IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i3p811-834.html
   My bibliography  Save this article

Nonparametric adaptive estimation for integrated diffusions

Author

Listed:
  • Comte, F.
  • Genon-Catalot, V.
  • Rozenholc, Y.

Abstract

Let (Vt) be a stationary and [beta]-mixing diffusion with unknown drift and diffusion coefficient. The integrated process is observed at discrete times with regular sampling interval . For both the drift function and the diffusion coefficient of the unobserved diffusion (Vt), we build nonparametric adaptive estimators based on a penalized least square approach. We derive risk bounds for the estimators. Interpreting these bounds through the asymptotic framework of high frequency data, we show that our estimators reach the minimax optimal rates of convergence, under some constraints on the sampling interval. The algorithms of estimation are implemented for several examples of diffusion models.

Suggested Citation

  • Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:3:p:811-834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00073-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Comte & V. Genon‐Catalot, 2006. "Penalized Projection Estimator for Volatility Density," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 875-893, December.
    2. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    3. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    4. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Post-Print hal-00404901, HAL.
    5. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 83-104, March.
    6. F. Comte & Y. Rozenholc, 2004. "A new algorithm for fixed design regression and denoising," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 449-473, September.
    7. Michael Sørensen, 2000. "Prediction-based estimating functions," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 123-147.
    8. Hoffmann, Marc, 1999. "Adaptive estimation in diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 135-163, January.
    9. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    10. Susanne Ditlevsen & Michael Sørensen, 2004. "Inference for Observations of Integrated Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 417-429, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    2. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    3. F. Comte & V. Genon-Catalot & Y. Rozenholc, 2010. "Nonparametric estimation for a stochastic volatility model," Finance and Stochastics, Springer, vol. 14(1), pages 49-80, January.
    4. Robert Azencott & Peng Ren & Ilya Timofeyev, 2020. "Realised volatility and parametric estimation of Heston SDEs," Finance and Stochastics, Springer, vol. 24(3), pages 723-755, July.
    5. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    3. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    4. Salima El Kolei & Fabien Navarro, 2022. "Contrast estimation for noisy observations of diffusion processes via closed-form density expansions," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 303-336, July.
    5. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    6. Nicolau, João, 2008. "Modeling financial time series through second-order stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2700-2704, November.
    7. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 24, July-Dece.
    8. Yunyan Wang & Lixin Zhang & Mingtian Tang, 2012. "Re-weighted functional estimation of second-order diffusion processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1129-1151, November.
    9. Arnaud Gloter, 2007. "Efficient estimation of drift parameters in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(4), pages 495-519, October.
    10. Jean Jacod & Mark Podolskij, 2012. "A Test for the Rank of the Volatility Process: The Random Perturbation Approach," Global COE Hi-Stat Discussion Paper Series gd12-268, Institute of Economic Research, Hitotsubashi University.
    11. Jean Jacod & Mark Podolskij, 2012. "A test for the rank of the volatility process: the random perturbation approach," CREATES Research Papers 2012-57, Department of Economics and Business Economics, Aarhus University.
    12. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    13. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    14. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    15. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    16. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2004, January-A.
    17. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    18. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    19. Song Yuping & Hou Weijie & Zhou Shengyi, 2019. "Variance reduction estimation for return models with jumps using gamma asymmetric kernels," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(5), pages 1-38, December.
    20. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:3:p:811-834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.