IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v134y2011i1p224-237.html
   My bibliography  Save this article

State estimation of a shop floor using improved resampling rules for particle filtering

Author

Listed:
  • Celik, Nurcin
  • Son, Young-Jun

Abstract

Operational inefficiencies in supply chains cost industries millions of dollars every year. Much of these inefficiencies arise due to the lack of a coherent planning and control mechanism, which requires accurate yet timely state estimation of these large-scale dynamic systems given their massive datasets. While Bayesian inferencing procedures based on particle filtering paradigm may meet these requirements in state estimation, they may end up in a situation called degeneracy, where a single particle abruptly possesses significant amount of normalized weights. Resampling rules for importance sampling prevent the sampling procedure from generating degenerated weights for particles. In this work, we propose two new resampling rules concerning minimized variance (VRR) and minimized bias (BRR). The proposed rules are derived theoretically and their performances are benchmarked against that of the minimized variance and half-width based resampling rules existing in the literature using a simulation of a semiconductor die manufacturing shop floor in terms of their resampling qualities (mean and variance of root mean square errors) and computational efficiencies, where we identify the circumstances that the proposed resampling rules become particularly useful.

Suggested Citation

  • Celik, Nurcin & Son, Young-Jun, 2011. "State estimation of a shop floor using improved resampling rules for particle filtering," International Journal of Production Economics, Elsevier, vol. 134(1), pages 224-237, November.
  • Handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:224-237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527311002878
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
    2. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    2. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    3. Borodin, Valeria & Dolgui, Alexandre & Hnaien, Faicel & Labadie, Nacima, 2016. "Component replenishment planning for a single-level assembly system under random lead times: A chance constrained programming approach," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 79-86.
    4. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.
    5. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Laurent Lim, Lâm & Alpan, Gülgün & Penz, Bernard, 2014. "Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach," International Journal of Production Economics, Elsevier, vol. 151(C), pages 20-36.
    7. Unai Aldasoro & María Merino & Gloria Pérez, 2019. "Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic," Annals of Operations Research, Springer, vol. 280(1), pages 151-187, September.
    8. Alessandro Fedele & Raffaele Miniaci, 2010. "Do Social Enterprises Finance Their Investments Differently from For-profit Firms? The Case of Social Residential Services in Italy," Journal of Social Entrepreneurship, Taylor & Francis Journals, vol. 1(2), pages 174-189, October.
    9. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    10. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    11. Chia-Nan Wang & Nhat-Luong Nhieu & Trang Thi Thu Tran, 2021. "Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    12. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    13. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    14. Sivadasan, Suja & Smart, Janet & Huaccho Huatuco, Luisa & Calinescu, Anisoara, 2013. "Reducing schedule instability by identifying and omitting complexity-adding information flows at the supplier–customer interface," International Journal of Production Economics, Elsevier, vol. 145(1), pages 253-262.
    15. Weissman-Miller Deborah, 2013. "Novel Point Estimation from a Semiparametric Ratio Estimator (SPRE): Long-Term Health Outcomes from Short-Term Linear Data, with Application to Weight Loss in Obesity," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 175-184, November.
    16. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    17. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    18. António A. F. Santos, 2015. "On the Forecasting of Financial Volatility Using Ultra-High Frequency Data," GEMF Working Papers 2015-17, GEMF, Faculty of Economics, University of Coimbra.
    19. Bisin, A. & Geanakoplos, J.D. & Gottardi, P. & Minelli, E. & Polemarchakis, H., 2011. "Markets and contracts," Journal of Mathematical Economics, Elsevier, vol. 47(3), pages 279-288.
    20. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:224-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.