IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v21y2017i4p22n2.html
   My bibliography  Save this article

Nonstationary autoregressive conditional duration models

Author

Listed:
  • Mishra Anuj

    (Department of Statistics and Centre for Advanced Studies, Savitribai Phule Pune University, Pune, Maharashtra, 411 007, India)

  • Ramanathan Thekke Variyam

    (Department of Statistics and Centre for Advanced Studies, Savitribai Phule Pune University, Pune, Maharashtra, 411 007, India)

Abstract

Recently, there has been a growing interest in studying the autoregressive conditional duration (ACD) models, originally introduced by (Engle, R. F., and J. R. Russell. 1998. “Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica 66: 1127–1162). ACD models are useful for modeling the time between the events, especially, in financial context, the time between trading of stocks. In this paper, we propose a specific type of nonstationary ACD model, viz., time varying ACD model (tvACD), by allowing the parameters of the usual ACD model to vary as functions of time. Some probabilistic and inferential aspects of such models have been investigated. We also develop a local polynomial procedure for the estimation of the parameter functions of the proposed tvACD model. Asymptotic properties of the estimators have been investigated, including the asymptotic normality. The asymptotic distribution being dependent on the parameters of the original distribution, a weighted bootstrap estimator is suggested and its validity is established. Simulation study and empirical analysis using high frequency data (HFD) from National Stock Exchange (NSE, INDIA) illustrate the application of the proposed tvACD model.

Suggested Citation

  • Mishra Anuj & Ramanathan Thekke Variyam, 2017. "Nonstationary autoregressive conditional duration models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-22, September.
  • Handle: RePEc:bpj:sndecm:v:21:y:2017:i:4:p:22:n:2
    DOI: 10.1515/snde-2015-0057
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2015-0057
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2015-0057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    2. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2008. "Normalized least-squares estimation in time-varying ARCH models," LSE Research Online Documents on Economics 25187, London School of Economics and Political Science, LSE Library.
    3. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    4. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    5. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    6. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    7. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    8. Neelabh Rohan & T. V. Ramanathan, 2013. "Nonparametric estimation of a time-varying GARCH model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 33-52, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    2. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    3. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    5. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    6. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    7. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    8. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
    10. Tse, Yiu-Kuen & Dong, Yingjie, 2014. "Intraday periodicity adjustments of transaction duration and their effects on high-frequency volatility estimation," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 352-361.
    11. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    12. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, New Economic School (NES).
    13. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    14. Feng, Yuanhua & Zhou, Chen, 2015. "Forecasting financial market activity using a semiparametric fractionally integrated Log-ACD," International Journal of Forecasting, Elsevier, vol. 31(2), pages 349-363.
    15. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Perera, Indeewara & Koul, Hira L., 2017. "Fitting a two phase threshold multiplicative error model," Journal of Econometrics, Elsevier, vol. 197(2), pages 348-367.
    17. Carol Alexander & Daniel Heck & Andreas Kaeck, 2021. "The Role of Binance in Bitcoin Volatility Transmission," Papers 2107.00298, arXiv.org, revised Aug 2021.
    18. Yuanhua Feng & Sarah Forstinger & Christian Peitz, 2013. "On the iterative plug-in algorithm for estimating diurnal patterns of financial trade durations," Working Papers CIE 66, Paderborn University, CIE Center for International Economics.
    19. Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024. "Doubly multiplicative error models with long- and short-run components," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    20. Hira L. Koul & Indeewara Perera & Narayana Balakrishna, 2023. "A class of Minimum Distance Estimators in Markovian Multiplicative Error Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 87-115, May.
    21. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    22. Preve, Daniel, 2015. "Linear programming-based estimators in nonnegative autoregression," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 225-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:21:y:2017:i:4:p:22:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.