IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.11627.html
   My bibliography  Save this paper

Non-stationary GARCH modelling for fitting higher order moments of financial series within moving time windows

Author

Listed:
  • Luke De Clerk
  • Sergey Savel'ev

Abstract

Here, we have analysed a GARCH(1,1) model with the aim to fit higher order moments for different companies' stock prices. When we assume a gaussian conditional distribution, we fail to capture any empirical data when fitting the first three even moments of financial time series. We show instead that a double gaussian conditional probability distribution better captures the higher order moments of the data. To demonstrate this point, we construct regions (phase diagrams), in the fourth and sixth order standardised moment space, where a GARCH(1,1) model can be used to fit these moments and compare them with the corresponding moments from empirical data for different sectors of the economy. We found that the ability of the GARCH model with a double gaussian conditional distribution to fit higher order moments is dictated by the time window our data spans. We can only fit data collected within specific time window lengths and only with certain parameters of the conditional double gaussian distribution. In order to incorporate the non-stationarity of financial series, we assume that the parameters of the GARCH model have time dependence.

Suggested Citation

  • Luke De Clerk & Sergey Savel'ev, 2021. "Non-stationary GARCH modelling for fitting higher order moments of financial series within moving time windows," Papers 2102.11627, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:2102.11627
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.11627
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Pokhilchuk, K.A. & Savel’ev, S.E., 2016. "On the choice of GARCH parameters for efficient modelling of real stock price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 248-253.
    5. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    6. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    7. Ghulam Ali, 2013. "EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH Models for Pathogens at Marine Recreational Sites," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 2(3), pages 1-6.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luke De Clerk & Sergey Savel'ev, 2021. "An investigation of higher order moments of empirical financial data and the implications to risk," Papers 2103.13199, arXiv.org, revised Jul 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    2. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    3. Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
    4. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. De Clerk, Luke & Savel’ev, Sergey, 2022. "AI algorithms for fitting GARCH parameters to empirical financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    8. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    9. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    10. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    11. Piotr Fiszeder & Witold Orzeszko, 2012. "Nonparametric Verification of GARCH-Class Models for Selected Polish Exchange Rates and Stock Indices," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(5), pages 430-449, November.
    12. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    13. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    14. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    15. He, Changli & Teräsvirta, Timo, 1999. "Higher-order dependence in the general Power ARCH process and a special case," SSE/EFI Working Paper Series in Economics and Finance 315, Stockholm School of Economics.
    16. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    17. Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.
    18. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    19. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    20. Alistair Mees & Berndt Pilgram, 2000. "Non-Linear Markov Modelling Using Canonical Variate Analysis: Forecasting Exchange Rate Volatility," Econometric Society World Congress 2000 Contributed Papers 1162, Econometric Society.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.11627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.