Bias-Corrected Realized Variance under Dependent Microstructure Noise
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- repec:oxf:wpaper:264 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016.
"Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2015. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-975, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
- Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
- Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Asai, Manabu & McAleer, Michael, 2015.
"Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing,"
Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback E ects on Multifactor Wishart Stochastic Volatility for Option Pricing," Documentos de Trabajo del ICAE 2013-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
- Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
- Podolskij, Mark & Vetter, Mathias, 2009.
"Bipower-type estimation in a noisy diffusion setting,"
Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
- Mark Podolskij & Mathias Vetter, 2008. "Bipower-type estimation in a noisy diffusion setting," CREATES Research Papers 2008-25, Department of Economics and Business Economics, Aarhus University.
- Podolskij, Mark & Vetter, Mathias, 2008. "Bipower-type estimation in a noisy diffusion setting," Technical Reports 2008,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Eleftheria Kafousaki & Stavros Degiannakis, 2023.
"Forecasting VIX: the illusion of forecast evaluation criteria,"
Economics and Business Letters, Oviedo University Press, vol. 12(3), pages 231-240.
- Stavros Degiannakis & Eleftheria Kafousaki, 2023. "Forecasting VIX: The illusion of forecast evaluation criteria," Working Papers 322, Bank of Greece.
- Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
- Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
- repec:hum:wpaper:sfb649dp2013-021 is not listed on IDEAS
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
- Almut Veraart & Luitgard Veraart, 2012.
"Stochastic volatility and stochastic leverage,"
Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
- Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009.
"Realized Volatility Risk,"
CIRJE F-Series
CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized volatility risk," Documentos de Trabajo del ICAE 2013-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," Working Papers in Economics 10/26, University of Canterbury, Department of Economics and Finance.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized Volatility Risk," Tinbergen Institute Discussion Papers 13-092/III, Tinbergen Institute.
- Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014.
"Asymmetric Realized Volatility Risk,"
JRFM, MDPI, vol. 7(2), pages 1-30, June.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Documentos de Trabajo del ICAE 2014-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Working Papers in Economics 14/20, University of Canterbury, Department of Economics and Finance.
- Harry-Paul Vander Elst, 2015.
"FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility,"
Working Papers ECARES
ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
- Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
- Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
- Asai, Manabu & McAleer, Michael, 2015.
"Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance,"
Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
More about this item
Keywords
Realized variance; Dependent microstructure noise; Two-time scales;All these keywords.
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2009-12-19 (Econometrics)
- NEP-MST-2009-12-19 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osk:wpaper:0939. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The Economic Society of Osaka University (email available below). General contact details of provider: https://edirc.repec.org/data/feosujp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.