IDEAS home Printed from https://ideas.repec.org/a/ris/utmsje/0150.html
   My bibliography  Save this article

Volatility And Kurtosis Of Daily Stock Returns At Mse

Author

Listed:
  • Ivanovski, Zoran

    (University of Tourism and Management in Skopje, Macedonia)

  • Stojanovski, Toni

    (University of Information Science and Technology “St Pault te Postile” Ohrid, Macedonia)

  • Narasanov, Zoran

    (Winner Insurance, Vienna Insurance Group, Skopje, Macedonia)

Abstract

Prominent financial stock pricing models are built on assumption that asset returns follow a normal (Gaussian) distribution. However, many authors argue that in the practice stock returns are often characterized by skewness and kurtosis, so we test the existence of the Gaussian distribution of stock returns and calculate the kurtosis of several stocks at the Macedonian Stock Exchange (MSE). Obtaining information about the shape of distribution is an important step for models of pricing risky assets. The daily stock returns at Macedonian Stock Exchange (MSE) are characterized by high volatility and non-Gaussian behaviors as well as they are extremely leptokurtic. The analysis of MSE time series stock returns determine volatility clustering and high kurtosis. The fact that daily stock returns at MSE are not normally distributed put into doubt results that rely heavily on this assumption and have significant implications for portfolio management. We consider this stock market as good representatives of emerging markets. Therefore, we argue that our results are valid for other similar emerging stock markets.

Suggested Citation

  • Ivanovski, Zoran & Stojanovski, Toni & Narasanov, Zoran, 2015. "Volatility And Kurtosis Of Daily Stock Returns At Mse," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 6(2), pages 209-221.
  • Handle: RePEc:ris:utmsje:0150
    as

    Download full text from publisher

    File URL: http://utmsjoe.mk/files/Vol.%206%20No.%202/UTMSJOE-2015-0602-003-Ivanovski-Stojanovski-Narasanov.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Heiko Ebens, 2000. "The Distribution of Stock Return Volatility," NBER Working Papers 7933, National Bureau of Economic Research, Inc.
    2. Alexandros Gabrielsen & Axel Kirchner & Zhuoshi Liu & Paolo Zagaglia, 2015. "Forecasting Value-At-Risk With Time-Varying Variance, Skewness And Kurtosis In An Exponential Weighted Moving Average Framework," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-29.
    3. Tihana Skrinjaric, 2014. "Investment Strategy on the Zagreb Stock Exchange Based on Dynamic DEA," Croatian Economic Survey, The Institute of Economics, Zagreb, vol. 16(1), pages 129-160, April.
    4. Chamberlain, Gary, 1983. "A characterization of the distributions that imply mean--Variance utility functions," Journal of Economic Theory, Elsevier, vol. 29(1), pages 185-201, February.
    5. Kovačić, Zlatko, 2007. "Forecasting volatility: Evidence from the Macedonian stock exchange," MPRA Paper 5319, University Library of Munich, Germany.
    6. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    7. Zoran Ivanovski & Zoran Narasanov & Nadica Ivanovska, 2015. "Volatility And Kurtosis At Emerging Markets: Comparative Analysis Of Macedonian Stock Exchange And Six Stock Markets From Central And Eastern Europe," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 9(1), pages 84-93.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    11. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Andong & Hudson, Robert & Rhodes, Mark & Zhang, Sijia & Gregoriou, Andros, 2021. "Stock liquidity and return distribution: Evidence from the London Stock Exchange," Finance Research Letters, Elsevier, vol. 39(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoran Ivanovski & Zoran Narasanov & Nadica Ivanovska, 2015. "Volatility And Kurtosis At Emerging Markets: Comparative Analysis Of Macedonian Stock Exchange And Six Stock Markets From Central And Eastern Europe," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 9(1), pages 84-93.
    2. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    3. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    4. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    5. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    7. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    8. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    9. Jaramillo-López, Oscar Andrés & Forero-Laverde, Germán & Venegas-Martínez, Francisco, 2020. "Evolución del supuesto de normalidad en finanzas: un análisis epistemológico del tipo Popper-Kuhn ¿Por qué la normalidad no cae en desuso? [Evolution of the assumption of normality in finance: a ep," MPRA Paper 101938, University Library of Munich, Germany.
    10. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    11. Alexander S. Sangare, 2005. "Efficience des marchés : un siècle après Bachelier," Revue d'Économie Financière, Programme National Persée, vol. 81(4), pages 107-132.
    12. Klaus Schredelseker, 2012. "Finanzkrise — Mitschuld der Theorie?," Schmalenbach Journal of Business Research, Springer, vol. 64(8), pages 833-845, December.
    13. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    14. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    15. Novkovska, Blagica & Serafimovic, Gordana, 2018. "Recognizing The Vulnerability Of Generation Z To Economic And Social Risks," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 9(1), pages 29-37.
    16. Xuan Vinh Vo & Kevin Daly, 2008. "Volatility amongst firms in the Dow Jones Eurostoxx50 Index," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 569-582.
    17. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639, December.
    18. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    19. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    20. David Daewhan Cho, 2004. "Uncertainty in Second Moments: Implications for Portfolio Allocation," Econometric Society 2004 Far Eastern Meetings 433, Econometric Society.

    More about this item

    Keywords

    models; leptokurtic; investment; stocks;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:utmsje:0150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Assistant Professor. Dejan Nakovski, PhD (email available below). General contact details of provider: https://edirc.repec.org/data/feutmmk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.