IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v37y2021i4p1355-1375.html
   My bibliography  Save this article

Variational Bayes approximation of factor stochastic volatility models

Author

Listed:
  • Gunawan, David
  • Kohn, Robert
  • Nott, David

Abstract

Estimation and prediction in high dimensional multivariate factor stochastic volatility models is an important and active research area, because such models allow a parsimonious representation of multivariate stochastic volatility. Bayesian inference for factor stochastic volatility models is usually done by Markov chain Monte Carlo methods (often by particle Markov chain Monte Carlo methods), which are usually slow for high dimensional or long time series because of the large number of parameters and latent states involved. Our article makes two contributions. The first is to propose a fast and accurate variational Bayes methods to approximate the posterior distribution of the states and parameters in factor stochastic volatility models. The second is to extend this batch methodology to develop fast sequential variational updates for prediction as new observations arrive. The methods are applied to simulated and real datasets, and shown to produce good approximate inference and prediction compared to the latest particle Markov chain Monte Carlo approaches, but are much faster.

Suggested Citation

  • Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.
  • Handle: RePEc:eee:intfor:v:37:y:2021:i:4:p:1355-1375
    DOI: 10.1016/j.ijforecast.2021.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920702100073X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2021.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    4. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    5. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    6. Barigozzi, Matteo & Hallin, Marc, 2020. "Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals," Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
    7. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    8. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    9. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    10. Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
    11. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    12. Adam J. Rothman & Elizaveta Levina & Ji Zhu, 2010. "A new approach to Cholesky-based covariance regularization in high dimensions," Biometrika, Biometrika Trust, vol. 97(3), pages 539-550.
    13. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    14. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Papers 2106.12262, arXiv.org, revised Feb 2022.
    2. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Bank of Russia Working Paper Series wps104, Bank of Russia.
    3. Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.
    4. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    5. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Smoothing volatility targeting," Papers 2212.07288, arXiv.org.
    6. João Pedro Coli de Souza Monteneri Nacinben & Márcio Laurini, 2024. "Multivariate Stochastic Volatility Modeling via Integrated Nested Laplace Approximations: A Multifactor Extension," Econometrics, MDPI, vol. 12(1), pages 1-28, February.
    7. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    8. Ghaemi Asl, Mahdi & Raheem, Ibrahim D. & Rashidi, Muhammad Mahdi, 2023. "Do stochastic risks flow between industrial and precious metals, Islamic stocks, green bonds, green stocks, clean investments, major foreign exchange rates, and Bitcoin?," Resources Policy, Elsevier, vol. 86(PA).
    9. Martin Magris & Mostafa Shabani & Alexandros Iosifidis, 2022. "Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics in Limit-Order Book Markets," Papers 2203.03613, arXiv.org, revised Jan 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    2. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    3. Rezitis, Anthony N. & Kastner, Gregor, 2021. "On the joint volatility dynamics in international dairy commodity markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(2), January.
    4. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in dairy markets," Papers 2104.12707, arXiv.org.
    5. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    6. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    7. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    8. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    9. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    10. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    11. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    12. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    13. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    14. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    15. Niyati Bhanja & Samia Nasreen & Arif Billah Dar & Aviral Kumar Tiwari, 2022. "Connectedness in International Crude Oil Markets," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 227-262, January.
    16. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Papers 2004.11486, arXiv.org.
    17. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    18. David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Papers 2106.12262, arXiv.org, revised Feb 2022.
    19. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    20. Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019. "Forecast density combinations of dynamic models and data driven portfolio strategies," Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:37:y:2021:i:4:p:1355-1375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.