IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v57y2018icp221-230.html
   My bibliography  Save this article

Asymmetric semi-volatility spillover effects in EMU stock markets

Author

Listed:
  • Caloia, Francesco Giuseppe
  • Cipollini, Andrea
  • Muzzioli, Silvia

Abstract

The aim of this paper is to quantify the strength and the direction of semi-volatility spillovers between five EMU stock markets over the 2000–2016 period. We use upside and downside semi-volatilities as proxies for downside risk and upside opportunities. In this way, we aim to complement the literature, which has focused mainly on the contemporaneous correlation between positive and negative returns, with the evidence of asymmetry also in semi-volatility transmission. For this purpose, we apply the Diebold and Yilmaz (2012) methodology, based on a generalized forecast error variance decomposition, to downside and upside realized semi-volatility series. While the analysis of Diebold and Yilmaz (2012) is based on a stationary VAR, we take into account the long-memory behaviour of the series, by using the multivariate extension of the HAR model (named VHAR model). Moreover, we cast light on how the choice of the normalization scheme can bias the net-spillover computation in a full sample as well as in a rolling sample analysis.

Suggested Citation

  • Caloia, Francesco Giuseppe & Cipollini, Andrea & Muzzioli, Silvia, 2018. "Asymmetric semi-volatility spillover effects in EMU stock markets," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 221-230.
  • Handle: RePEc:eee:finana:v:57:y:2018:i:c:p:221-230
    DOI: 10.1016/j.irfa.2018.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521918301704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2018.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    2. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    4. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    5. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    6. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    7. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    8. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    10. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    11. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    12. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    2. Singh, Amanjot, 2021. "Investigating the dynamic relationship between litigation funding, gold, bitcoin and the stock market: The case of Australia," Economic Modelling, Elsevier, vol. 97(C), pages 45-57.
    3. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Doğan, Buhari & Adekoya, Oluwasegun B. & Wohar, Mark, 2024. "Asymmetric spillover effects in energy markets," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 470-502.
    4. Qu, Fang & Chen, Yufeng & Zheng, Biao, 2021. "Is new energy driven by crude oil, high-tech sector or low-carbon notion? New evidence from high-frequency data," Energy, Elsevier, vol. 230(C).
    5. Maghyereh, Aktham & Awartani, Basel & Virk, Nader S., 2022. "Asymmetric risk transmissions between oil, gold and US equities: Recent evidence from the realized variance of the futures prices," Resources Policy, Elsevier, vol. 79(C).
    6. Francesco Caloia & Andrea Cipollini & Silvia Muzzioli, 2018. "On the financial connectedness of the commodity market: a replication of the Diebold and Yilmaz (2012) study," Department of Economics 0131, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    7. BenSaïda, Ahmed, 2019. "Good and bad volatility spillovers: An asymmetric connectedness," Journal of Financial Markets, Elsevier, vol. 43(C), pages 78-95.
    8. Maki, Daiki, 2024. "Evaluation of volatility spillovers for asymmetric realized covariance," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    9. Çelik, İsmail & Sak, Ahmet Furkan & Höl, Arife Özdemir & Vergili, Gizem, 2022. "The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    10. Alshater, Muneer M. & Alqaralleh, Huthaifa & El Khoury, Rim, 2023. "Dynamic asymmetric connectedness in technological sectors," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    11. Caloia, Francesco Giuseppe & Cipollini, Andrea & Muzzioli, Silvia, 2019. "How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study," Energy Economics, Elsevier, vol. 84(C).
    12. Wang, Ze & Gao, Xiangyun & An, Haizhong & Tang, Renwu & Sun, Qingru, 2020. "Identifying influential energy stocks based on spillover network," International Review of Financial Analysis, Elsevier, vol. 68(C).
    13. Carlos Pinho & Isabel Maldonado, 2022. "Commodity and Equity Markets: Volatility and Return Spillovers," Commodities, MDPI, vol. 1(1), pages 1-16, July.
