IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v25y2005i3p281-301.html
   My bibliography  Save this article

Comparison of MCMC Methods for Estimating Stochastic Volatility Models

Author

Listed:
  • Manabu Asai

Abstract

This article investigates performances of MCMC methods to estimate stochastic volatility models on simulated and real data. There are two efficient MCMC methods to generate latent volatilities from their full conditional distribution. One is the mixture sampler and the other is the multi-move sampler. There is another efficient method for latent volatilities and all parameters called the integration sampler, which is based on the mixture sampler. This article proposes an alternative method based on the multi-move sampler and finds evidence that it is the best method among them. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Manabu Asai, 2005. "Comparison of MCMC Methods for Estimating Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 281-301, June.
  • Handle: RePEc:kap:compec:v:25:y:2005:i:3:p:281-301
    DOI: 10.1007/s10614-005-2974-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-005-2974-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-005-2974-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    4. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    5. Renate Meyer & David A. Fournier & Andreas Berg, 2003. "Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 408-420, December.
    6. Watanabe, Toshiaki, 1999. "A Non-linear Filtering Approach to Stochastic Volatility Models with an Application to Daily Stock Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 101-121, March-Apr.
    7. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manabu Asai & Michael McAleer, 2011. "Alternative Asymmetric Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
    2. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    3. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    4. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    5. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    2. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    3. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    4. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    5. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    6. T. R. Santos, 2018. "A Bayesian GED-Gamma stochastic volatility model for return data: a marginal likelihood approach," Papers 1809.01489, arXiv.org.
    7. Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
    8. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    9. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    10. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    11. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    12. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    13. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    14. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Discrete-time stochastic volatility models and MCMC-based statistical inference," SFB 649 Discussion Papers 2008-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Ilias Tsiakas, 2004. "Analysis of the predictive ability of information accumulated over nights, weekends and holidays," Econometric Society 2004 Australasian Meetings 208, Econometric Society.
    16. repec:hum:wpaper:sfb649dp2008-063 is not listed on IDEAS
    17. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    18. N. Balakrishna & Bovas Abraham & Ranjini Sivakumar, 2006. "Gamma stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 153-171.
    19. Jeongeun Kim & David S. Stoffer, 2008. "Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 811-833, September.
    20. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    21. Gordon V. Chavez, 2019. "Dynamic tail inference with log-Laplace volatility," Papers 1901.02419, arXiv.org, revised Jul 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:25:y:2005:i:3:p:281-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.