Singular conditional autoregressive Wishart model for realized covariance matrices
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015.
"Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
- Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Stanislav Anatolyev & Nikita Kobotaev, 2018.
"Modeling and forecasting realized covariance matrices with accounting for leverage,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
- Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, Center for Economic and Financial Research (CEFIR).
- Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, New Economic School (NES).
- repec:hal:journl:peer-00741629 is not listed on IDEAS
- Manabu Asai & Michael McAleer & Jun Yu, 2006.
"Multivariate Stochastic Volatility,"
Microeconomics Working Papers
22058, East Asian Bureau of Economic Research.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
- Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
- Rasmus S. Pedersen & Anders Rahbek, 2014.
"Multivariate variance targeting in the BEKK–GARCH model,"
Econometrics Journal, Royal Economic Society, vol. 17(1), pages 24-55, February.
- Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," CREATES Research Papers 2012-53, Department of Economics and Business Economics, Aarhus University.
- Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," Discussion Papers 12-23, University of Copenhagen. Department of Economics.
- Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014.
"Multivariate rotated ARCH models,"
Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH models," Economics Series Working Papers 594, University of Oxford, Department of Economics.
- Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Scholarly Articles 34650305, Harvard University Department of Economics.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
- Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
- Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
- Taras Bodnar & Solomiia Dmytriv & Nestor Parolya & Wolfgang Schmid, 2017. "Tests for the weights of the global minimum variance portfolio in a high-dimensional setting," Papers 1710.09587, arXiv.org, revised Jul 2019.
- Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006.
"Multivariate GARCH models: a survey,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
- Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," LIDAM Discussion Papers CORE 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, 2006. "Multivariate GARCH models: a survey," LIDAM Reprints CORE 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yacine Ait-Sahalia & Jialin Yu, 2008.
"High Frequency Market Microstructure Noise Estimates and Liquidity Measures,"
NBER Working Papers
13825, National Bureau of Economic Research, Inc.
- Yacine Ait-Sahalia & Jialin Yu, 2009. "High frequency market microstructure noise estimates and liquidity measures," Papers 0906.1444, arXiv.org.
- Xin Jin & John M. Maheu, 2013.
"Modeling Realized Covariances and Returns,"
Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 335-369, March.
- Xin Jin & John M Maheu, 2010. "Modelling Realized Covariances and Returns," Working Papers tecipa-408, University of Toronto, Department of Economics.
- Xin Jin & John M. Maheu, 2011. "Modelling Realized Covariances and Returns," Working Paper series 08_11, Rimini Centre for Economic Analysis.
- Xin Jin & John M. Maheu, 2012. "Modelling Realized Covariances and Returns," Working Paper series 49_12, Rimini Centre for Economic Analysis.
- Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018.
"Estimation of the global minimum variance portfolio in high dimensions,"
European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
- Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437, arXiv.org, revised Nov 2015.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012.
"Multivariate high‐frequency‐based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
- Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012.
"The conditional autoregressive Wishart model for multivariate stock market volatility,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Gourieroux, C. & Jasiak, J. & Sufana, R., 2009.
"The Wishart Autoregressive process of multivariate stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
- Joan Jasiak & R. Sufana & C. Gourieroux, 2005. "The Wishart Autoregressive Process of Multivariate Stochastic Volatility," Working Papers 2005_2, York University, Department of Economics.
- Frahm, Gabriel & Memmel, Christoph, 2010.
"Dominating estimators for minimum-variance portfolios,"
Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
- Gabriel Frahm & Christoph Memmel, 2010. "Dominating Estimators for Minimum-Variance Portfolios," Post-Print hal-00741629, HAL.
- Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022.
"Optimal Shrinkage-Based Portfolio Selection in High Dimensions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
- Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2016. "Optimal shrinkage-based portfolio selection in high dimensions," Papers 1611.01958, arXiv.org, revised Nov 2021.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
- Arjun K. Gupta & Daya K. Nagar, 2000. "Matrix-variate beta distribution," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 24, pages 1-11, January.
- Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
- Litimi, Houda & BenSaïda, Ahmed & Bouraoui, Omar, 2016. "Herding and excessive risk in the American stock market: A sectoral analysis," Research in International Business and Finance, Elsevier, vol. 38(C), pages 6-21.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
- Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016.
"Matrix exponential stochastic volatility with cross leverage,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
- Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2014. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-938, CIRJE, Faculty of Economics, University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2013. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-904, CIRJE, Faculty of Economics, University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2014. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-932, CIRJE, Faculty of Economics, University of Tokyo.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
- Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
- Roxana Chiriac & Valeri Voev, 2011.
"Modelling and forecasting multivariate realized volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
- Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CREATES Research Papers 2008-39, Department of Economics and Business Economics, Aarhus University.
- Chiriac, Roxana & Voev, Valeri, 2008. "Modelling and forecasting multivariate realized volatility," CoFE Discussion Papers 08/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024.
"Asymmetric Models for Realized Covariances,"
LIDAM Discussion Papers CORE
2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
- Asai, Manabu & McAleer, Michael, 2015.
"Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance,"
Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
- Jin, Xin & Maheu, John M., 2016.
"Bayesian semiparametric modeling of realized covariance matrices,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
- Jin, Xin & Maheu, John M, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," MPRA Paper 60102, University Library of Munich, Germany.
- Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
- Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
- Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018.
"Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions,"
Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017.
"A dynamic component model for forecasting high-dimensional realized covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Discussion Papers CORE 2016001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Xu, Yongdeng, 2023.
"DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
- Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
More about this item
Keywords
Covariance targeting; High-dimensional data; Realized covariance matrix; Stock co-volatility; Time series matrix-variate model;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-04-12 (Econometrics)
- NEP-ETS-2021-04-12 (Econometric Time Series)
- NEP-MST-2021-04-12 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2021_001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.