IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/24-08.html
   My bibliography  Save this paper

Belief distortions and Disagreement about Inflation

Author

Listed:
  • Giuseppe Pagano Giorgianni

    (Sapienza University Rome, Italy)

  • Valeria Patella

    (Sapienza University Rome, Italy)

Abstract

Disagreement in beliefs correlates with consensus expectations, inflation, and forecast errors. We evaluate whether disagreement emerges endogenously from irrational beliefs, and whether it is relevant for inflation and unemployment outcomes. Using the microdata of households' one-year-ahead inflation expectations from the Michigan Survey of Consumers, we estimate a functional data measure of inflation beliefs’ distribution. Disagreement explains most of its effect on inflation. Then, local projections simulate a belief distortion shock and show that an increase in consensus pessimism - defined as upward biases in inflation and unemployment forecasts - leads agents to price future uncertainty using information from the cross-sectional distribution of inflation expectations: higher inflation disagreement reflects lower expected profits, hence leading firms to increase inflation; whereas, they become more attentive towards firing decisions, explaining negligible effects on unemployment in the short to medium term.

Suggested Citation

  • Giuseppe Pagano Giorgianni & Valeria Patella, 2024. "Belief distortions and Disagreement about Inflation," Working Paper series 24-08, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:24-08
    as

    Download full text from publisher

    File URL: http://rcea.org/RePEc/pdf/wp24-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
    2. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.
    3. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    4. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    5. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.
    6. Koop, Gary, 1996. "Parameter uncertainty and impulse response analysis," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 135-149.
    7. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
    8. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    9. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 869-902.
    10. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    11. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    12. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    13. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    14. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    15. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    16. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    17. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    18. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    19. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    2. Hollmayr, Josef & Matthes, Christian, 2015. "Learning about fiscal policy and the effects of policy uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 59(C), pages 142-162.
    3. Michele Campolieti & Deborah Gefang & Gary Koop, 2011. "Time Variation in the Dynamics of Worker Flows: Evidence from the US and Canada," Working Papers 1138, University of Strathclyde Business School, Department of Economics.
    4. Michal Franta & Roman Horvath & Marek Rusnak, 2014. "Evaluating changes in the monetary transmission mechanism in the Czech Republic," Empirical Economics, Springer, vol. 46(3), pages 827-842, May.
    5. Chan, Joshua & Strachan, Rodney, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," MPRA Paper 39360, University Library of Munich, Germany.
    6. Chauvet, Marcelle & Tierney, Heather L. R., 2007. "Real Time Changes in Monetary Policy," MPRA Paper 16199, University Library of Munich, Germany, revised Apr 2009.
    7. repec:rim:rimwps:26-08 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
    2. Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2008. "On the Evolution of Monetary Policy," Working Paper series 24_08, Rimini Centre for Economic Analysis.
    3. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    4. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    5. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    6. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    7. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    8. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    9. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    10. Koop, Gary & Potter, Simon, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Journal of Econometrics, Elsevier, vol. 159(1), pages 134-150, November.
    11. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.
    12. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
    13. Jhonatan Portilla & Gabriel Rodríguez & Paul Castillo B., 2022. "Evolution of Monetary Policy in Peru: An Empirical Application Using a Mixture Innovation TVP-VAR-SV Model [Metas de Inflación en Una Economía Dolarizada: La Experencia Del Perú]," CESifo Economic Studies, CESifo Group, vol. 68(1), pages 98-126.
    14. Gary Koop & Simon M. Potter, 2007. "A flexible approach to parametric inference in nonlinear time series models," Staff Reports 285, Federal Reserve Bank of New York.
    15. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    16. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    17. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    18. Benoit Mojon, 2007. "Monetary policy, output composition and the Great Moderation," Working Paper Series WP-07-07, Federal Reserve Bank of Chicago.
    19. He, Zhongfang, 2009. "Forecasting output growth by the yield curve: the role of structural breaks," MPRA Paper 28208, University Library of Munich, Germany.
    20. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.

    More about this item

    Keywords

    Inflation; Disagreement; Survey Expectations Microdata; Functional Data Analysis; Local Projections; Counterfactuals;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:24-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.