    14. Li, Wenqi, 2021. "COVID-19 and asymmetric volatility spillovers across global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    15. Naeem, Muhammad Abubakr & Senthilkumar, Arunachalam & Arfaoui, Nadia & Mohnot, Rajesh, 2024. "Mapping fear in financial markets: Insights from dynamic networks and centrality measures," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).
    16. Muhammad Niaz Khan & Suzanne G. M. Fifield & Nongnuch Tantisantiwong & David M. Power, 2022. "Changes in co-movement and risk transmission between South Asian stock markets amidst the development of regional co-operation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 87-117, March.
    17. Muzammil Khurshid & Muhammad Azeem & Nisar Ahmad, 2023. "Volatility Spillovers From The Japanese Stock Market To Emerging Stock Markets," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 12(2), pages 118-125.
    18. Lovcha, Yuliya & Pérez Laborda, Àlex, 2018. "Volatility Spillovers in a Long-Memory VAR: an Application to Energy Futures Returns," Working Papers 2072/307362, Universitat Rovira i Virgili, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishimura, Yusaku & Tsutsui, Yoshiro & Hirayama, Kenjiro, 2018. "Do international investors cause stock market spillovers? Comparing responses of cross-listed stocks between accessible and inaccessible markets," Economic Modelling, Elsevier, vol. 69(C), pages 237-248.
    2. Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2017. "Do International Investors Cause Stock Market Comovements? Comparing Responses of Cross-Listed Stocks between Accessible and Inaccessible Markets," Discussion Papers in Economics and Business 17-01, Osaka University, Graduate School of Economics.
    3. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    4. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    5. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    6. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    7. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2017. "Asymmetric volatility connectedness on the forex market," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 39-56.
    8. Maki, Daiki, 2024. "Evaluation of volatility spillovers for asymmetric realized covariance," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    9. Zhang, Zhikai & Wang, Yudong & Li, Bin, 2023. "Asymmetric spillover of geopolitical risk and oil price volatility: A global perspective," Resources Policy, Elsevier, vol. 83(C).
    10. Shafiullah, Muhammad & Senthilkumar, Arunachalam & Lucey, Brian M. & Naeem, Muhammad Abubakr, 2024. "Deciphering asymmetric spillovers in US industries: Insights from higher-order moments," Research in International Business and Finance, Elsevier, vol. 70(PA).
    11. Iwanicz-Drozdowska, Małgorzata & Rogowicz, Karol & Kurowski, Łukasz & Smaga, Paweł, 2021. "Two decades of contagion effect on stock markets: Which events are more contagious?," Journal of Financial Stability, Elsevier, vol. 55(C).
    12. Dimitrios Louzis, 2015. "Measuring spillover effects in Euro area financial markets: a disaggregate approach," Empirical Economics, Springer, vol. 49(4), pages 1367-1400, December.
    13. Sheng, Lin Wen & Uddin, Gazi Salah & Sen, Ding & Hao, Zhu Shi, 2024. "The asymmetric volatility spillover across Shanghai, Hong Kong and the U.S. stock markets: A regime weighted measure and its forecast inference," International Review of Financial Analysis, Elsevier, vol. 91(C).
    14. Abricha, Amal & Ben Amar, Amine & Bellalah, Makram, 2024. "Commodity futures markets under stress and stress-free periods: Further insights from a quantile connectedness approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 229-246.
    15. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan & Vo, Xuan Vinh, 2023. "Portfolio diversification during the COVID-19 pandemic: Do vaccinations matter?," Journal of Financial Stability, Elsevier, vol. 65(C).
    16. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    17. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
    19. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    20. Chanatásig-Niza, Evelyn & Ciarreta, Aitor & Zarraga, Ainhoa, 2022. "A volatility spillover analysis with realized semi(co)variances in Australian electricity markets," Energy Economics, Elsevier, vol. 111(C).

    More about this item

    Keywords

    Semi-volatility; Asymmetry; Forecast error variance decomposition; Spillover; VHAR;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • F30 - International Economics - - International Finance - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:57:y:2018:i:c:p:221-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.