IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.08412.html
   My bibliography  Save this paper

Infinitesimal generators for two-dimensional L\'evy process-driven hypothesis testing

Author

Listed:
  • Michael Roberts
  • Indranil SenGupta

Abstract

In this paper, we present the testing of four hypotheses on two streams of observations that are driven by L\'evy processes. This is applicable for sequential decision making on the state of two-sensor systems. In one case, each sensor receives or does not receive a signal obstructed by noise. In another, each sensor receives data-driven by L\'evy processes with large or small jumps. In either case, these give rise to four possibilities. Infinitesimal generators are presented and analyzed. Bounds for infinitesimal generators in terms of \emph{super-solutions} and \emph{sub-solutions} are computed. An application of this procedure for the stochastic model is also presented in relation to the financial market.

Suggested Citation

  • Michael Roberts & Indranil SenGupta, 2019. "Infinitesimal generators for two-dimensional L\'evy process-driven hypothesis testing," Papers 1911.08412, arXiv.org.
  • Handle: RePEc:arx:papers:1911.08412
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.08412
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
    2. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    3. Indranil SenGupta & William Nganje & Erik Hanson, 2021. "Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 39-55, March.
    4. Semere Habtemicael & Indranil Sengupta, 2016. "Pricing Covariance Swaps For Barndorff–Nielsen And Shephard Process Driven Financial Markets," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-32, September.
    5. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    6. repec:dau:papers:123456789/332 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Roberts & Indranil SenGupta, 2020. "Sequential hypothesis testing in machine learning, and crude oil price jump size detection," Papers 2004.08889, arXiv.org, revised Dec 2020.
    2. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    3. Semere Habtemicael & Musie Ghebremichael & Indranil SenGupta, 2019. "Volatility and Variance Swap Using Superposition of the Barndorff-Nielsen and Shephard type Lévy Processes," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 75-92, June.
    4. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    5. Michael Roberts & Indranil SenGupta, 2020. "Infinitesimal generators for two-dimensional Lévy process-driven hypothesis testing," Annals of Finance, Springer, vol. 16(1), pages 121-139, March.
    6. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    7. Humayra Shoshi & Indranil SenGupta, 2020. "Hedging and machine learning driven crude oil data analysis using a refined Barndorff-Nielsen and Shephard model," Papers 2004.14862, arXiv.org, revised Feb 2021.
    8. Shubham Ekapure & Nuruddin Jiruwala & Sohan Patnaik & Indranil SenGupta, 2021. "A data-science-driven short-term analysis of Amazon, Apple, Google, and Microsoft stocks," Papers 2107.14695, arXiv.org.
    9. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
    10. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    11. Chen Mao & Guanqi Liu & Yuwen Wang, 2021. "A Closed-Form Pricing Formula for Log-Return Variance Swaps under Stochastic Volatility and Stochastic Interest Rate," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    12. Xianfei Hui & Baiqing Sun & Hui Jiang & Indranil SenGupta, 2021. "Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters," Papers 2101.08984, arXiv.org, revised Feb 2022.
    13. Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
    14. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
    15. Xu, De-xuan & Yang, Ben-zhang & Kang, Jian-hao & Huang, Nan-jing, 2021. "Variance and volatility swaps valuations with the stochastic liquidity risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    16. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    17. Indranil SenGupta & William Nganje & Erik Hanson, 2021. "Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 39-55, March.
    18. Arai, Takuji & Imai, Yuto, 2024. "Monte Carlo simulation for Barndorff–Nielsen and Shephard model under change of measure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 223-234.
    19. Xianfei Hui & Baiqing Sun & Hui Jiang & Yan Zhou, 2022. "Modeling dynamic volatility under uncertain environment with fuzziness and randomness," Papers 2204.12657, arXiv.org, revised Oct 2022.
    20. Anatoliy Swishchuk & Zijia Wang, 2017. "Variance and Volatility Swaps and Futures Pricing for Stochastic Volatility Models," Papers 1712.02735, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.08412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.