IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i7p3509-3528.html
   My bibliography  Save this article

Auxiliary mixture sampling with applications to logistic models

Author

Listed:
  • Fruhwirth-Schnatter, Sylvia
  • Fruhwirth, Rudolf

Abstract

No abstract is available for this item.

Suggested Citation

  • Fruhwirth-Schnatter, Sylvia & Fruhwirth, Rudolf, 2007. "Auxiliary mixture sampling with applications to logistic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3509-3528, April.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:7:p:3509-3528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00372-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. K. Carter & R. Kohn, 1997. "Semiparametric Bayesian Inference for Time Series with Mixed Spectra," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 255-268.
    2. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    3. Zellner, Arnold & Rossi, Peter E., 1984. "Bayesian analysis of dichotomous quantal response models," Journal of Econometrics, Elsevier, vol. 25(3), pages 365-393, July.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    6. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    7. Weber, Andrea, 2002. "State Dependence and Wage Dynamics: A Heterogeneous Markov Chain Model for Wage Mobility in Austria," Economics Series 114, Institute for Advanced Studies.
    8. John Geweke & Michael P. Keane, 1997. "Mixture of normals probit models," Staff Report 237, Federal Reserve Bank of Minneapolis.
    9. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    10. Chib, Siddhartha & Greenberg, Edward & Winkelmann, Rainer, 1998. "Posterior simulation and Bayes factors in panel count data models," Journal of Econometrics, Elsevier, vol. 86(1), pages 33-54, June.
    11. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    12. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    13. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    14. Fruhwirth-Schnatter, Sylvia & Tuchler, Regina & Otter, Thomas, 2004. "Bayesian Analysis of the Heterogeneity Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 2-15, January.
    15. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven Scott, 2011. "Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models," Statistical Papers, Springer, vol. 52(1), pages 87-109, February.
    2. Sylvia Frühwirth‐Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter‐Ebmer, 2012. "Labor market entry and earnings dynamics: Bayesian inference using mixtures‐of‐experts Markov chain clustering," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1116-1137, November.
    3. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    4. Sylvia Kaufmann, 2011. "K-state switching models with endogenous transition distributions," Working Papers 2011-13, Swiss National Bank.
    5. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    6. Nakajima, Jouchi & Kunihama, Tsuyoshi & Omori, Yasuhiro & Frühwirth-Schnatter, Sylvia, 2012. "Generalized extreme value distribution with time-dependence using the AR and MA models in state space form," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3241-3259.
    7. Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
    8. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    9. Wagner, Helga & Tüchler, Regina, 2010. "Bayesian estimation of random effects models for multivariate responses of mixed data," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1206-1218, May.
    10. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.
    11. Sylvia Frühwirth-Schnatter & Christoph Pamminger, 2009. "Bayesian Clustering of Categorical Time Series Using Finite Mixtures of Markov Chain Models," NRN working papers 2009-07, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    2. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    3. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    4. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    6. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    7. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    8. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    9. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    10. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
    11. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    12. Siddhartha Chib & Minchul Shin & Fei Tan, 2023. "DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 69-111, January.
    13. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    14. Gary Koop, 2004. "Modelling the evolution of distributions: an application to Major League baseball," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(4), pages 639-655, November.
    15. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    16. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    17. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    18. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    19. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    20. Daziano, Ricardo A. & Achtnicht, Martin, 2014. "Accounting for uncertainty in willingness to pay for environmental benefits," Energy Economics, Elsevier, vol. 44(C), pages 166-177.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:7:p:3509-3528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.