IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.00877.html
   My bibliography  Save this paper

Efficient Volatility Estimation for L\'evy Processes with Jumps of Unbounded Variation

Author

Listed:
  • B. Cooper Boniece
  • Jos'e E. Figueroa-L'opez
  • Yuchen Han

Abstract

Statistical inference for stochastic processes based on high-frequency observations has been an active research area for more than a decade. One of the most well-known and widely studied problems is that of estimation of the quadratic variation of the continuous component of an It\^o semimartingale with jumps. Several rate- and variance-efficient estimators have been proposed in the literature when the jump component is of bounded variation. However, to date, very few methods can deal with jumps of unbounded variation. By developing new high-order expansions of the truncated moments of a L\'evy process, we construct a new rate- and variance-efficient estimator for a class of L\'evy processes of unbounded variation, whose small jumps behave like those of a stable L\'evy process with Blumenthal-Getoor index less than $8/5$. The proposed method is based on a two-step debiasing procedure for the truncated realized quadratic variation of the process. Our Monte Carlo experiments indicate that the method outperforms other efficient alternatives in the literature in the setting covered by our theoretical framework.

Suggested Citation

  • B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Yuchen Han, 2022. "Efficient Volatility Estimation for L\'evy Processes with Jumps of Unbounded Variation," Papers 2202.00877, arXiv.org.
  • Handle: RePEc:arx:papers:2202.00877
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.00877
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    2. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    3. Jose Scheinkman & René Carmona & Erhan Cinlare & Ivar Ekeland & Elyès Jouini & Nizar Touzi, 2010. "Paris-Princeton Lectures on Mathematical Finance," Post-Print halshs-00706281, HAL.
    4. Adam D. Bull, 2014. "Near-optimal estimation of jump activity in semimartingales," Papers 1409.8150, arXiv.org, revised Jan 2016.
    5. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    6. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    7. Amorino, Chiara & Gloter, Arnaud, 2020. "Unbiased truncated quadratic variation for volatility estimation in jump diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5888-5939.
    8. José E. Figueroa-López & Ruoting Gong & Christian Houdré, 2016. "High-Order Short-Time Expansions For Atm Option Prices Of Exponential Lévy Models," Mathematical Finance, Wiley Blackwell, vol. 26(3), pages 516-557, July.
    9. José E. Figueroa-López & Sveinn Ólafsson, 2016. "Short-term asymptotics for the implied volatility skew under a stochastic volatility model with Lévy jumps," Finance and Stochastics, Springer, vol. 20(4), pages 973-1020, October.
    10. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    11. Aleksandar Mijatović & Peter Tankov, 2016. "A New Look At Short-Term Implied Volatility In Asset Price Models With Jumps," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 149-183, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Yuchen Han, 2022. "Efficient Integrated Volatility Estimation in the Presence of Infinite Variation Jumps via Debiased Truncated Realized Variations," Papers 2209.10128, arXiv.org, revised Apr 2024.
    2. Jos'e E. Figueroa-L'opez & Ruoting Gong & Yuchen Han, 2021. "Estimation of Tempered Stable L\'{e}vy Models of Infinite Variation," Papers 2101.00565, arXiv.org, revised Feb 2022.
    3. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    4. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    5. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    6. José E. Figueroa-López & Ruoting Gong & Yuchen Han, 2022. "Estimation of Tempered Stable Lévy Models of Infinite Variation," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 713-747, June.
    7. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    8. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    9. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    10. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
    11. Qi Wang & Jos'e E. Figueroa-L'opez & Todd Kuffner, 2019. "Bayesian Inference on Volatility in the Presence of Infinite Jump Activity and Microstructure Noise," Papers 1909.04853, arXiv.org.
    12. Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.
    13. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    14. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    15. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    16. Nikolaus Hautsch & Mark Podolskij, 2013. "Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 165-183, April.
    17. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    18. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    19. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    20. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2014. "Volatility activity: Specification and estimation," Journal of Econometrics, Elsevier, vol. 178(P1), pages 180-193.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.00877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.