Prediction regions for interval‐valued time series
Author
Abstract
Suggested Citation
DOI: 10.1002/jae.2754
Download full text from publisher
Other versions of this item:
- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2019. "Prediction Regions for Interval-valued Time Series," Working Papers 201921, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2018. "Prediction Regions for Interval-valued Time Series," Working Papers 201817, University of California at Riverside, Department of Economics.
References listed on IDEAS
- Mayr, Johannes & Ulbricht, Dirk, 2015.
"Log versus level in VAR forecasting: 42 million empirical answers—Expect the unexpected,"
Economics Letters, Elsevier, vol. 126(C), pages 40-42.
- Johannes Mayr & Dirk Ulbricht, 2014. "Log versus Level in VAR Forecasting: 42 Million Empirical Answers - Expect the Unexpected," Discussion Papers of DIW Berlin 1412, DIW Berlin, German Institute for Economic Research.
- Ji, Shaolin & Shi, Xiaomin, 2018. "Reaching goals under ambiguity: Continuous-time optimal portfolio selection," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 63-69.
- Ivana Komunjer & Michael T. Owyang, 2012.
"Multivariate Forecast Evaluation and Rationality Testing,"
The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
- Ivana Komunjer & Michael T. Owyang, 2007. "Multivariate forecast evaluation and rationality testing," Working Papers 2007-047, Federal Reserve Bank of St. Louis.
- Komunjer, Ivana & OWYANG, MICHAEL, 2007. "Multivariate Forecast Evaluation And Rationality Testing," University of California at San Diego, Economics Working Paper Series qt81w8m5sf, Department of Economics, UC San Diego.
- Arthur B. Yeh & Kesar Singh, 1997. "Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 639-652.
- Bårdsen, Gunnar & Lütkepohl, Helmut, 2011.
"Forecasting levels of log variables in vector autoregressions,"
International Journal of Forecasting, Elsevier, vol. 27(4), pages 1108-1115, October.
- Gunnar Bardsen & Helmut Luetkepohl, 2009. "Forecasting Levels of log Variables in Vector Autoregressions," Economics Working Papers ECO2009/24, European University Institute.
- Gunnar Bårdsen & Helmut Lütkepohl, 2009. "Forecasting Levels of log Variables in Vector Autoregressions," Working Paper Series 10409, Department of Economics, Norwegian University of Science and Technology.
- Lin, Wei & González-Rivera, Gloria, 2016.
"Interval-valued time series models: Estimation based on order statistics exploring the Agriculture Marketing Service data,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 694-711.
- Gloria Gonzalez-Rivera & Wei Lin, 2015. "Interval-valued Time Series Models: Estimation based on Order Statistics. Exploring the Agriculture Marketing Service Data," Working Papers 201505, University of California at Riverside, Department of Economics.
- Arino, Miguel A. & Franses, Philip Hans, 2000.
"Forecasting the levels of vector autoregressive log-transformed time series,"
International Journal of Forecasting, Elsevier, vol. 16(1), pages 111-116.
- Ariño, M.A. & Franses, Ph.H.B.F., 1996. "Forecasting the Levels of Vector Autoregressive Log-Transformed Time Series," Econometric Institute Research Papers EI 9669-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009.
"Estimating stochastic volatility models using daily returns and realized volatility simultaneously,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
- Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously," CIRJE F-Series CIRJE-F-515, CIRJE, Faculty of Economics, University of Tokyo.
- González-Rivera, Gloria & Sun, Yingying, 2015.
"Generalized autocontours: Evaluation of multivariate density models,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 799-814.
- Gloria Gonzalez-Rivera & Yingying Sun, 2014. "Generalized Autocontours: Evaluation of Multivariate Density Models," Working Papers 201431, University of California at Riverside, Department of Economics.
- Liu, Xiaohui & Zuo, Yijun, 2015. "CompPD: A MATLAB Package for Computing Projection Depth," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i02).
- Li, Hongquan & Hong, Yongmiao, 2011. "Financial volatility forecasting with range-based autoregressive volatility model," Finance Research Letters, Elsevier, vol. 8(2), pages 69-76, June.
- Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2011.
"An inflated multivariate integer count hurdle model: an application to bid and ask quote dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(4), pages 669-707, June.
- Bien, Katarzyna & Nolte, Ingmar & Pohlmeier, Winfried, 2007. "An inflated Multivariate Integer Count Hurdle model: An application to bid and ask quote dynamics," CoFE Discussion Papers 07/04, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005.
"Bootstrap prediction intervals for power-transformed time series,"
International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
- Pascual, Lorenzo, 2001. "Bootstrap prediction intervals for power-transformed time series," DES - Working Papers. Statistics and Econometrics. WS ws010503, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Roberto Pascual & David Veredas, 2010.
"Does the Open Limit Order Book Matter in Explaining Informational Volatility?,"
Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 57-87, Winter.
- Roberto Pascual & David Veredas, 2009. "Does the open limit order book matter in explaining informational volatility?," ULB Institutional Repository 2013/183777, ULB -- Universite Libre de Bruxelles.
