IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v69y2024ipbs1544612324011747.html
   My bibliography  Save this article

Deep learning enhanced volatility modeling with covariates

Author

Listed:
  • Nguyen, Hien Thi
  • Nguyen, Hoang
  • Tran, Minh-Ngoc

Abstract

Exogenous information such as policy news and economic indicators can have the potential to trigger significant movements in financial asset volatility. This article presents a model, called the RECH-X model, that allows incorporating exogenous variables into a recurrent neural network for volatility modeling and forecasting. The RECH-X model can allow for abrupt changes in the volatility level and effectively capture the complex serial dependence structure in the volatility dynamics. We demonstrate in a wide range of applications that the RECH-X model consistently outperforms the benchmark models in terms of volatility modeling and forecasting.

Suggested Citation

  • Nguyen, Hien Thi & Nguyen, Hoang & Tran, Minh-Ngoc, 2024. "Deep learning enhanced volatility modeling with covariates," Finance Research Letters, Elsevier, vol. 69(PB).
  • Handle: RePEc:eee:finlet:v:69:y:2024:i:pb:s1544612324011747
    DOI: 10.1016/j.frl.2024.106145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324011747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.106145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    3. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
    4. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    5. Engle, Robert F., 1982. "A general approach to lagrange multiplier model diagnostics," Journal of Econometrics, Elsevier, vol. 20(1), pages 83-104, October.
    6. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    7. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    8. Hodrick, Robert J., 1989. "Risk, uncertainty, and exchange rates," Journal of Monetary Economics, Elsevier, vol. 23(3), pages 433-459, May.
    9. Akbar, Muhammad & Iqbal, Farhan & Noor, Farzana, 2019. "Bayesian analysis of dynamic linkages among gold price, stock prices, exchange rate and interest rate in Pakistan," Resources Policy, Elsevier, vol. 62(C), pages 154-164.
    10. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    11. Adam, Anokye M. & Tweneboah, George, 2008. "Macroeconomic Factors and Stock Market Movement: Evidence from Ghana," MPRA Paper 11256, University Library of Munich, Germany.
    12. Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
    13. Singhal, Shelly & Choudhary, Sangita & Biswal, Pratap Chandra, 2019. "Return and volatility linkages among International crude oil price, gold price, exchange rate and stock markets: Evidence from Mexico," Resources Policy, Elsevier, vol. 60(C), pages 255-261.
    14. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    15. Francq, Christian & Thieu, Le Quyen, 2019. "Qml Inference For Volatility Models With Covariates," Econometric Theory, Cambridge University Press, vol. 35(1), pages 37-72, February.
    16. Jin-Chuan Duan & Andras Fulop, 2015. "Density-Tempered Marginalized Sequential Monte Carlo Samplers," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 192-202, April.
    17. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    18. Han, Heejoon & Park, Joon Y., 2008. "Time series properties of ARCH processes with persistent covariates," Journal of Econometrics, Elsevier, vol. 146(2), pages 275-292, October.
    19. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    20. Heejoon Han, 2015. "Asymptotic Properties of GARCH-X Processes," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 188-221.
    21. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    22. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    23. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    24. Mokni, Khaled & Youssef, Manel, 2019. "Measuring persistence of dependence between crude oil prices and GCC stock markets: A copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 14-33.
    25. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    26. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    27. Trong‐Nghia Nguyen & Minh‐Ngoc Tran & Robert Kohn, 2022. "Recurrent conditional heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1031-1054, August.
    28. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    29. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    30. Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
    31. Hagiwara, May & Herce, Miguel A, 1999. "Endogenous Exchange Rate Volatility, Trading Volume and Interest Rate Differentials in a Model of Portfolio Selection," Review of International Economics, Wiley Blackwell, vol. 7(2), pages 202-218, May.
    32. Jiawen Luo & Tony Klein & Thomas Walther & Qiang Ji, 2024. "Forecasting realized volatility of crude oil futures prices based on machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1422-1446, August.
    33. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    34. Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2014. "Realized Beta Garch: A Multivariate Garch Model With Realized Measures Of Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 774-799, August.
    35. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    36. Khan, Muhammad Imran & Teng, Jian-Zhou & Khan, Muhammad Kamran & Jadoon, Arshad Ullah & Khan, Muhammad Fayaz, 2021. "The impact of oil prices on stock market development in Pakistan: Evidence with a novel dynamic simulated ARDL approach," Resources Policy, Elsevier, vol. 70(C).
    37. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    38. Smyth, Russell & Narayan, Paresh Kumar, 2018. "What do we know about oil prices and stock returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 148-156.
    39. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chen & Wang, Chao & Tran, Minh-Ngoc & Kohn, Robert, 2025. "A long short-term memory enhanced realized conditional heteroskedasticity model," Economic Modelling, Elsevier, vol. 142(C).
    2. Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
    3. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    4. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
    5. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    6. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    7. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    8. Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024. "Doubly multiplicative error models with long- and short-run components," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    9. Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2021. "Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model," Econometrics and Statistics, Elsevier, vol. 20(C), pages 12-28.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    11. Heejoon Han & Dennis Kristensen, 2014. "Asymptotic Theory for the QMLE in GARCH-X Models With Stationary and Nonstationary Covariates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 416-429, July.
    12. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
    13. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
    14. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    15. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
    16. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    17. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised Feb 2025.
    18. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    19. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    20. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.

    More about this item

    Keywords

    GARCH; GARCH-X; Volatility forecast; Realized measures; Sequence Monte Carlo;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:69:y:2024:i:pb:s1544612324011747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.