IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v100y2021ics014098832100270x.html
   My bibliography  Save this article

What drives volatility of the U.S. oil and gas firms?

Author

Listed:
  • Lyócsa, Štefan
  • Todorova, Neda

Abstract

We study how the day-ahead stock price volatility of 15 firms that are S&P 500 constituents in the Oil & Gas Exploration & Production sub-industry is driven through six volatility factors represented by realized volatilities, namely, (i) firms’ own volatility, (ii) industry market volatility, (iii) local (U.S.) market volatility, (iv) world equity market volatility, (v) oil price volatility, and (vi) natural gas price volatility. Existing studies have reported results based on analysis of one or few volatility components, but given the high dependence among volatility factors, this might bias (overestimate) the true importance of each of the volatility factors on the price fluctuation of stocks in the Oil & Gas Exploration & Production sub-industry. To take into account this inter-relatedness of volatility factors, we study all volatility factors together. Using augmented heterogeneous autoregressive (HAR) models and dynamic model averaging, our analysis shows that market volatility is most influential, followed by a stock’s own volatility and industry level volatility. The role of the volatility of the oil market is of lesser importance, while the volatility of the world equity market does not appear to contain incremental information useful for predicting the volatility of firms in the Oil & Gas Exploration & Production sub-industry. The role of the natural gas market is specific. An in-sample analysis suggests a negative relationship between firm-level volatility and volatility on the natural gas market. However, in an out-of-sample framework, the volatility of the natural gas market appears to be unrelated to firm-level volatility. Dynamic model averaging further suggests that the market and industry factors are time-varying. These findings have implications for financial risk management, as we show that in an out-of-sample framework, HAR models augmented with volatility factors outperform the plain HAR model by up to a 3.88% increase in volatility forecast accuracy.

Suggested Citation

  • Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
  • Handle: RePEc:eee:eneeco:v:100:y:2021:i:c:s014098832100270x
    DOI: 10.1016/j.eneco.2021.105367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832100270X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    4. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    5. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    6. Boyer, M. Martin & Filion, Didier, 2007. "Common and fundamental factors in stock returns of Canadian oil and gas companies," Energy Economics, Elsevier, vol. 29(3), pages 428-453, May.
    7. Feng, Jiabao & Wang, Yudong & Yin, Libo, 2017. "Oil volatility risk and stock market volatility predictability: Evidence from G7 countries," Energy Economics, Elsevier, vol. 68(C), pages 240-254.
    8. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    9. Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
    10. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    11. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    12. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    13. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    14. Ramos, Sofia B. & Veiga, Helena, 2011. "Risk factors in oil and gas industry returns: International evidence," Energy Economics, Elsevier, vol. 33(3), pages 525-542, May.
    15. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    16. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    17. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    18. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    19. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    20. Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Energy Economics, Elsevier, vol. 48(C), pages 18-23.
    21. Kavussanos, Manolis G. & Marcoulis, Stelios N., 1997. "The stock market perception of industry risk and microeconomic factors: The case of the US water transportation industry versus other transport industries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 33(2), pages 147-158, June.
    22. Frederick van der Ploeg, 2016. "Fossil fuel producers under threat," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 32(2), pages 206-222.
    23. Gupta, Kartick, 2016. "Oil price shocks, competition, and oil & gas stock returns — Global evidence," Energy Economics, Elsevier, vol. 57(C), pages 140-153.
    24. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    25. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    26. Peng, Huan & Chen, Ruoxun & Mei, Dexiang & Diao, Xiaohua, 2018. "Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 78-85.
    27. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    28. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    29. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    30. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    31. Smyth, Russell & Narayan, Paresh Kumar, 2018. "What do we know about oil prices and stock returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 148-156.
    32. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    33. Li, Qiming & Cheng, Ke & Yang, Xiaoguang, 2017. "Response pattern of stock returns to international oil price shocks: From the perspective of China’s oil industrial chain," Applied Energy, Elsevier, vol. 185(P2), pages 1821-1831.
    34. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    35. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    36. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    37. El-Sharif, Idris & Brown, Dick & Burton, Bruce & Nixon, Bill & Russell, Alex, 2005. "Evidence on the nature and extent of the relationship between oil prices and equity values in the UK," Energy Economics, Elsevier, vol. 27(6), pages 819-830, November.
    38. Ewing, Bradley T. & Malik, Farooq, 2016. "Volatility spillovers between oil prices and the stock market under structural breaks," Global Finance Journal, Elsevier, vol. 29(C), pages 12-23.
    39. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    40. Haugom, Erik & Ray, Rina & Ullrich, Carl J. & Veka, Steinar & Westgaard, Sjur, 2016. "A parsimonious quantile regression model to forecast day-ahead value-at-risk," Finance Research Letters, Elsevier, vol. 16(C), pages 196-207.
    41. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    42. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    43. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    44. Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
    45. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2016. "Forecasting stock volatility using after-hour information: Evidence from the Australian Stock Exchange," Economic Modelling, Elsevier, vol. 52(PB), pages 592-608.
    46. Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
    47. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    48. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    49. Sadorsky, Perry, 2001. "Risk factors in stock returns of Canadian oil and gas companies," Energy Economics, Elsevier, vol. 23(1), pages 17-28, January.
    50. Feng Ma & Yu Wei & Li Liu & Dengshi Huang, 2018. "Forecasting realized volatility of oil futures market: A new insight," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(4), pages 419-436, July.
    51. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    52. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    53. Nandha, Mohan & Faff, Robert, 2008. "Does oil move equity prices? A global view," Energy Economics, Elsevier, vol. 30(3), pages 986-997, May.
    54. Todorova, Neda & Souček, Michael, 2014. "Overnight information flow and realized volatility forecasting," Finance Research Letters, Elsevier, vol. 11(4), pages 420-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Muhammad Kashif & Zahoor, Muhammad Khurram & Saeed, Asif & Nosheen, Safia & Thanakijsombat, Thanarerk, 2023. "Institutional and country level determinants of vertical integration: New evidence from the oil and gas industry," Resources Policy, Elsevier, vol. 84(C).
    2. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    3. Düsterhöft, Maximilian & Schiemann, Frank & Walther, Thomas, 2023. "Let’s talk about risk! Stock market effects of risk disclosure for European energy utilities," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    2. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    3. Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
    4. Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
    5. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    6. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    7. Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
    8. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    9. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    10. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    11. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    12. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    13. Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
    14. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    15. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    16. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    17. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    18. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    19. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    20. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).

    More about this item

    Keywords

    Oil & Gas sub-industry; Volatility forecasting; Volatility factors; HAR; Dynamic Model Averaging;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:100:y:2021:i:c:s014098832100270x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.