IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v31y2022i5d10.1007_s10260-022-00629-2.html
   My bibliography  Save this article

Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula

Author

Listed:
  • S. Ghasemzadeh

    (Shahid Beheshti University)

  • M. Ganjali

    (Shahid Beheshti University)

  • T. Baghfalaki

    (Tarbiat Modares University)

Abstract

In this paper, we develop a joint quantile regression model for correlated mixed discrete and continuous data using Gaussian copula. Our approach entails specifying marginal quantile regression models for the responses, and combining them via a copula to form a joint model. For modeling the quantiles of continuous response an asymmetric Laplace (AL) distribution is assigned to the error terms in both continuous and discrete models. For modeling the discrete response an underlying latent variable model and the threshold concept are used. Quantile regression for discrete responses can be fitted using monotone equivariance property of quantiles. By assuming a latent variable framework to describe discrete responses, the applied proposed copula still uniquely determines the joint distribution. The likelihood function of the joint model have also a tractable form but it is not differentiable in some points of the parameter space. However, by using the stochastic representation of AL distribution, the maximum likelihood estimate of parameters are obtained using an EM algorithm and also in order to carry out inference about parameters Bootstrap confidence intervals are specified using a Monte Carlo technique. Some simulation studies are performed to illustrate the performance of the model. Finally, we illustrate applications of the proposed approach using burn injuries data.

Suggested Citation

  • S. Ghasemzadeh & M. Ganjali & T. Baghfalaki, 2022. "Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1181-1202, December.
  • Handle: RePEc:spr:stmapp:v:31:y:2022:i:5:d:10.1007_s10260-022-00629-2
    DOI: 10.1007/s10260-022-00629-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-022-00629-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-022-00629-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
    2. Peter X.-K. Song & Mingyao Li & Ying Yuan, 2009. "Joint Regression Analysis of Correlated Data Using Gaussian Copulas," Biometrics, The International Biometric Society, vol. 65(1), pages 60-68, March.
    3. Paolo Frumento & Matteo Bottai & Iván Fernández-Val, 2021. "Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 783-797, April.
    4. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    5. Machado, Jose A.F. & Silva, J. M. C. Santos, 2005. "Quantiles for Counts," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1226-1237, December.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Rahim Alhamzawi & Haithem Taha Mohammad Ali, 2018. "Bayesian quantile regression for ordinal longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 815-828, April.
    8. Karlis, Dimitris, 2002. "An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 43-52, March.
    9. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    10. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    11. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    2. Viviana Carcaiso & Leonardo Grilli, 2023. "Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1061-1082, October.
    3. Siamak Ghasemzadeh & Mojtaba Ganjali & Taban Baghfalaki, 2018. "Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 321-348, December.
    4. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    5. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    6. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    7. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    8. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
    9. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    10. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    11. Sottile, Gianluca & Frumento, Paolo, 2022. "Robust estimation and regression with parametric quantile functions," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    12. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    13. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    14. Xuejun Jiang & Yunxian Li & Aijun Yang & Ruowei Zhou, 2020. "Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk," Empirical Economics, Springer, vol. 58(5), pages 2085-2103, May.
    15. Fuzi, Mohd Fadzli Mohd & Jemain, Abdul Aziz & Ismail, Noriszura, 2016. "Bayesian quantile regression model for claim count data," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 124-137.
    16. Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
    17. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    18. Mohammad Arshad Rahman & Angela Vossmeyer, 2019. "Estimation and Applications of Quantile Regression for Binary Longitudinal Data," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part B, volume 40, pages 157-191, Emerald Group Publishing Limited.
    19. Pai, Jeffrey & Li, Yunxian & Yang, Aijun & Li, Chenxu, 2022. "Earthquake parametric insurance with Bayesian spatial quantile regression," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 1-12.
    20. Ali Aghamohammadi, 2018. "Bayesian analysis of dynamic panel data by penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 91-108, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:31:y:2022:i:5:d:10.1007_s10260-022-00629-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.