IDEAS home Printed from https://ideas.repec.org/p/ris/smuesw/2017_009.html
   My bibliography  Save this paper

A Specification Test based on the MCMC Output

Author

Listed:
  • Li, Yong

    (Hanqing Advanced Institute of Economics and Finance, Renmin University of China)

  • Yu, Jun

    (School of Economics, Singapore Management University)

  • Zeng, Tao

    (Department of Finance, Wuhan University)

Abstract

A test statistic is proposed to assess the model specification after the model is estimated by Bayesian MCMC methods. The new test is motivated from the power enhancement technique of Fan, Liao and Yao (2015). It combines a component (J1) that tests a null point hypothesis in an expanded model and a power enhancement component (J0) obtained from the null model. It is shown that J0 converges to zero when the null model is correctly specified and diverges when the null model is misspecified. Also shown is that J1 is asymptotically X2-distributed, suggesting that the proposed test is asymptotically pivotal, when the null model is correctly specified. The proposed test has several properties. First, its size distortion is small and hence bootstrap methods can be avoided. Second, it is easy to compute from the MCMC output and hence is applicable to a wide range of models, including latent variable models for which frequentist methods are difficult to use. Third, when the test statistic rejects the specification of the null model and J1 takes a large value, the test suggests the source of misspecification of the null model. The finite sample performance is investigated using simulated data. The method is illustrated in a linear regression model, a linear state-space model, and a stochastic volatility model using real data.

Suggested Citation

  • Li, Yong & Yu, Jun & Zeng, Tao, 2017. "A Specification Test based on the MCMC Output," Economics and Statistics Working Papers 9-2017, Singapore Management University, School of Economics.
  • Handle: RePEc:ris:smuesw:2017_009
    Note: Paper available on: http://ink.library.smu.edu.sg/soe_research/1967/
    as

