The Dynamic Factor Network Model with an Application to Global Credit-Risk
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
References listed on IDEAS
- Jung, Robert C. & Liesenfeld, Roman & Richard, Jean-François, 2011.
"Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 73-85.
- Jung, Robert & Liesenfeld, Roman & Richard, Jean-François, 2008. "Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity," Economics Working Papers 2008-12, Christian-Albrechts-University of Kiel, Department of Economics.
- Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
- Robert C. Jung & Roman Liesenfeld & Jean-François Richard, 2011.
"Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 73-85, January.
- Jung, Robert & Liesenfeld, Roman & Richard, Jean-François, 2008. "Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity," Economics Working Papers 2008-12, Christian-Albrechts-University of Kiel, Department of Economics.
- Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
- Stéphane Bonhomme & Elena Manresa, 2015.
"Grouped Patterns of Heterogeneity in Panel Data,"
Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
- Stéphane Bonhomme & Elena Manresa, 2012. "Grouped Patterns of Heterogeneity in Panel Data," Working Papers wp2012_1208, CEMFI.
- Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012.
"Econometric measures of connectedness and systemic risk in the finance and insurance sectors,"
Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
- Monica Billio & Mila Getmansky & Andrew W. Lo & Loriana Pelizzon, 2010. "Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors," NBER Chapters, in: Market Institutions and Financial Market Risk, National Bureau of Economic Research, Inc.
- Monica Billio & Mila Getmansky & Andrew W. Lo & Loriana Pelizzon, 2011. "Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors," Working Papers 2011_21, Department of Economics, University of Venice "Ca' Foscari".
- Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
- Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
- S. J. Koopman & G. Mesters, 2017.
"Empirical Bayes Methods for Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 486-498, July.
- Siem Jan Koopman & Geert Mesters, 2014. "Empirical Bayes Methods for Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-061/III, Tinbergen Institute.
- Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996.
"Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results,"
Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
- Vassilis A. Hajivassiliou & Daniel L. McFadden & Paul Ruud, 1993. "Simulation of Multivariate Normal Rectangle Probabilities and their Derivatives: Theoretical and Computational Results," Working Papers _024, Yale University.
- Craig, Ben & von Peter, Goetz, 2014.
"Interbank tiering and money center banks,"
Journal of Financial Intermediation, Elsevier, vol. 23(3), pages 322-347.
- Ben R. Craig & Goetz von Peter, 2009. "Interbank tiering and money center banks," Working Papers (Old Series) 0912, Federal Reserve Bank of Cleveland.
- Ben Craig & Goetz von Peter, 2010. "Interbank tiering and money center banks," BIS Working Papers 322, Bank for International Settlements.
- Ben R. Craig & Goetz von Peter, 2010. "Interbank tiering and money center banks," Working Papers (Old Series) 1014, Federal Reserve Bank of Cleveland.
- Craig, Ben R. & von Peter, Goetz, 2010. "Interbank tiering and money center banks," Discussion Paper Series 2: Banking and Financial Studies 2010,12, Deutsche Bundesbank.
- Liesenfeld, Roman & Richard, Jean-François, 2010. "Efficient estimation of probit models with correlated errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 367-376, June.
- Mesters, G. & Koopman, S.J., 2014.
"Generalized dynamic panel data models with random effects for cross-section and time,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
- Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- in ’t Veld, Daan & van Lelyveld, Iman, 2014. "Finding the core: Network structure in interbank markets," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 27-40.
- Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
- Borus Jungbacker & Siem Jan Koopman, 2015. "Likelihood‐based dynamic factor analysis for measurement and forecasting," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-21, June.
- J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
- Nowicki K. & Snijders T. A. B., 2001. "Estimation and Prediction for Stochastic Blockstructures," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1077-1087, September.
- Fricke, Daniel & Lux, Thomas, 2012. "Core-periphery structure in the overnight money market: Evidence from the e-MID trading platform," Kiel Working Papers 1759, Kiel Institute for the World Economy (IfW Kiel).
- Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
- Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
- Daniel Dimitrov & Sweder van Wijnbergen, 2022. "Quantifying Systemic Risk in the Presence of Unlisted Banks: Application to the Dutch Financial Sector," Tinbergen Institute Discussion Papers 22-034/VI, Tinbergen Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bräuning, Falk & Koopman, Siem Jan, 2020. "The dynamic factor network model with an application to international trade," Journal of Econometrics, Elsevier, vol. 216(2), pages 494-515.
- Mesters, G. & Koopman, S.J., 2014.
"Generalized dynamic panel data models with random effects for cross-section and time,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
- Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
- Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
- Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2015.
"Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2011. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 11-057/4, Tinbergen Institute, revised 27 Jan 2012.
- Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
- Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
- Siem Jan Koopman & Rutger Lit & André Lucas, 2017.
"Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
- Siem Jan Koopman & Rutger Lit & Andre Lucas, 2015. "Intraday Stochastic Volatility in Discrete Price Changes: the Dynamic Skellam Model," Tinbergen Institute Discussion Papers 15-076/IV/DSF94, Tinbergen Institute.
- Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
- Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
- Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011-11, Christian-Albrechts-University of Kiel, Department of Economics.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Affinito, Massimiliano & Franco Pozzolo, Alberto, 2017.
"The interbank network across the global financial crisis: Evidence from Italy,"
Journal of Banking & Finance, Elsevier, vol. 80(C), pages 90-107.
- Massimiliano Affinito & Alberto Franco Pozzolo, 2017. "The interbank network across the global financial crisis: evidence from Italy," Temi di discussione (Economic working papers) 1118, Bank of Italy, Economic Research and International Relations Area.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
- Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
- André A. Monteiro, 2008. "Parameter Driven Multi-state Duration Models: Simulated vs. Approximate Maximum Likelihood Estimation," Tinbergen Institute Discussion Papers 08-021/2, Tinbergen Institute.
- Blasques, Francisco & Bräuning, Falk & Lelyveld, Iman van, 2018.
"A dynamic network model of the unsecured interbank lending market,"
Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 310-342.
- Francisco Blasques & Falk Bräuning & Iman van Lelyveld, 2015. "A dynamic network model of the unsecured interbank lending market," BIS Working Papers 491, Bank for International Settlements.
- Francisco Blasques & Falk Bräuning & Iman Van Lelyveld, 2016. "A dynamic network model of the unsecured interbank lending market," Working Papers 16-3, Federal Reserve Bank of Boston.
- Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
- Serda S. Öztürk & Thanasis Stengos, 2017. "A Multivariate Stochastic Volatility Model Applied to a Panel of S&P500 Stocks in Different Industries," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 479-490, September.
More about this item
Keywords
Network Analysis; Dynamic Factor Models; Blockmodels; Credit-Risk Spillovers;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2016-12-04 (Banking)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20160105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.