Economic Association, vol. 26(3), pages 49-68, Summer.
    25. Miguel de Carvalho & Anthony C. Davison, 2014. "Spectral Density Ratio Models for Multivariate Extremes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 764-776, June.
    26. James, Harold, 2012. "Making the European Monetary Union," Economics Books, Harvard University Press, number 9780674066830, Spring.
    27. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    28. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marfatia, Hardik A., 2017. "A fresh look at integration of risks in the international stock markets: A wavelet approach," Review of Financial Economics, Elsevier, vol. 34(C), pages 33-49.
    2. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    3. Hardik A. Marfatia, 2017. "A fresh look at integration of risks in the international stock markets: A wavelet approach," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 33-49, September.
    4. Graham, Michael & Kiviaho, Jarno & Nikkinen, Jussi, 2012. "Integration of 22 emerging stock markets: A three-dimensional analysis," Global Finance Journal, Elsevier, vol. 23(1), pages 34-47.
    5. Gagnon, Louis & Karolyi, G. Andrew, 2006. "Price and Volatility Transmission across Borders," Working Paper Series 2006-5, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    6. Baele, Lieven, 2005. "Volatility Spillover Effects in European Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(2), pages 373-401, June.
    7. M. Fatih Oztek & Nadir Ocal, 2012. "Integration of China Stock Markets with International Stock Markets: An application of Smooth Transition Conditional Correlation with Double Transition Functions," ERC Working Papers 1209, ERC - Economic Research Center, Middle East Technical University, revised Dec 2012.
    8. Berger, Tino & Pozzi, Lorenzo, 2013. "Measuring time-varying financial market integration: An unobserved components approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 463-473.
    9. Sim, Nicholas, 2016. "Modeling the dependence structures of financial assets through the Copula Quantile-on-Quantile approach," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 31-45.
    10. Wenjing Xie & João Paulo Vieito & Ephraim Clark & Wing-Keung Wong, 2020. "Could Mergers Become More Sustainable? A Study of the Stock Exchange Mergers of NASDAQ and OMX," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    11. Jian Zhou & Yanmin Gao, 2012. "Tail Dependence in International Real Estate Securities Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 128-151, June.
    12. David G. McMillan & Isabel Ruiz, 2009. "Volatility dynamics in three euro exchange rates: correlations, spillovers and commonality," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 1(1), pages 64-74.
    13. Sanjay Sehgal & Piyush Pandey & Florent Deisting, 2018. "Stock Market Integration Dynamics and its Determinants in the East Asian Economic Community Region," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 389-425, June.
    14. Gębka, Bartosz & Karoglou, Michail, 2013. "Have the GIPSI settled down? Breaks and multivariate stochastic volatility models for, and not against, the European financial integration," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3639-3653.
    15. Chen, Peng, 2018. "Understanding international stock market comovements: A comparison of developed and emerging markets," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 451-464.
    16. Chuluun, Tuugi, 2017. "Global portfolio investment network and stock market comovement," Global Finance Journal, Elsevier, vol. 33(C), pages 51-68.
    17. Bekaert, Geert & Harvey, Campbell R., 2003. "Emerging markets finance," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 3-56, February.
    18. Apergis, Nicholas & Christou, Christina & Miller, Stephen M., 2014. "Country and industry convergence of equity markets: International evidence from club convergence and clustering," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 36-58.
    19. Aladesanmi, Olalekan & Casalin, Fabrizio & Metcalf, Hugh, 2019. "Stock market integration between the UK and the US: Evidence over eight decades," Global Finance Journal, Elsevier, vol. 41(C), pages 32-43.
    20. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula," Working Papers 2015_15, Business School - Economics, University of Glasgow.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1709.01198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.