Realized skewness and the short-term predictability for aggregate stock market volatility
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econmod.2021.105614
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Dennis, Patrick & Mayhew, Stewart, 2002. "Risk-Neutral Skewness: Evidence from Stock Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(3), pages 471-493, September.
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Todd E. Clark & Michael W. McCracken, 2009.
"Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
- Todd E. Clark & Michael W. McCracken, 2004. "Improving forecast accuracy by combining recursive and rolling forecasts," Research Working Paper RWP 04-10, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2008. "Improving forecast accuracy by combining recursive and rolling forecasts," Working Papers 2008-028, Federal Reserve Bank of St. Louis.
- Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010.
"Threshold bipower variation and the impact of jumps on volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
- Fulvio Corsi & Davide Pirino & Roberto Reno', 2010. "Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting," LEM Papers Series 2010/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
- Schwert, G. William, 1989.
"Business cycles, financial crises, and stock volatility,"
Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 31(1), pages 83-125, January.
- Schwert, G.W., 1988. "Business Cycles, Financial Crises And Stock Volatility," Papers 88-06, Rochester, Business - General.
- G. William Schwert, 1989. "Business Cycles, Financial Crises, and Stock Volatility," NBER Working Papers 2957, National Bureau of Economic Research, Inc.
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
- Feng Ma & Yaojie Zhang & M. I. M. Wahab & Xiaodong Lai, 2019. "The role of jumps in the agricultural futures market on forecasting stock market volatility: New evidence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(5), pages 400-414, August.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Jondeau, Eric & Zhang, Qunzi & Zhu, Xiaoneng, 2019.
"Average skewness matters,"
Journal of Financial Economics, Elsevier, vol. 134(1), pages 29-47.
- Eric JONDEAU & Qunzi ZHANG, 2015. "Average Skewness Matters!," Swiss Finance Institute Research Paper Series 15-47, Swiss Finance Institute.
- Zhang, Yaojie & Ma, Feng & Zhu, Bo, 2019. "Intraday momentum and stock return predictability: Evidence from China," Economic Modelling, Elsevier, vol. 76(C), pages 319-329.
- Fernandez-Perez, Adrian & Frijns, Bart & Fuertes, Ana-Maria & Miffre, Joelle, 2018.
"The skewness of commodity futures returns,"
Journal of Banking & Finance, Elsevier, vol. 86(C), pages 143-158.
- Adrian Fernandez-Perez & Bart Frijns & Ana-Maria Fuertes & Joelle Miffre, 2018. "The skewness of commodity futures returns," Post-Print hal-01678744, HAL.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
- Malcolm Baker & Jeffrey Wurgler, 2006.
"Investor Sentiment and the Cross‐Section of Stock Returns,"
Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
- Malcolm Baker & Jeffrey Wurgler, 2004. "Investor Sentiment and the Cross-Section of Stock Returns," NBER Working Papers 10449, National Bureau of Economic Research, Inc.
- Borochin, Paul & Chang, Hao & Wu, Yangru, 2020. "The information content of the term structure of risk-neutral skewness," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 247-274.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012.
"Jump-robust volatility estimation using nearest neighbor truncation,"
Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," CREATES Research Papers 2009-52, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," NBER Working Papers 15533, National Bureau of Economic Research, Inc.
- repec:hal:journl:peer-00741630 is not listed on IDEAS
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- John H. Cochrane, 1999.
"New facts in finance,"
Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
- John H. Cochrane, 1999. "New Facts in Finance," NBER Working Papers 7169, National Bureau of Economic Research, Inc.
- John H. Cochrane, 1999. "New Facts in Finance," CRSP working papers 490, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
- Wang, Yudong & Pan, Zhiyuan & Wu, Chongfeng & Wu, Wenfeng, 2020. "Industry equi-correlation: A powerful predictor of stock returns," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 1-24.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012.
"A comprehensive look at financial volatility prediction by economic variables,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2010. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," CREATES Research Papers 2010-58, Department of Economics and Business Economics, Aarhus University.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
- Broll, Michael, 2016. "The skewness risk premium in currency markets," Economic Modelling, Elsevier, vol. 58(C), pages 494-511.
- Jian, Zhihong & Li, Xupei, 2021. "Skewness-based market integration: A systemic risk measure across international equity markets," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
- Huang, Darien & Schlag, Christian & Shaliastovich, Ivan & Thimme, Julian, 2019. "Volatility-of-Volatility Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(6), pages 2423-2452, December.
- Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
- Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015.
