IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v11y2004i4p317-346.html
   My bibliography  Save this article

On the pricing and hedging of volatility derivatives

Author

Listed:
  • Sam Howison
  • Avraam Rafailidis
  • Henrik Rasmussen

Abstract

The paper considers the pricing of a range of volatility derivatives, including volatility and variance swaps and swaptions. Under risk-neutral valuation closed-form formulae for volatility-average and variance swaps for a variety of diffusion and jump-diffusion models for volatility are provided. A general partial differential equation framework for derivatives that have an extra dependence on an average of the volatility is described. Approximate solutions of this equation are given for volatility products written on assets for which the volatility process fluctuates on a timescale that is fast compared with the lifetime of the contracts, analysing both the 'outer' region and, by matched asymptotic expansions, the 'inner' boundary layer near expiry.

Suggested Citation

  • Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
  • Handle: RePEc:taf:apmtfi:v:11:y:2004:i:4:p:317-346
    DOI: 10.1080/1350486042000254024
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/1350486042000254024
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486042000254024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Heston & Saikat Nandi, 2000. "Derivatives on volatility: some simple solutions based on observables," FRB Atlanta Working Paper 2000-20, Federal Reserve Bank of Atlanta.
    2. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.
    4. Alexander Lipton, 2001. "Mathematical Methods for Foreign Exchange:A Financial Engineer's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4694, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    2. Dimitris Psychoyios & George Dotsis & Raphael Markellos, 2010. "A jump diffusion model for VIX volatility options and futures," Review of Quantitative Finance and Accounting, Springer, vol. 35(3), pages 245-269, October.
    3. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    4. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.
    5. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    6. Charlie Cai & Robert Faff & David Hillier & Michael McKenzie, 2006. "Modelling return and conditional volatility exposures in global stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 27(2), pages 125-142, September.
    7. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    8. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    9. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    10. Jérôme Detemple & Yerkin Kitapbayev, 2018. "On American VIX options under the generalized 3/2 and 1/2 models," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 550-581, April.
    11. Alexander Lipton, 2020. "Physics and Derivatives -- Interview Questions and Answers," Papers 2003.11471, arXiv.org.
    12. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    13. Benjamin Yibin Zhang & Hao Zhou & Haibin Zhu, 2009. "Explaining Credit Default Swap Spreads with the Equity Volatility and Jump Risks of Individual Firms," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5099-5131, December.
    14. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    15. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    16. Ilya Molchanov & Michael Schmutz, 2009. "Exchangeability type properties of asset prices," Papers 0901.4914, arXiv.org, revised Apr 2011.
    17. Venter, Pierre J & Maré, Eben, 2022. "Price discovery in the volatility index option market: A univariate GARCH approach," Finance Research Letters, Elsevier, vol. 44(C).
    18. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    19. Alexander Lipton, 2020. "Old Problems, Classical Methods, New Solutions," Papers 2003.06903, arXiv.org.
    20. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:11:y:2004:i:4:p:317-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.