IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v33y2015icp51-66.html
   My bibliography  Save this article

The predictive density simulation of the yield curve with a zero lower bound

Author

Listed:
  • Kang, Kyu Ho

Abstract

Since Diebold and Li (2006) proved the outstanding performance of a three-factor Gaussian dynamic Nelson–Siegel (DNS) model in forecasting the U.S. yield curve, the DNS model and its variants have been widely applied in many areas of macroeconomics and finance. However, despite its popularity one practical problem with the DNS approach is that it produces a substantially high probability of negative future short-term government bond yields for the recent financial crises. In this study, we provide predictive densities for yield curves that have, in general, non-negative support. To this end, we propose and estimate a new DNS model that takes a zero lower bound into account. In the model, the yields are determined as a linear function of the vector-autoregressive factors, which is constrained to be non-negative. We employ a Bayesian econometric approach for estimation and density forecasting. As a result of the zero lower bound restriction, the Gibbs-sampling method is no longer applicable, unlike in standard DNS models. Instead, we propose an efficient Markov chain Monte Carlo method, and demonstrate that the non-negative predictive yield curve density, as well as the model parameters and factors can be simulated with high efficiency. Moreover, we find that, for the U.S. yield curve, the Svensson four-factor DNS model with a zero lower bound is most preferred among the alternatives we consider.

Suggested Citation

  • Kang, Kyu Ho, 2015. "The predictive density simulation of the yield curve with a zero lower bound," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 51-66.
  • Handle: RePEc:eee:empfin:v:33:y:2015:i:c:p:51-66
    DOI: 10.1016/j.jempfin.2015.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539815000651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2015.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Eric T. Swanson & John C. Williams, 2014. "Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates," American Economic Review, American Economic Association, vol. 104(10), pages 3154-3185, October.
    3. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Jens H. E. Christensen & Glenn D. Rudebusch, 2016. "Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution?," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 75-125, Emerald Group Publishing Limited.
    6. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    7. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    8. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    9. Svensson, Lars E O, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4," CEPR Discussion Papers 1051, C.E.P.R. Discussion Papers.
    10. Zantedeschi, Daniel & Damien, Paul & Polson, Nicholas G., 2011. "Predictive Macro-Finance With Dynamic Partition Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 427-439.
    11. Gurkaynak, Refet S. & Sack, Brian & Wright, Jonathan H., 2007. "The U.S. Treasury yield curve: 1961 to the present," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2291-2304, November.
    12. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    13. Kim, Don H. & Singleton, Kenneth J., 2012. "Term structure models and the zero bound: An empirical investigation of Japanese yields," Journal of Econometrics, Elsevier, vol. 170(1), pages 32-49.
    14. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    15. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Brzoza-Brzezina & Jacek Kotłowski, 2014. "Measuring the natural yield curve," Applied Economics, Taylor & Francis Journals, vol. 46(17), pages 2052-2065, June.
    2. Alfaro, Rodrigo & Piña, Marco, 2023. "Estimates of the US Shadow-Rate," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    3. Gaus, Eric & Sinha, Arunima, 2018. "What does the yield curve imply about investor expectations?," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 248-265.
    4. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    5. Shin, Minchul & Zhong, Molin, 2017. "Does realized volatility help bond yield density prediction?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 373-389.
    6. Gaus, Eric & Sinha, Arunima, 2017. "Characterizing investor expectations for assets with varying risk," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 990-999.
    7. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Bond portfolio optimization using dynamic factor models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 128-158.
    8. Faria, Adriano & Almeida, Caio, 2018. "A hybrid spline-based parametric model for the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 72-94.
    9. Rui Chen & Jiri Svec & Maurice Peat, 2016. "Forecasting the Government Bond Term Structure in Australia," Australian Economic Papers, Wiley Blackwell, vol. 55(2), pages 99-111, June.
    10. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    11. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    12. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    13. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    14. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    15. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    16. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    17. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    18. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2010. "Forecasting Government Bond Yields with Large Bayesian VARs," Working Papers 662, Queen Mary University of London, School of Economics and Finance.
    19. Choi, Ahjin & Kang, Kyu Ho, 2023. "Modeling the time-varying dynamic term structure of interest rates," Journal of Banking & Finance, Elsevier, vol. 153(C).
    20. Lelo de Larrea Alejandra, 2020. "Forecast Comparison of the Term Structure of Interest Rates of Mexico for Different Specifications of the Affine Model," Working Papers 2020-01, Banco de México.

    More about this item

    Keywords

    Out-of-sample prediction; Predictive accuracy; Bayesian MCMC estimation;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:33:y:2015:i:c:p:51-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.