    Download full text from publisher

    File URL: http://ink.library.smu.edu.sg/soe_research/1967/
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    3. Wooldridge, Jeffrey M., 1992. "A Test for Functional Form Against Nonparametric Alternatives," Econometric Theory, Cambridge University Press, vol. 8(4), pages 452-475, December.
    4. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
    5. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    6. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    7. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    8. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    9. Yoichi Miyata, 2004. "Fully Exponential Laplace Approximations Using Asymptotic Modes," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1037-1049, December.
    10. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    11. Kim, Jae-Young, 1994. "Bayesian Asymptotic Theory in a Time Series Model with a Possible Nonstationary Process," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 764-773, August.
    12. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    13. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    14. Lancaster, Tony, 1984. "The Covariance Matrix of the Information Matrix Test," Econometrica, Econometric Society, vol. 52(4), pages 1051-1053, July.
    15. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    16. Gozalo, Pedro L., 1993. "A Consistent Model Specification Test for Nonparametric Estimation of Regression Function Models," Econometric Theory, Cambridge University Press, vol. 9(3), pages 451-477, June.
    17. Jae-Young Kim, 1998. "Large Sample Properties of Posterior Densities, Bayesian Information Criterion and the Likelihood Principle in Nonstationary Time Series Models," Econometrica, Econometric Society, vol. 66(2), pages 359-380, March.
    18. Jianqing Fan & Yuan Liao & Jiawei Yao, 2015. "Power Enhancement in High‐Dimensional Cross‐Sectional Tests," Econometrica, Econometric Society, vol. 83(4), pages 1497-1541, July.
    19. Zheng, John Xu, 2000. "A Consistent Test Of Conditional Parametric Distributions," Econometric Theory, Cambridge University Press, vol. 16(5), pages 667-691, October.
    20. Arnaud Doucet & Neil Shephard, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Papers 2012-W05, Economics Group, Nuffield College, University of Oxford.
    21. George Poyiadjis & Arnaud Doucet & Sumeetpal S. Singh, 2011. "Particle approximations of the score and observed information matrix in state space models with application to parameter estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 65-80.
    22. Jones, Galin L. & Haran, Murali & Caffo, Brian S. & Neath, Ronald, 2006. "Fixed-Width Output Analysis for Markov Chain Monte Carlo," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1537-1547, December.
    23. Horowitz, Joel L., 1994. "Bootstrap-based critical values for the information matrix test," Journal of Econometrics, Elsevier, vol. 61(2), pages 395-411, April.
    24. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    25. Presnell, Brett & Boos, Dennis D., 2004. "The IOS Test for Model Misspecification," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 216-227, January.
    26. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    27. Davidson, Russell & MacKinnon, James G, 1992. "A New Form of the Information Matrix Test," Econometrica, Econometric Society, vol. 60(1), pages 145-157, January.
    28. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    29. Qian M. Zhou & Peter X.-K. Song & Mary E. Thompson, 2012. "Information Ratio Test for Model Misspecification in Quasi-Likelihood Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 205-213, March.
    30. Chesher, Andrew & Spady, Richard, 1991. "Asymptotic Expansions of the Information Matrix Test Statistic," Econometrica, Econometric Society, vol. 59(3), pages 787-815, May.
    31. Orme, Chris, 1990. "The small-sample performance of the information-matrix test," Journal of Econometrics, Elsevier, vol. 46(3), pages 309-331, December.
    32. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    33. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-1070, September.
    34. Tingting Cheng & Jiti Gao & Peter CB Phillips, 2017. "Bayesian estimation based on summary statistics: Double asymptotics and practice," Monash Econometrics and Business Statistics Working Papers 4/17, Monash University, Department of Econometrics and Business Statistics.
    35. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Zhiwu & Niu, Linlin & Zhang, Chen, 2022. "Affine arbitrage-free yield net models with application to the euro debt crisis," Journal of Econometrics, Elsevier, vol. 230(1), pages 201-220.
    2. Lijuan Huo & Jin Seo Cho, 2021. "Testing for the sandwich-form covariance matrix of the quasi-maximum likelihood estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 293-317, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    2. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    3. Chesher, Andrew & Dhaene, Geert & Gouriéroux, Christian & Scaillet, Olivier, 1999. "Bartlett Identities Tests," LIDAM Discussion Papers IRES 1999019, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    4. MacKinnon, James G, 1992. "Model Specification Tests and Artificial Regressions," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 102-146, March.
    5. Teresa Aparicio & Inmaculada Villanua, 2001. "The asymptotically efficient version of the information matrix test in binary choice models. A study of size and power," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(2), pages 167-182.
    6. Paulo Parente & Richard Smith, 2012. "Exogeneity in semiparametric moment condition models," CeMMAP working papers 30/12, Institute for Fiscal Studies.
    7. Ellison, Glenn & Ellison, Sara Fisher, 2000. "A simple framework for nonparametric specification testing," Journal of Econometrics, Elsevier, vol. 96(1), pages 1-23, May.
    8. Dhaene, Geert & Hoorelbeke, Dirk, 2004. "The information matrix test with bootstrap-based covariance matrix estimation," Economics Letters, Elsevier, vol. 82(3), pages 341-347, March.
    9. Davidson, Russell & MacKinnon, James G., 1989. "Testing for Consistency using Artificial Regressions," Econometric Theory, Cambridge University Press, vol. 5(3), pages 363-384, December.
    10. E Fe-Rodriguez & C D Orme, 2005. "The Asymptotic Equivalence of Kernel-based Nonparametric Conditional Moment Test Statistics," Economics Discussion Paper Series 0504, Economics, The University of Manchester.
    11. Stomberg, Christopher & White, Halbert, 2000. "Bootstrapping the Information Matrix Test," University of California at San Diego, Economics Working Paper Series qt158451cr, Department of Economics, UC San Diego.
    12. Liu, Xiaobin & Li, Yong & Yu, Jun & Zeng, Tao, 2022. "Posterior-based Wald-type statistics for hypothesis testing," Journal of Econometrics, Elsevier, vol. 230(1), pages 83-113.
    13. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    14. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    15. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    16. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    17. Mora Rodriguez, Jhon James, 2013. "Introduccion a la teoría del consumidor [Introduction to Consumer Theory]," MPRA Paper 48129, University Library of Munich, Germany, revised 08 Jul 2013.
    18. Susanne M. Schennach & Daniel Wilhelm, 2017. "A Simple Parametric Model Selection Test," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
    19. Jeffrey M. Woodridge, 1988. "A Unified Approach to Robust, Regression-Based Specification Tests," Working papers 480, Massachusetts Institute of Technology (MIT), Department of Economics.
    20. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.

    More about this item

    Keywords

    Specification test; Point hypothesis test; Latent variable models; Markov chain Monte Carlo; Power enhancement technique; Information matrix;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:smuesw:2017_009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cheong Pei Qi (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.