IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v19y2021i4d10.1007_s40953-021-00252-0.html
   My bibliography  Save this article

A Data Paradigm to Operationalise Expanded Filtration: Realized Volatilities and Kernels from Non-Synchronous NASDAQ Quotes and Trades

Author

Listed:
  • Ranjan R. Chakravarty

    (NMIMS University)

  • Sudhanshu Pani

    (NMIMS University)

Abstract

Ultra High Frequency (UHF) quotes and trades are examined in high resolution and data patterns that do not correspond to plausible market activity as in Brownlees and Gallo (Comput Stat Data Anal 51(4):2232–2245, 2006) are identified. Noise patterns other than microstructure noise are isolated and diagnostic methods are evaluated accordingly. A flexible paradigm of data handling that synthesizes statistical technique and limit order book modelling is presented, extending Barndorff-Nielsen et al. (Econom J 12(3):C1–C32, 2009), which operationalises the use of expanded filtration in empirical microstructure research. Empirical evidence from the NASDAQ 100 is presented, comprehensively demonstrating that removal of non-microstructure noise from the limit order book adds significant robustness to estimation across techniques and levels of market depth.

Suggested Citation

  • Ranjan R. Chakravarty & Sudhanshu Pani, 2021. "A Data Paradigm to Operationalise Expanded Filtration: Realized Volatilities and Kernels from Non-Synchronous NASDAQ Quotes and Trades," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 617-652, December.
  • Handle: RePEc:spr:jqecon:v:19:y:2021:i:4:d:10.1007_s40953-021-00252-0
    DOI: 10.1007/s40953-021-00252-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40953-021-00252-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40953-021-00252-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    3. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    4. Yacine Ait-Sahalia & Jialin Yu, 2008. "High Frequency Market Microstructure Noise Estimates and Liquidity Measures," NBER Working Papers 13825, National Bureau of Economic Research, Inc.
    5. O’Hara, Maureen, 2015. "High frequency market microstructure," Journal of Financial Economics, Elsevier, vol. 116(2), pages 257-270.
    6. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2019. "Price Discovery without Trading: Evidence from Limit Orders," Journal of Finance, American Finance Association, vol. 74(4), pages 1621-1658, August.
    7. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    8. Garman, Mark B., 1976. "Market microstructure," Journal of Financial Economics, Elsevier, vol. 3(3), pages 257-275, June.
    9. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    10. Sudhanshu Pani, 2021. "Liquidity in high resolution in limit order markets," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 8(1), pages 23-49.
    11. Jean Jacod & Yingying Li & Xinghua Zheng, 2017. "Statistical Properties of Microstructure Noise," Econometrica, Econometric Society, vol. 85, pages 1133-1174, July.
    12. Younes Kchia & Philip Protter, 2015. "Progressive Filtration Expansions Via A Process, With Applications To Insider Trading," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-48.
    13. Baruch, Shmuel & Glosten, Lawrence R., 2019. "Tail expectation and imperfect competition in limit order book markets," Journal of Economic Theory, Elsevier, vol. 183(C), pages 661-697.
    14. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    2. Giorgio Mirone, 2018. "Cross-sectional noise reduction and more efficient estimation of Integrated Variance," CREATES Research Papers 2018-18, Department of Economics and Business Economics, Aarhus University.
    3. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    4. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    5. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    6. Lars Winkelmann & Wenying Yao, 2024. "Tests for Jumps in Yield Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 946-957, July.
    7. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    8. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    9. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    10. Lilian de Menezes & Marianna Russo & Giovanni Urga, 2016. "Identifying Drivers of Liquidity in the NBP Month-ahead Market," EcoMod2016 9570, EcoMod.
    11. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    12. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Cambridge Working Papers in Economics 2449, Faculty of Economics, University of Cambridge.
    13. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    14. Shuping Shi & Jun Yu, 2023. "Volatility Puzzle: Long Memory or Antipersistency," Management Science, INFORMS, vol. 69(7), pages 3861-3883, July.
    15. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Janeway Institute Working Papers 2423, Faculty of Economics, University of Cambridge.
    16. Charles S. Bos & Pawel Janus, 2013. "A Quantile-based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data," Tinbergen Institute Discussion Papers 13-155/III, Tinbergen Institute.
    17. repec:hal:journl:peer-00815564 is not listed on IDEAS
    18. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    19. Chang, Jinyuan & Hu, Qiao & Liu, Cheng & Tang, Cheng Yong, 2024. "Optimal covariance matrix estimation for high-dimensional noise in high-frequency data," Journal of Econometrics, Elsevier, vol. 239(2).
    20. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    21. Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:19:y:2021:i:4:d:10.1007_s40953-021-00252-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.