IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v31y2015i4p1056-1066.html
   My bibliography  Save this article

Forecasting long memory series subject to structural change: A two-stage approach

Author

Listed:
  • Papailias, Fotis
  • Fruet Dias, Gustavo

Abstract

A two-stage forecasting approach for long memory time series is introduced. In the first step, we estimate the fractional exponent and, by applying the fractional differencing operator, obtain the underlying weakly dependent series. In the second step, we produce multi-step-ahead forecasts for the weakly dependent series and obtain their long memory counterparts by applying the fractional cumulation operator. The methodology applies to both stationary and nonstationary cases. Simulations and an application to seven time series provide evidence that the new methodology is more robust to structural change and yields good forecasting results.

Suggested Citation

  • Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
  • Handle: RePEc:eee:intfor:v:31:y:2015:i:4:p:1056-1066
    DOI: 10.1016/j.ijforecast.2015.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920701500045X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2015.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    3. Hansen, Bruce E, 1997. "Approximate Asymptotic P Values for Structural-Change Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 60-67, January.
    4. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.
    5. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(5), pages 621-642, October.
    6. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    7. repec:hal:journl:peer-00834425 is not listed on IDEAS
    8. Karim M. Abadir & Walter Distaso & Liudas Giraitis, 2011. "An I() model with trend and cycles," Post-Print hal-00834425, HAL.
    9. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    10. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    11. Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
    12. Peter M Robinson, 2006. "Conditional-Sum-of-Squares Estimation ofModels for Stationary Time Series with Long Memory," STICERD - Econometrics Paper Series 505, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    14. D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
    15. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    16. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    17. Castle, Jennifer & Shephard, Neil (ed.), 2009. "The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry," OUP Catalogue, Oxford University Press, number 9780199237197.
    18. Stock, James H., 1994. "Deciding between I(1) and I(0)," Journal of Econometrics, Elsevier, vol. 63(1), pages 105-131, July.
    19. Hirotugu Akaike, 1969. "Power spectrum estimation through autoregressive model fitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 407-419, December.
    20. Zhongjun Qu, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
    21. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    22. Robinson, Peter, 2006. "Conditional-sum-of-squares estimation of models for stationary time series with long memory," LSE Research Online Documents on Economics 4536, London School of Economics and Political Science, LSE Library.
    23. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2011. "An I(d) model with trend and cycles," Journal of Econometrics, Elsevier, vol. 163(2), pages 186-199, August.
    24. Diebold, Francis X. & Lindner, Peter, 1996. "Fractional integration and interval prediction," Economics Letters, Elsevier, vol. 50(3), pages 305-313, March.
    25. Baillie, Richard T. & Kongcharoen, Chaleampong & Kapetanios, George, 2012. "Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures," International Journal of Forecasting, Elsevier, vol. 28(1), pages 46-53.
    26. Rohit S. Deo & Clifford M. Hurvich, 1998. "Linear Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 379-397, July.
    27. Davidson, James, 2002. "Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 243-269, February.
    28. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    29. Xiaofeng Shao, 2011. "A simple test of changes in mean in the possible presence of long‐range dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 598-606, November.
    30. Bhansali, R. J. & Kokoszka, P. S., 2002. "Computation of the forecast coefficients for multistep prediction of long-range dependent time series," International Journal of Forecasting, Elsevier, vol. 18(2), pages 181-206.
    31. Shimotsu, Katsumi & Phillips, Peter C.B., 2006. "Local Whittle estimation of fractional integration and some of its variants," Journal of Econometrics, Elsevier, vol. 130(2), pages 209-233, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cremaschini, Alessandro & Maruotti, Antonello, 2023. "A finite mixture analysis of structural breaks in the G-7 gross domestic product series," Research in Economics, Elsevier, vol. 77(1), pages 76-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baillie, Richard T. & Kongcharoen, Chaleampong & Kapetanios, George, 2012. "Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures," International Journal of Forecasting, Elsevier, vol. 28(1), pages 46-53.
    2. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    3. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    4. Chatzikonstanti, Vasiliki & Venetis, Ioannis A., 2015. "Long memory in log-range series: Do structural breaks matter?," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 104-113.
    5. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
    6. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    7. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    8. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    9. Belbute, José M. & Pereira, Alfredo M., 2020. "Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal," Energy Policy, Elsevier, vol. 144(C).
    10. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    11. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    12. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    13. Iacone, Fabrizio & Leybourne, Stephen J. & Robert Taylor, A.M., 2013. "Testing for a break in trend when the order of integration is unknown," Journal of Econometrics, Elsevier, vol. 176(1), pages 30-45.
    14. Chevillon, Guillaume & Hecq , Alain & Laurent, Sébastien, 2015. "Long Memory Through Marginalization of Large Systems and Hidden Cross-Section Dependence," ESSEC Working Papers WP1507, ESSEC Research Center, ESSEC Business School.
    15. Baillie, Richard T. & Kapetanios, George, 2007. "Testing for Neglected Nonlinearity in Long-Memory Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
    16. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2015. "Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach," CREATES Research Papers 2015-30, Department of Economics and Business Economics, Aarhus University.
    17. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    18. Francis Ahking, 2010. "Non-parametric tests of real exchange rates in the post-Bretton Woods era," Empirical Economics, Springer, vol. 39(2), pages 439-456, October.
    19. Baillie, Richard T. & Kapetanios, George, 2008. "Nonlinear models for strongly dependent processes with financial applications," Journal of Econometrics, Elsevier, vol. 147(1), pages 60-71, November.
    20. Geoffrey Ngene & Charles Lambert & Ali Darrat, 2015. "Testing Long Memory in the Presence of Structural Breaks: An Application to Regional and National Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 50(4), pages 465-483, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:31:y:2015:i:4:p:1056-1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.