"Does realized skewness predict the cross-section of equity returns?,"
Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
- Diego Amaya & Peter Christoffersen & Kris Jacobs & Aurelio Vasquez, 2013. "Does Realized Skewness Predict the Cross-Section of Equity Returns?," CREATES Research Papers 2013-41, Department of Economics and Business Economics, Aarhus University.
- Choudhry, Taufiq & Papadimitriou, Fotios I. & Shabi, Sarosh, 2016. "Stock market volatility and business cycle: Evidence from linear and nonlinear causality tests," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 89-101.
- Ebert, Sebastian & Hilpert, Christian, 2019. "Skewness preference and the popularity of technical analysis," Journal of Banking & Finance, Elsevier, vol. 109(C).
- Junjie Hu & Wolfgang Karl Hardle & Weiyu Kuo, 2019.
"Risk of Bitcoin Market: Volatility, Jumps, and Forecasts,"
Papers
1912.05228, arXiv.org, revised Dec 2021.
- Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
- Ruipeng Liu & Rangan Gupta, 2022.
"Investors’ Uncertainty and Forecasting Stock Market Volatility,"
Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(3), pages 327-337, July.
- Ruipeng Liu & Rangan Gupta, 2020. "Investors' Uncertainty and Forecasting Stock Market Volatility," Working Papers 202090, University of Pretoria, Department of Economics.
- Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2002.
"Econometric analysis of realized volatility and its use in estimating stochastic volatility models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013.
"Market skewness risk and the cross section of stock returns,"
Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
- Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2010. "Market Skewness Risk and the Cross-Section of Stock Returns," Working Papers 11-18, University of Pennsylvania, Wharton School, Weiss Center.
- Eric Jondeau & Xuewu Wang & Zhipeng Yan & Qunzi Zhang, 2020. "Skewness and index futures return," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1648-1664, November.
- Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
- Zhang, Yaojie & Wei, Yu & Ma, Feng & Yi, Yongsheng, 2019. "Economic constraints and stock return predictability: A new approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 1-9.
- Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
- Linda Allen & Turan G. Bali & Yi Tang, 2012. "Does Systemic Risk in the Financial Sector Predict Future Economic Downturns?," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3000-3036.
- Ole E. Barndorff-Nielsen, 2004.
"Power and Bipower Variation with Stochastic Volatility and Jumps,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
- Dai, Zhifeng & Zhou, Huiting & Kang, Jie & Wen, Fenghua, 2021. "The skewness of oil price returns and equity premium predictability," Energy Economics, Elsevier, vol. 94(C).
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
- William Schwert, G., 1989. "Business cycles, financial crises, and stock volatility : Reply to Shiller," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 31(1), pages 133-137, January.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
- Jiang, Shangwei & Jin, Xiu, 2021. "Effects of investor sentiment on stock return volatility: A spatio-temporal dynamic panel model," Economic Modelling, Elsevier, vol. 97(C), pages 298-306.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
- Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2015.
"What does financial volatility tell us about macroeconomic fluctuations?,"
Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 340-360.
- Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2010. "What does financial volatility tell us about macroeconomic fluctuations?," MPRA Paper 34104, University Library of Munich, Germany, revised Jun 2011.
- Marcelle Chauvet & Zeynep Senyuz & Emre Yoldas, 2013. "What does financial volatility tell us about macroeconomic fluctuations?," Finance and Economics Discussion Series 2013-61, Board of Governors of the Federal Reserve System (U.S.).
- Marcelle Chauvet & Zeynep Senyuz & Emre Yoldas, 2012. "What does financial volatility tell us about macroeconomic fluctuations?," Finance and Economics Discussion Series 2012-09, Board of Governors of the Federal Reserve System (U.S.).
- Brian H. Boyer & Keith Vorkink, 2014. "Stock Options as Lotteries," Journal of Finance, American Finance Association, vol. 69(4), pages 1485-1527, August.
- Liang, Chao & Ma, Feng & Li, Ziyang & Li, Yan, 2020. "Which types of commodity price information are more useful for predicting US stock market volatility?," Economic Modelling, Elsevier, vol. 93(C), pages 642-650.
- Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016.
"Short interest and aggregate stock returns,"
Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
- David E. Rapach & Matthew C. Ringgenberg & Guofu Zhou, 2016. "Short interest and aggregate stock returns," CEMA Working Papers 716, China Economics and Management Academy, Central University of Finance and Economics.
- Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
- Liu, Li & Pan, Zhiyuan, 2020. "Forecasting stock market volatility: The role of technical variables," Economic Modelling, Elsevier, vol. 84(C), pages 55-65.
- Yaojie Zhang & Feng Ma & Chao Liang & Yi Zhang, 2021. "Good variance, bad variance, and stock return predictability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4410-4423, July.
- Nonejad, Nima, 2017. "Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 131-154.
