Modeling CAC40 Volatility Using Ultra-high Frequency Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Degiannakis, Stavros & Floros, Christos, 2013. "Modeling CAC40 volatility using ultra-high frequency data," Research in International Business and Finance, Elsevier, vol. 28(C), pages 68-81.
References listed on IDEAS
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2006.
"Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
- Neil Shephard & Ole Barndorff-Nielsen, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Series Working Papers 2004-FE-01, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
- Tim Bollerslev & George Tauchen & Hao Zhou, 2009.
"Expected Stock Returns and Variance Risk Premia,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
- Tim Bollerslev & Hao Zhou, 2006. "Expected stock returns and variance risk premia," Finance and Economics Discussion Series 2007-11, Board of Governors of the Federal Reserve System (U.S.).
- Tim Bollerslev & Tzuo Hao & George Tauchen, 2008. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2008-48, Department of Economics and Business Economics, Aarhus University.
- Tim Bollerslev & Hao Zhou, 2007. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2007-17, Department of Economics and Business Economics, Aarhus University.
- Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
- Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011.
"Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
- Tim Bollerslev & Michael S. Gibson & Hao Zhou, 2005. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
- Tim Bollerslev & Michael S. Gibson & Hao Zhou, 2004. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Finance and Economics Discussion Series 2004-56, Board of Governors of the Federal Reserve System (U.S.).
- Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
- Bollerslev, Tim & Marrone, James & Xu, Lai & Zhou, Hao, 2014.
"Stock Return Predictability and Variance Risk Premia: Statistical Inference and International Evidence,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 633-661, June.
- Tim Bollerslev & James Marrone & Lai Xu & Hao Zhou, 2011. "Stock return predictability and variance risk premia: statistical inference and international evidence," Finance and Economics Discussion Series 2011-52, Board of Governors of the Federal Reserve System (U.S.).
- Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008.
"Volatility forecasting: Intra-day versus inter-day models,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," MPRA Paper 96322, University Library of Munich, Germany.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002.
"Parametric and Nonparametric Volatility Measurement,"
NBER Technical Working Papers
0279, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
- Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
- Marc Saez, 1997. "Option pricing under stochastic volatility and stochastic interest rate in the Spanish case," Applied Financial Economics, Taylor & Francis Journals, vol. 7(4), pages 379-394.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: intra-day vs. inter-day models," MPRA Paper 80434, University Library of Munich, Germany.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
- Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011.
"Ultra high frequency volatility estimation with dependent microstructure noise,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
- Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
- Yacine Ait-Sahalia & Per A. Mykland & Lan Zhang, 2005. "Ultra High Frequency Volatility Estimation with Dependent Microstructure Noise," NBER Working Papers 11380, National Bureau of Economic Research, Inc.
- Robert F. Engle, 2000.
"The Econometrics of Ultra-High Frequency Data,"
Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
- Robert F. Engle, 1996. "The Econometrics of Ultra-High Frequency Data," NBER Working Papers 5816, National Bureau of Economic Research, Inc.
- Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
- Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- David Walsh & Glenn Yu-Gen Tsou, 1998. "Forecasting index volatility: sampling interval and non-trading effects," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 477-485.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Stavros Degiannakis & Alexandra Livada, 2016.
"Evaluation of realized volatility predictions from models with leptokurtically and asymmetrically distributed forecast errors,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 871-892, April.
- Degiannakis, Stavros & Livada, Alexandra, 2013. "Evaluation of Realized Volatility Predictions from Models with Leptokurtically and Asymmetrically Distributed Forecast Errors," MPRA Paper 67968, University Library of Munich, Germany.
- Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022.
"On the stationarity of futures hedge ratios,"
Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
- Degiannakis, Stavros & Floros, Christos & Salvador, Enrique & Vougas, Dimitrios, 2020. "On the Stationarity of Futures Hedge Ratios," MPRA Paper 102907, University Library of Munich, Germany.
- Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021.
"The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
- Larisa Yarovaya & Roman Matkovskyy & Akanksha Jalan, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Post-Print hal-03512931, HAL.
- Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
- Stavros Degiannakis & Andreas Andrikopoulos & Timotheos Angelidis & Christos Floros, 2013. "Return dispersion, stock market liquidity and aggregate economic activity," Working Papers 166, Bank of Greece.
- Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012.
"Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility,"
Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
- Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2005.
"Variation, jumps, market frictions and high frequency data in financial econometrics,"
OFRC Working Papers Series
2005fe08, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard & Ole E. Barndorff-Nielsen & Department of Mathematical Sciences & University of Aarhus & Denmark, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Series Working Papers 240, University of Oxford, Department of Economics.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014.
"Asymmetric Realized Volatility Risk,"
JRFM, MDPI, vol. 7(2), pages 1-30, June.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Documentos de Trabajo del ICAE 2014-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Tinbergen Institute Discussion Papers 14-075/III, Tinbergen Institute.
- David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," Working Papers in Economics 14/20, University of Canterbury, Department of Economics and Finance.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
- Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011.
"A reduced form framework for modeling volatility of speculative prices based on realized variation measures,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
- Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
- Isao Ishida & Toshiaki Watanabe, 2009.
"Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model,"
CIRJE F-Series
CIRJE-F-608, CIRJE, Faculty of Economics, University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," Global COE Hi-Stat Discussion Paper Series gd08-032, Institute of Economic Research, Hitotsubashi University.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009.
"Realized Volatility Risk,"
CARF F-Series
CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," Working Papers in Economics 10/26, University of Canterbury, Department of Economics and Finance.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized volatility risk," Documentos de Trabajo del ICAE 2013-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized Volatility Risk," Tinbergen Institute Discussion Papers 13-092/III, Tinbergen Institute.
- Bauwens, Luc & Sucarrat, Genaro, 2010.
"General-to-specific modelling of exchange rate volatility: A forecast evaluation,"
International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
- Luc, BAUWENS & Genaro, SUCARRAT, 2006. "General to Specific Modelling of Exchange Rate Volatility : a Forecast Evaluation," Discussion Papers (ECON - Département des Sciences Economiques) 2006013, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & SUCARRAT, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: a forecast evaluation," LIDAM Reprints CORE 2234, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Sucarrat, Genaro, 2008. "General to specific modelling of exchange rate volatility : a forecast evaluation," UC3M Working papers. Economics we081810, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- BAUWENS, Luc & SUCARRAT, Genaro, 2006. "General to specific modelling of exchange rate volatility: a forecast evaluation," LIDAM Discussion Papers CORE 2006021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005.
"Volatility forecasting,"
CFS Working Paper Series
2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
- Degiannakis, Stavros & Floros, Christos, 2016.
"Intra-day realized volatility for European and USA stock indices,"
Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
- Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
More about this item
Keywords
intra-day data; long memory; predictability; realized volatility; ultra-high frequency modeling; Value-at-Risk.;All these keywords.
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:80445. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.