IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1614-d590878.html
   My bibliography  Save this article

Forecasting the Volatility of the Cryptocurrency Market by GARCH and Stochastic Volatility

Author

Listed:
  • Jong-Min Kim

    (Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA)

  • Chulhee Jun

    (Department of Finance, Bloomsburg University of Pennsylvania, Bloomsburg, PA 17815, USA)

  • Junyoup Lee

    (School of Business Administration, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea)

Abstract

This study examines the volatility of nine leading cryptocurrencies by market capitalization—Bitcoin, XRP, Ethereum, Bitcoin Cash, Stellar, Litecoin, TRON, Cardano, and IOTA-by using a Bayesian Stochastic Volatility (SV) model and several GARCH models. We find that when we deal with extremely volatile financial data, such as cryptocurrencies, the SV model performs better than the GARCH family models. Moreover, the forecasting errors of the SV model, compared with the GARCH models, tend to be more accurate as forecast time horizons are longer. This deepens our insight into volatility forecast models in the complex market of cryptocurrencies.

Suggested Citation

  • Jong-Min Kim & Chulhee Jun & Junyoup Lee, 2021. "Forecasting the Volatility of the Cryptocurrency Market by GARCH and Stochastic Volatility," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1614-:d:590878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bação Pedro & Duarte António Portugal & Sebastião Helder & Redzepagic Srdjan, 2018. "Information Transmission Between Cryptocurrencies: Does Bitcoin Rule the Cryptocurrency World?," Scientific Annals of Economics and Business, Sciendo, vol. 65(2), pages 97-117, June.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
    4. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    5. Kastner, Gregor, 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
    6. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    7. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    8. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    9. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    12. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    13. Jong-Min Kim & Hojin Jung & Li Qin, 2017. "A new generalized volatility proxy via the stochastic volatility model," Applied Economics, Taylor & Francis Journals, vol. 49(23), pages 2259-2268, May.
    14. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    15. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    16. Steve Hyun & Jimin Lee & Jong-Min Kim & Chulhee Jun, 2019. "What Coins Lead in the Cryptocurrency Market: Using Copula and Neural Networks Models," JRFM, MDPI, vol. 12(3), pages 1-14, August.
    17. Anne Haubo Dyhrberg, 2015. "Bitcoin, Gold and the Dollar – a GARCH Volatility Analysis," Working Papers 201520, School of Economics, University College Dublin.
    18. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2019. "On long memory effects in the volatility measure of Cryptocurrencies," Finance Research Letters, Elsevier, vol. 28(C), pages 95-100.
    19. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    20. Jong†Min Kim & Hojin Jung, 2018. "Time series forecasting using functional partial least square regression with stochastic volatility, GARCH, and exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 269-280, April.
    21. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ha, Le Thanh & Nham, Nguyen Thi Hong, 2022. "An application of a TVP-VAR extended joint connected approach to explore connectedness between WTI crude oil, gold, stock and cryptocurrencies during the COVID-19 health crisis," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    2. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    3. Mensi, Walid & El Khoury, Rim & Ali, Syed Riaz Mahmood & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Quantile dependencies and connectedness between the gold and cryptocurrency markets: Effects of the COVID-19 crisis," Research in International Business and Finance, Elsevier, vol. 65(C).
    4. Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
    5. Samir Poudel & Rajendra Paudyal & Burak Cankaya & Naomi Sterlingsdottir & Marissa Murphy & Shital Pandey & Jorge Vargas & Khem Poudel, 2023. "Cryptocurrency price and volatility predictions with machine learning," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 642-660, December.
    6. Apostolos Ampountolas, 2022. "Cryptocurrencies Intraday High-Frequency Volatility Spillover Effects Using Univariate and Multivariate GARCH Models," IJFS, MDPI, vol. 10(3), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    2. Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
    3. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    4. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    5. Liu, Wei & Semeyutin, Artur & Lau, Chi Keung Marco & Gozgor, Giray, 2020. "Forecasting Value-at-Risk of Cryptocurrencies with RiskMetrics type models," Research in International Business and Finance, Elsevier, vol. 54(C).
    6. Siwen Zhou, 2021. "Exploring the driving forces of the Bitcoin currency exchange rate dynamics: an EGARCH approach," Empirical Economics, Springer, vol. 60(2), pages 557-606, February.
    7. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    8. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    9. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    10. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    11. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
    12. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    13. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    14. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    15. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    16. Achraf Ghorbel & Ahmed Jeribi, 2021. "Investigating the relationship between volatilities of cryptocurrencies and other financial assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 817-843, December.
    17. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    18. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    19. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    20. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1614-:d:590878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.