- Lepage, Raoul & Podgórski, Krzysztof, 1996. "Resampling Permutations in Regression without Second Moments," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 119-141, April.
- White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
- Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
- He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
- Carmen Fernandez & Carmelo J. Leon & Mark F.J. Steel & Francisco Jose Vazquez-Polo, 2004. "Bayesian Analysis of Interval Data Contingent Valuation Models and Pricing Policies," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 431-442, October.
- Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
- Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
- Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
- Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Angela Blanco-Fernández & Peter Winker, 2016. "Data generation processes and statistical management of interval data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 475-494, October.
- Jinghong Shu & Jin E. Zhang, 2006. "Testing range estimators of historical volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 297-313, March.
- Johannes Mayr & Dirk Ulbricht, 2007. "Log versus level in VAR forecasting: 16 Million empirical answers - expect the unexpected," ifo Working Paper Series 42, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
- González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
- Gloria González-Rivera & Wei Lin, 2013. "Constrained Regression for Interval-Valued Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 473-490, October.
- Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
- Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
- Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 211-235, August.
- Hansen, Bruce E, 1994.
"Autoregressive Conditional Density Estimation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
- Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
- Tom Doan, "undated". "RATS programs to replicate Hansen's GARCH models with time-varying t-densities," Statistical Software Components RTZ00086, Boston College Department of Economics.
- Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
- Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity," Papers 2406.14145, arXiv.org.
- Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
- Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
- Gloria Gonzalez-Rivera & Yun Luo, 2020.
"A Truncated Mixture Transition Model for Interval-valued Time Series,"
Working Papers
202005, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Yun Luo, 2023. "A Truncated Mixture Transition Model for Interval-valued Time Series," Working Papers 202315, University of California at Riverside, Department of Economics.
- González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2018.
"Prediction Regions for Interval-valued Time Series,"
Working Papers
201817, University of California at Riverside, Department of Economics.
- González-Rivera, Gloria & Luo, Yun, 2019. "Prediction regions for interval-valued time series," DES - Working Papers. Statistics and Econometrics. WS 29054, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2019. "Prediction Regions for Interval-valued Time Series," Working Papers 201921, University of California at Riverside, Department of Economics.
- Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Wei Lin & Gloria González‐Rivera, 2019.
"Extreme returns and intensity of trading,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1121-1140, November.
- Gloria Gonzalez-Rivera & Wei Lin, 2016. "Extreme Returns and Intensity of Trading," Working Papers 201607, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Wei Lin, 2017. "Extreme Returns and Intensity of Trading," Working Papers 201801, University of California at Riverside, Department of Economics.
- Jonas Dovern & Hans Manner, 2020.
"Order‐invariant tests for proper calibration of multivariate density forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
- Jonas Dovern & Hans Manner, 2018. "Order Invariant Tests for Proper Calibration of Multivariate Density Forecasts," CESifo Working Paper Series 7023, CESifo.
- Jonas Dovern & Hans Manner, 2018. "Order Invariant Tests for Proper Calibration of Multivariate Density Forecasts," Graz Economics Papers 2018-09, University of Graz, Department of Economics.
- Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022.
"Score-based calibration testing for multivariate forecast distributions,"
Papers
2211.16362, arXiv.org, revised Dec 2023.
- Knüppel, Malte & Krüger, Fabian & Pohle, Marc-Oliver, 2022. "Score-based calibration testing for multivariate forecast distributions," Discussion Papers 50/2022, Deutsche Bundesbank.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
- Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
- Buansing, T.S. Tuang & Golan, Amos & Ullah, Aman, 2020.
"An information-theoretic approach for forecasting interval-valued SP500 daily returns,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 800-813.
- T.S. Tuang Buansing & Amos Golan & Aman Ullah, 2019. "Information-Theoretic Approach for Forecasting Interval-Valued SP500 Daily Returns," Working Papers 201922, University of California at Riverside, Department of Economics.
- Matteo Luciani & David Veredas, 2012. "A model for vast panels of volatilities," Working Papers 1230, Banco de España.
- Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
- Chang, Meng-Shiuh & Ju, Peijie & Liu, Yilei & Hsueh, Shao-Chieh, 2022. "Determining hedges and safe havens for stocks using interval analysis," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
- Matteo Luciani & David Veredas, "undated". "A simple model for vast panels of volatilities," ULB Institutional Repository 2013/136239, ULB -- Universite Libre de Bruxelles.
- Gloria Gonzalez-Rivera & Yun Luo, 2020.
"A Truncated Mixture Transition Model for Interval-valued Time Series,"
Working Papers
202005, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Yun Luo, 2023. "A Truncated Mixture Transition Model for Interval-valued Time Series," Working Papers 202315, University of California at Riverside, Department of Economics.
- Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
- João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020.
"A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities,"
Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
- Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017. "A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities," Working Papers 201709, University of California at Riverside, Department of Economics.
- Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
- Pascual, Lorenzo & Fresoli, Diego Eduardo, 2011. "Bootstrap forecast of multivariate VAR models without using the backward representation," DES - Working Papers. Statistics and Econometrics. WS ws113426, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
More about this item
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:35:y:2020:i:4:p:373-390. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.