IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.01501.html
   My bibliography  Save this paper

Non-Gaussian Stochastic Volatility Model with Jumps via Gibbs Sampler

Author

Listed:
  • Arthur T. Rego
  • Thiago R. dos Santos

Abstract

In this work, we propose a model for estimating volatility from financial time series, extending the non-Gaussian family of space-state models with exact marginal likelihood proposed by Gamerman, Santos and Franco (2013). On the literature there are models focused on estimating financial assets risk, however, most of them rely on MCMC methods based on Metropolis algorithms, since full conditional posterior distributions are not known. We present an alternative model capable of estimating the volatility, in an automatic way, since all full conditional posterior distributions are known, and it is possible to obtain an exact sample of parameters via Gibbs Sampler. The incorporation of jumps in returns allows the model to capture speculative movements of the data, so that their influence does not propagate to volatility. We evaluate the performance of the algorithm using synthetic and real data time series. Keywords: Financial time series, Stochastic volatility, Gibbs Sampler, Dynamic linear models.

Suggested Citation

  • Arthur T. Rego & Thiago R. dos Santos, 2018. "Non-Gaussian Stochastic Volatility Model with Jumps via Gibbs Sampler," Papers 1809.01501, arXiv.org, revised Oct 2018.
  • Handle: RePEc:arx:papers:1809.01501
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.01501
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    2. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    3. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    4. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    5. Haitao Li & Martin T. Wells & Cindy L. Yu, 2008. "A Bayesian Analysis of Return Dynamics with Lévy Jumps," The Review of Financial Studies, Society for Financial Studies, vol. 21(5), pages 2345-2378, September.
    6. Kastner, Gregor, 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
    7. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    8. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    9. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    10. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    11. Nicolas Merener, 2016. "Concentrated Production and Conditional Heavy Tails in Commodity Returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(1), pages 46-65, January.
    12. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    13. Bandi, Federico M. & Renò, Roberto, 2018. "Nonparametric Stochastic Volatility," Econometric Theory, Cambridge University Press, vol. 34(6), pages 1207-1255, December.
    14. Viktor Todorov, 2010. "Variance Risk-Premium Dynamics: The Role of Jumps," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 345-383, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2019. "Non-Gaussian VARMA model with stochastic volatility and applications in stock market bubbles," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 129-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. R. Santos, 2018. "A Bayesian GED-Gamma stochastic volatility model for return data: a marginal likelihood approach," Papers 1809.01489, arXiv.org.
    2. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    3. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    4. Huang, Jing-Zhi & Ni, Jun & Xu, Li, 2022. "Leverage effect in cryptocurrency markets," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    5. Angelos Alexopoulos & Petros Dellaportas & Omiros Papaspiliopoulos, 2019. "Bayesian prediction of jumps in large panels of time series data," Papers 1904.05312, arXiv.org, revised Apr 2021.
    6. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    7. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    8. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    9. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    10. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    11. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    12. Lee, Suzanne S. & Mykland, Per A., 2012. "Jumps in equilibrium prices and market microstructure noise," Journal of Econometrics, Elsevier, vol. 168(2), pages 396-406.
    13. Karamé, Frédéric, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
    14. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    15. Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.
    16. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    17. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    18. Antonio A. F. Santos, 2021. "Bayesian Estimation for High-Frequency Volatility Models in a Time Deformed Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 455-479, February.
    19. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    20. Maciej Kostrzewski, 2016. "Bayesian SVLEDEJ Model for Detecting Jumps in Logarithmic Growth Rates of One Month Forward Gas Contract Prices," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(3), pages 161-179, September.

    More about this item

    Keywords

    financial time series; stochastic volatility; gibbs sampler; dynamic linear models.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.01501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.