IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v17y2007i2p149-171.html
   My bibliography  Save this article

Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models

Author

Listed:
  • Stavros Degiannakis
  • Evdokia Xekalaki

Abstract

A number of ARCH models are considered in the framework of evaluating the performance of a method for model selection based on a standardized prediction error criterion (SPEC). According to this method, the ARCH model with the lowest sum of squared standardized forecasting errors is selected for predicting future volatility. A number of statistical criteria, that measure the distance between predicted and inter-day realized volatility, are used to examine the performance of a model to predict future volatility, for forecasting horizons ranging from one day to 100 days ahead. The results reveal that the SPEC model selection procedure has a satisfactory performance in picking that model that generates 'better' volatility predictions. A comparison of the SPEC algorithm with a set of other model evaluation criteria yields similar findings. It appears, therefore, that it can be regarded as a tool in guiding the choice of the appropriate model for predicting future volatility, with applications in evaluating portfolios, managing financial risk and creating speculative strategies with options.

Suggested Citation

  • Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
  • Handle: RePEc:taf:apfiec:v:17:y:2007:i:2:p:149-171
    DOI: 10.1080/09603100500461686
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603100500461686
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603100500461686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philip Hans Franses & Paul van Homelen, 1998. "On forecasting exchange rates using neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 589-596.
    2. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    3. B. Adrangi & A. Chatrath, 2003. "Non-linear dynamics in futures prices: evidence from the coffee, sugar and cocoa exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 13(4), pages 245-256.
    4. Perry Sadorsky, 2005. "Stochastic volatility forecasting and risk management," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 121-135.
    5. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    6. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    7. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    8. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    9. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
    10. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    11. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    12. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
    14. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    15. Burak Saltoglu, 2003. "Comparing forecasting ability of parametric and non-parametric methods: an application with Canadian monthly interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 169-176.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    18. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    19. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    20. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
    21. John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
    22. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    23. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    24. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    25. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    26. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    27. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    28. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    29. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    30. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    31. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    32. Franses Philip Hans & van Griensven Kasper, 1998. "Forecasting Exchange Rates Using Neural Networks for Technical Trading Rules," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-8, January.
    33. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    34. Cohen, Kalman J. & Hawawini, Gabriel A. & Maier, Steven F. & Schwartz, Robert A. & Whitcomb, David K., 1983. "Friction in the trading process and the estimation of systematic risk," Journal of Financial Economics, Elsevier, vol. 12(2), pages 263-278, August.
    35. Joseph Plasmans & William Verkooijen & Hennie Daniels, 1998. "Estimating structural exchange rate models by artificial neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 541-551.
    36. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    37. Marc Saez, 1997. "Option pricing under stochastic volatility and stochastic interest rate in the Spanish case," Applied Financial Economics, Taylor & Francis Journals, vol. 7(4), pages 379-394.
    38. Robert F. Engle & Che-Hsiung Hong & Alex Kane, 1990. "Valuation of Variance Forecast with Simulated Option Markets," NBER Working Papers 3350, National Bureau of Economic Research, Inc.
    39. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
    40. Jorge Perez-Rodriguez & Salvador Torra & Julian Andrada-Felix, 2005. "Are Spanish Ibex35 stock future index returns forecasted with non-linear models?," Applied Financial Economics, Taylor & Francis Journals, vol. 15(14), pages 963-975.
    41. Stavros Degiannakis & Evdokia Xekalaki, 2005. "Predictability and model selection in the context of ARCH models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(1), pages 55-82, January.
    42. Brock, W. A., 1986. "Distinguishing random and deterministic systems: Abridged version," Journal of Economic Theory, Elsevier, vol. 40(1), pages 168-195, October.
    43. Jun Yu, 2002. "Forecasting volatility in the New Zealand stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 12(3), pages 193-202.
    44. David Walsh & Glenn Yu-Gen Tsou, 1998. "Forecasting index volatility: sampling interval and non-trading effects," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 477-485.
    45. Heiko Ebens, 1999. "Realized Stock Volatility," Economics Working Paper Archive 420, The Johns Hopkins University,Department of Economics, revised Jul 1999.
    46. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    47. Teo Jasic & Douglas Wood, 2004. "The profitability of daily stock market indices trades based on neural network predictions: case study for the S&P 500, the DAX, the TOPIX and the FTSE in the period 1965-1999," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 285-297.
    48. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    49. Dimson, Elroy, 1979. "Risk measurement when shares are subject to infrequent trading," Journal of Financial Economics, Elsevier, vol. 7(2), pages 197-226, June.
    50. John Barkoulas & Nickolaos Travlos, 1998. "Chaos in an emerging capital market? The case of the Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 8(3), pages 231-243.
    51. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    52. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    53. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    54. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    55. Faruk Selcuk, 2005. "Asymmetric stochastic volatility in emerging stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 867-874.
    56. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    57. Xekalaki, Evdokia & Panaretos, John & Psarakis, Stelios, 2003. "A Predictive Model Evaluation and Selection Approach - The Correlated Gamma Ratio Distribution," MPRA Paper 6389, University Library of Munich, Germany.
    58. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    59. Alain Hecq, 1996. "IGARCH effect on autoregressive lag length selection and causality tests," Applied Economics Letters, Taylor & Francis Journals, vol. 3(5), pages 317-323.
    60. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Degiannakis, Stavros, 2008. "Forecasting Vix," MPRA Paper 96307, University Library of Munich, Germany.
    2. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    3. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    4. Stavros Degiannakis & Evdokia Xekalaki, 2008. "SPEC model selection algorithm for ARCH models: an options pricing evaluation framework," Applied Financial Economics Letters, Taylor & Francis Journals, vol. 4(6), pages 419-423.
    5. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    6. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    7. Durán Santomil, Pablo & Otero González, Luís & Martorell Cunill, Onofre & Merigó Lindahl, José M., 2018. "Backtesting an equity risk model under Solvency II," Journal of Business Research, Elsevier, vol. 89(C), pages 216-222.
    8. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Simulated evidence on the distribution of the standardized one-step-ahead prediction errors in ARCH processes," Applied Financial Economics Letters, Taylor & Francis Journals, vol. 3(1), pages 31-37.
    9. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
    10. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: intra-day vs. inter-day models," MPRA Paper 80434, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    2. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    3. Degiannakis, Stavros, 2004. "Volatility Forecasting: Evidence from a Fractional Integrated Asymmetric Power ARCH Skewed-t Model," MPRA Paper 96330, University Library of Munich, Germany.
    4. Stavros Degiannakis & Evdokia Xekalaki, 2005. "Predictability and model selection in the context of ARCH models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(1), pages 55-82, January.
    5. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
    6. Degiannakis, Stavros, 2004. "Forecasting Realized Intra-day Volatility and Value at Risk: Evidence from a Fractional Integrated Asymmetric Power ARCH Skewed-t Model," MPRA Paper 80488, University Library of Munich, Germany.
    7. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    10. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    11. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    13. Georgios Chortareas & John Nankervis & Ying Jiang, 2007. "Forecasting Exchange Rate Volatility with High Frequency Data: Is the Euro Different?," Money Macro and Finance (MMF) Research Group Conference 2006 79, Money Macro and Finance Research Group.
    14. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: intra-day vs. inter-day models," MPRA Paper 80434, University Library of Munich, Germany.
    15. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    16. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    17. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    18. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    19. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    20. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:17:y:2007:i:2:p:149-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.