IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v49y2017i4d10.1007_s10614-016-9573-4.html
   My bibliography  Save this article

Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models

Author

Listed:
  • Silvia Cagnone

    (University of Bologna (IT))

  • Francesco Bartolucci

    (University of Perugia (IT))

Abstract

Maximum likelihood estimation of models based on continuous latent variables generally requires to solve integrals that are not analytically tractable. Numerical approximations represent a possible solution to this problem. We propose to use the adaptive Gaussian–Hermite (AGH) numerical quadrature approximation for a particular class of continuous latent variable models for time-series and longitudinal data. These dynamic models are based on time-varying latent variables that follow an autoregressive process of order 1, AR(1). Two examples are the stochastic volatility models for the analysis of financial time series and the limited dependent variable models for the analysis of panel data. A comparison between the performance of AGH methods and alternative approximation methods proposed in the literature is carried out by simulation. Empirical examples are also used to illustrate the proposed approach.

Suggested Citation

  • Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
  • Handle: RePEc:kap:compec:v:49:y:2017:i:4:d:10.1007_s10614-016-9573-4
    DOI: 10.1007/s10614-016-9573-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-016-9573-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-016-9573-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florian Heiss, 2008. "Sequential numerical integration in nonlinear state space models for microeconometric panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 373-389.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    4. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-291, July.
    5. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521828284, January.
    6. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    7. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    8. Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
    9. Francesco Bartolucci & Silvia Bacci & Fulvia Pennoni, 2014. "Longitudinal analysis of self-reported health status by mixture latent auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 267-288, February.
    10. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    11. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    12. Francesco Bartolucci & Giovanni De Luca, 2001. "Maximum likelihood estimation of a latent variable time‐series model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(1), pages 5-17, January.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Bartolucci, F. & De Luca, G., 2003. "Likelihood-based inference for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 445-449, March.
    15. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    16. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    17. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    18. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521535380, January.
    19. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    20. J. C. Naylor & A. F. M. Smith, 1982. "Applications of a Method for the Efficient Computation of Posterior Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 214-225, November.
    21. Tanizaki, Hisashi & Mariano, Roberto S., 1998. "Nonlinear and non-Gaussian state-space modeling with Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 263-290.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanc-Blocquel, Augusto & Ortiz-Gracia, Luis & Oviedo, Rodolfo, 2024. "Efficient likelihood estimation of Heston model for novel climate-related financial contracts valuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 430-445.
    2. Prateek Bansal & Vahid Keshavarzzadeh & Angelo Guevara & Shanjun Li & Ricardo A Daziano, 2022. "Designed quadrature to approximate integrals in maximum simulated likelihood estimation [Evaluating simulation-based approaches and multivariate quadrature on sparse grids in estimating multivariat," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 301-321.
    3. Bianconcini, Silvia & Cagnone, Silvia, 2023. "The dimension-wise quadrature estimation of dynamic latent variable models for count data," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cagnone, Silvia & Bartolucci, Francesco, 2013. "Adaptive quadrature for likelihood inference on dynamic latent variable models for time-series and panel data," MPRA Paper 51037, University Library of Munich, Germany.
    2. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    5. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    6. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    7. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    8. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    9. N. Balakrishna & Bovas Abraham & Ranjini Sivakumar, 2006. "Gamma stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 153-171.
    10. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Ramdan Dridi & Eric Renault, 2000. "Semi-Parametric Indirect Inference," STICERD - Econometrics Paper Series 392, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
    13. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    14. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    15. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    16. Hwai-Chung Ho, 2022. "Forecasting the distribution of long-horizon returns with time-varying volatility," Papers 2201.07457, arXiv.org.
    17. Siem Jan Koopman & Charles S. Bos, 2002. "Time Series Models with a Common Stochastic Variance for Analysing Economic Time Series," Tinbergen Institute Discussion Papers 02-113/4, Tinbergen Institute.
    18. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    19. Paolo Girardello & Orietta Nicolis & Giovanni Tondini, 2003. "Comparing Conditional Variance Models: Theory and Empirical Evidence," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 177-206, September.
    20. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:49:y:2017:i:4:d:10.1007_s10614-016-9573-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.