IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i3p609-625..html
   My bibliography  Save this article

Variance estimation in the particle filter

Author

Listed:
  • A Lee
  • N Whiteley

Abstract

SummaryThis paper concerns numerical assessment of Monte Carlo error in particle filters. We show that by keeping track of certain key features of the genealogical structure arising from resampling operations, it is possible to estimate variances of a number of Monte Carlo approximations that particle filters deliver. All our estimators can be computed from a single run of a particle filter. We establish that, as the number of particles grows, our estimators are weakly consistent for asymptotic variances of the Monte Carlo approximations and some of them are also non-asymptotically unbiased. The asymptotic variances can be decomposed into terms corresponding to each time step of the algorithm, and we show how to estimate each of these terms consistently. When the number of particles may vary over time, this allows approximation of the asymptotically optimal allocation of particle numbers.

Suggested Citation

  • A Lee & N Whiteley, 2018. "Variance estimation in the particle filter," Biometrika, Biometrika Trust, vol. 105(3), pages 609-625.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:3:p:609-625.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy028
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai‐Dang Dau & Nicolas Chopin, 2022. "Waste‐free sequential Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 114-148, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    2. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    3. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    4. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    5. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    6. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    7. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    8. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    9. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    10. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2017. "Testing for volatility co-movement in bivariate stochastic volatility models," Documentos de Trabajo del ICAE 2017-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    11. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    12. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    13. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    14. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    15. Giovanni Gallipoli & Gianluigi Pelloni, 2013. "Macroeconomic Effects of Job Reallocations: A Survey," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 5(2), pages 127-176, December.
    16. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    17. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    18. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    19. Fleischhacker, Jan, 2024. "Fiscal policy and the business cycle: An argument for non-linear policy rules," MPRA Paper 122497, University Library of Munich, Germany.
    20. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:3:p:609-625.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.