- James S. Doran & David R. Peterson & Brian C. Tarrant, 2007. "Is there information in the volatility skew?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(10), pages 921-959, October.
- Fei Sun & Yijun Hu, 2018. "Quasiconvex risk measures with markets volatility," Papers 1806.08701, arXiv.org, revised Jun 2019.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
- Wen, Danyan & Wang, Yudong & Zhang, Yaojie, 2021. "Intraday return predictability in China’s crude oil futures market: New evidence from a unique trading mechanism," Economic Modelling, Elsevier, vol. 96(C), pages 209-219.
- Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
- Lehrer, Steven & Xie, Tian & Zhang, Xinyu, 2021. "Social media sentiment, model uncertainty, and volatility forecasting," Economic Modelling, Elsevier, vol. 102(C).
- T. Clifton Green & Byoung-Hyoun Hwang, 2012. "Initial Public Offerings as Lotteries: Skewness Preference and First-Day Returns," Management Science, INFORMS, vol. 58(2), pages 432-444, February.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost, 2019. "Policy News and Stock Market Volatility," NBER Working Papers 25720, National Bureau of Economic Research, Inc.
- Fei Sun & Yijun Hu, 2018. "Systemic risk measures with markets volatility," Papers 1812.06185, arXiv.org, revised Jun 2019.
- Przemysław S. Stilger & Alexandros Kostakis & Ser-Huang Poon, 2017. "What Does Risk-Neutral Skewness Tell Us About Future Stock Returns?," Management Science, INFORMS, vol. 63(6), pages 1814-1834, June.
- Li Liu & Feng Ma & Qing Zeng & Yaojie Zhang, 2020. "Forecasting the aggregate stock market volatility in a data-rich world," Applied Economics, Taylor & Francis Journals, vol. 52(32), pages 3448-3463, June.
- Kraus, Alan & Litzenberger, Robert H, 1976. "Skewness Preference and the Valuation of Risk Assets," Journal of Finance, American Finance Association, vol. 31(4), pages 1085-1100, September.
- Chen, Jian & Jiang, Fuwei & Xue, Shuyu & Yao, Jiaquan, 2019. "The world predictive power of U.S. equity market skewness risk," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 210-227.
- Michael Donadelli & Marcus Jüppner & Antonio Paradiso & Christian Schlag, 2019. "Temperature Volatility Risk," Working Papers 2019:05, Department of Economics, University of Venice "Ca' Foscari".
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
- Mengxi He & Yaojie Zhang & Yudong Wang & Danyan Wen, 2024. "Modelling and forecasting crude oil price volatility with climate policy uncertainty," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
- Matteo Foglia & Vasilios Plakandaras & Rangan Gupta & Elie Bouri, 2023. "Multi-Layer Spillovers between Volatility and Skewness in International Stock Markets Over a Century of Data: The Role of Disaster Risks," Working Papers 202337, University of Pretoria, Department of Economics.
- Jin, Daxiang & He, Mengxi & Xing, Lu & Zhang, Yaojie, 2022. "Forecasting China's crude oil futures volatility: How to dig out the information of other energy futures volatilities?," Resources Policy, Elsevier, vol. 78(C).
- Elie Bouri & Rangan Gupta & Asingamaanda Liphadzi & Christian Pierdzioch, 2024. "Forecasting Stock Returns Volatility of the G7 Over Centuries: The Role of Climate Risks," Working Papers 202424, University of Pretoria, Department of Economics.
- Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting Realized US Stock Market Volatility: Is there a Role for Economic Policy Uncertainty?," Working Papers 202408, University of Pretoria, Department of Economics.
- Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
- Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
- Chen, Yan & Liu, Yakun & Zhang, Feipeng, 2024. "Coskewness and the short-term predictability for Bitcoin return," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
- Ma, Feng & Guo, Yangli & Chevallier, Julien & Huang, Dengshi, 2022. "Macroeconomic attention, economic policy uncertainty, and stock volatility predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Dai, Zhifeng & Chang, Xiaoming, 2021. "Forecasting stock market volatility: Can the risk aversion measure exert an important role?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
- Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
- Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
- Li, Zhenxiong & Yao, Xingzhi & Izzeldin, Marwan, 2023. "On the right jump tail inferred from the VIX market," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Lu, Xinjie & Ma, Feng & Wang, Jianqiong & Dong, Dayong, 2022. "Singlehanded or joint race? Stock market volatility prediction," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 734-754.
- Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
More about this item
Keywords
Realized skewness; Stock volatility; Predictive regression; Forecast performance; Risk transmission;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:103:y:2021:i:c:s0264999321002030. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.