IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/235686.html
   My bibliography  Save this paper

Comovements and Volatility Spillover in Commodity Markets

Author

Listed:
  • Chen, Sihong
  • Wu, Ximing

Abstract

This paper analyzes comovements and connectedness of commodity futures in the past two decades. We apply dynamic conditional correlation model (DCC) to capture time-varying dependence structure of a variety of commodities across different sectors. We propose to estimate network connectedness of commodity markets by the modeling framework of Diebold and Yilmaz (2014) that studies direction and magnitude of volatility spillover using reduced-form vector autoregression (VAR) models and generalized forecast error variance decomposition. We find that both DCC and VAR models present consistent results: while comovements and connectedness of commodity markets have dramatically increased during 2007-2009 financial distress, they have returned to the pre-crisis levels after. We also find that recent downward movement of commodity prices does not necessarily indicate stronger connection between commodity markets, which poses challenges on recent studies in commodity financialization.

Suggested Citation

  • Chen, Sihong & Wu, Ximing, 2016. "Comovements and Volatility Spillover in Commodity Markets," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235686, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:235686
    DOI: 10.22004/ag.econ.235686
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235686/files/AAEA_Chen_Wu.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Adams, Zeno & Glueck, Thorsten, 2014. "Financialization in Commodity Markets: A Passing Trend or the New Normal?," Working Papers on Finance 1413, University of St. Gallen, School of Finance, revised Aug 2015.
    5. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    6. Adams, Zeno & Glück, Thorsten, 2015. "Financialization in commodity markets: A passing trend or the new normal?," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 93-111.
    7. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    8. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    9. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    10. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    11. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    2. Uddin, Gazi Salah & Shahzad, Syed Jawad Hussain & Boako, Gideon & Hernandez, Jose Areola & Lucey, Brian M., 2019. "Heterogeneous interconnections between precious metals: Evidence from asymmetric and frequency-domain spillover analysis," Resources Policy, Elsevier, vol. 64(C).
    3. Bajo-Rubio, Oscar & Berke, Burcu & McMillan, David, 2017. "The behaviour of asset return and volatility spillovers in Turkey: A tale of two crises," Research in International Business and Finance, Elsevier, vol. 41(C), pages 577-589.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    2. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    3. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    5. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    6. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    7. Honghai Yu & Wencong Sun & Xiangting Ye & Libing Fang, 2019. "Measuring the increasing connectedness of Chinese assets with global assets: using a variance decompositions method," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(5), pages 1261-1290, March.
    8. Biswas, Priti & Jain, Prachi & Maitra, Debasish, 2024. "Are shocks in the stock markets driven by commodity markets? Evidence from Russia-Ukraine war," Journal of Commodity Markets, Elsevier, vol. 34(C).
    9. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    10. Li, Xingyi & Gan, Kai & Zhou, Qi, 2023. "Dynamic volatility connectedness among cryptocurrencies and China's financial assets in standard times and during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 51(C).
    11. Maitra, Debasish & Chandra, Saurabh & Dash, Saumya Ranjan, 2020. "Liner shipping industry and oil price volatility: Dynamic connectedness and portfolio diversification," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    12. Dimitris Korobilis & Kamil Yilmaz, 2018. "Measuring Dynamic Connectedness with Large Bayesian VAR Models," Koç University-TUSIAD Economic Research Forum Working Papers 1802, Koc University-TUSIAD Economic Research Forum.
    13. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    14. Yang Liu & Tongshuai Qiao & Liyan Han, 2022. "Does clean energy matter? Revisiting the spillovers between energy and foreign exchange markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(11), pages 2068-2083, November.
    15. Fowowe, Babajide & Shuaibu, Mohammed, 2016. "Dynamic spillovers between Nigerian, South African and international equity markets," International Economics, Elsevier, vol. 148(C), pages 59-80.
    16. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
    17. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    18. Awartani, Basel & Aktham, Maghyereh & Cherif, Guermat, 2016. "The connectedness between crude oil and financial markets: Evidence from implied volatility indices," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 56-69.
    19. Hachicha, Néjib & Ben Amar, Amine & Ben Slimane, Ikrame & Bellalah, Makram & Prigent, Jean-Luc, 2022. "Dynamic connectedness and optimal hedging strategy among commodities and financial indices," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Christian Gross, 2017. "Examining the Common Dynamics of Commodity Futures Prices," CQE Working Papers 6317, Center for Quantitative Economics (CQE), University of Muenster.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:235686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.